summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/multiclass_classification_ex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/examples/multiclass_classification_ex.cpp')
-rw-r--r--ml/dlib/examples/multiclass_classification_ex.cpp248
1 files changed, 248 insertions, 0 deletions
diff --git a/ml/dlib/examples/multiclass_classification_ex.cpp b/ml/dlib/examples/multiclass_classification_ex.cpp
new file mode 100644
index 00000000..782511ca
--- /dev/null
+++ b/ml/dlib/examples/multiclass_classification_ex.cpp
@@ -0,0 +1,248 @@
+// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
+/*
+ This is an example illustrating the use of the multiclass classification tools
+ from the dlib C++ Library. Specifically, this example will make points from
+ three classes and show you how to train a multiclass classifier to recognize
+ these three classes.
+
+ The classes are as follows:
+ - class 1: points very close to the origin
+ - class 2: points on the circle of radius 10 around the origin
+ - class 3: points that are on a circle of radius 4 but not around the origin at all
+*/
+
+#include <dlib/svm_threaded.h>
+
+#include <iostream>
+#include <vector>
+
+#include <dlib/rand.h>
+
+using namespace std;
+using namespace dlib;
+
+// Our data will be 2-dimensional data. So declare an appropriate type to contain these points.
+typedef matrix<double,2,1> sample_type;
+
+// ----------------------------------------------------------------------------------------
+
+void generate_data (
+ std::vector<sample_type>& samples,
+ std::vector<double>& labels
+);
+/*!
+ ensures
+ - make some 3 class data as described above.
+ - Create 60 points from class 1
+ - Create 70 points from class 2
+ - Create 80 points from class 3
+!*/
+
+// ----------------------------------------------------------------------------------------
+
+int main()
+{
+ try
+ {
+ std::vector<sample_type> samples;
+ std::vector<double> labels;
+
+ // First, get our labeled set of training data
+ generate_data(samples, labels);
+
+ cout << "samples.size(): "<< samples.size() << endl;
+
+ // The main object in this example program is the one_vs_one_trainer. It is essentially
+ // a container class for regular binary classifier trainer objects. In particular, it
+ // uses the any_trainer object to store any kind of trainer object that implements a
+ // .train(samples,labels) function which returns some kind of learned decision function.
+ // It uses these binary classifiers to construct a voting multiclass classifier. If
+ // there are N classes then it trains N*(N-1)/2 binary classifiers, one for each pair of
+ // labels, which then vote on the label of a sample.
+ //
+ // In this example program we will work with a one_vs_one_trainer object which stores any
+ // kind of trainer that uses our sample_type samples.
+ typedef one_vs_one_trainer<any_trainer<sample_type> > ovo_trainer;
+
+
+ // Finally, make the one_vs_one_trainer.
+ ovo_trainer trainer;
+
+
+ // Next, we will make two different binary classification trainer objects. One
+ // which uses kernel ridge regression and RBF kernels and another which uses a
+ // support vector machine and polynomial kernels. The particular details don't matter.
+ // The point of this part of the example is that you can use any kind of trainer object
+ // with the one_vs_one_trainer.
+ typedef polynomial_kernel<sample_type> poly_kernel;
+ typedef radial_basis_kernel<sample_type> rbf_kernel;
+
+ // make the binary trainers and set some parameters
+ krr_trainer<rbf_kernel> rbf_trainer;
+ svm_nu_trainer<poly_kernel> poly_trainer;
+ poly_trainer.set_kernel(poly_kernel(0.1, 1, 2));
+ rbf_trainer.set_kernel(rbf_kernel(0.1));
+
+
+ // Now tell the one_vs_one_trainer that, by default, it should use the rbf_trainer
+ // to solve the individual binary classification subproblems.
+ trainer.set_trainer(rbf_trainer);
+ // We can also get more specific. Here we tell the one_vs_one_trainer to use the
+ // poly_trainer to solve the class 1 vs class 2 subproblem. All the others will
+ // still be solved with the rbf_trainer.
+ trainer.set_trainer(poly_trainer, 1, 2);
+
+ // Now let's do 5-fold cross-validation using the one_vs_one_trainer we just setup.
+ // As an aside, always shuffle the order of the samples before doing cross validation.
+ // For a discussion of why this is a good idea see the svm_ex.cpp example.
+ randomize_samples(samples, labels);
+ cout << "cross validation: \n" << cross_validate_multiclass_trainer(trainer, samples, labels, 5) << endl;
+ // The output is shown below. It is the confusion matrix which describes the results. Each row
+ // corresponds to a class of data and each column to a prediction. Reading from top to bottom,
+ // the rows correspond to the class labels if the labels have been listed in sorted order. So the
+ // top row corresponds to class 1, the middle row to class 2, and the bottom row to class 3. The
+ // columns are organized similarly, with the left most column showing how many samples were predicted
+ // as members of class 1.
+ //
+ // So in the results below we can see that, for the class 1 samples, 60 of them were correctly predicted
+ // to be members of class 1 and 0 were incorrectly classified. Similarly, the other two classes of data
+ // are perfectly classified.
+ /*
+ cross validation:
+ 60 0 0
+ 0 70 0
+ 0 0 80
+ */
+
+ // Next, if you wanted to obtain the decision rule learned by a one_vs_one_trainer you
+ // would store it into a one_vs_one_decision_function.
+ one_vs_one_decision_function<ovo_trainer> df = trainer.train(samples, labels);
+
+ cout << "predicted label: "<< df(samples[0]) << ", true label: "<< labels[0] << endl;
+ cout << "predicted label: "<< df(samples[90]) << ", true label: "<< labels[90] << endl;
+ // The output is:
+ /*
+ predicted label: 2, true label: 2
+ predicted label: 1, true label: 1
+ */
+
+
+ // If you want to save a one_vs_one_decision_function to disk, you can do
+ // so. However, you must declare what kind of decision functions it contains.
+ one_vs_one_decision_function<ovo_trainer,
+ decision_function<poly_kernel>, // This is the output of the poly_trainer
+ decision_function<rbf_kernel> // This is the output of the rbf_trainer
+ > df2, df3;
+
+
+ // Put df into df2 and then save df2 to disk. Note that we could have also said
+ // df2 = trainer.train(samples, labels); But doing it this way avoids retraining.
+ df2 = df;
+ serialize("df.dat") << df2;
+
+ // load the function back in from disk and store it in df3.
+ deserialize("df.dat") >> df3;
+
+
+ // Test df3 to see that this worked.
+ cout << endl;
+ cout << "predicted label: "<< df3(samples[0]) << ", true label: "<< labels[0] << endl;
+ cout << "predicted label: "<< df3(samples[90]) << ", true label: "<< labels[90] << endl;
+ // Test df3 on the samples and labels and print the confusion matrix.
+ cout << "test deserialized function: \n" << test_multiclass_decision_function(df3, samples, labels) << endl;
+
+
+
+
+
+ // Finally, if you want to get the binary classifiers from inside a multiclass decision
+ // function you can do it by calling get_binary_decision_functions() like so:
+ one_vs_one_decision_function<ovo_trainer>::binary_function_table functs;
+ functs = df.get_binary_decision_functions();
+ cout << "number of binary decision functions in df: " << functs.size() << endl;
+ // The functs object is a std::map which maps pairs of labels to binary decision
+ // functions. So we can access the individual decision functions like so:
+ decision_function<poly_kernel> df_1_2 = any_cast<decision_function<poly_kernel> >(functs[make_unordered_pair(1,2)]);
+ decision_function<rbf_kernel> df_1_3 = any_cast<decision_function<rbf_kernel> >(functs[make_unordered_pair(1,3)]);
+ // df_1_2 contains the binary decision function that votes for class 1 vs. 2.
+ // Similarly, df_1_3 contains the classifier that votes for 1 vs. 3.
+
+ // Note that the multiclass decision function doesn't know what kind of binary
+ // decision functions it contains. So we have to use any_cast to explicitly cast
+ // them back into the concrete type. If you make a mistake and try to any_cast a
+ // binary decision function into the wrong type of function any_cast will throw a
+ // bad_any_cast exception.
+ }
+ catch (std::exception& e)
+ {
+ cout << "exception thrown!" << endl;
+ cout << e.what() << endl;
+ }
+}
+
+// ----------------------------------------------------------------------------------------
+
+void generate_data (
+ std::vector<sample_type>& samples,
+ std::vector<double>& labels
+)
+{
+ const long num = 50;
+
+ sample_type m;
+
+ dlib::rand rnd;
+
+
+ // make some samples near the origin
+ double radius = 0.5;
+ for (long i = 0; i < num+10; ++i)
+ {
+ double sign = 1;
+ if (rnd.get_random_double() < 0.5)
+ sign = -1;
+ m(0) = 2*radius*rnd.get_random_double()-radius;
+ m(1) = sign*sqrt(radius*radius - m(0)*m(0));
+
+ // add this sample to our set of training samples
+ samples.push_back(m);
+ labels.push_back(1);
+ }
+
+ // make some samples in a circle around the origin but far away
+ radius = 10.0;
+ for (long i = 0; i < num+20; ++i)
+ {
+ double sign = 1;
+ if (rnd.get_random_double() < 0.5)
+ sign = -1;
+ m(0) = 2*radius*rnd.get_random_double()-radius;
+ m(1) = sign*sqrt(radius*radius - m(0)*m(0));
+
+ // add this sample to our set of training samples
+ samples.push_back(m);
+ labels.push_back(2);
+ }
+
+ // make some samples in a circle around the point (25,25)
+ radius = 4.0;
+ for (long i = 0; i < num+30; ++i)
+ {
+ double sign = 1;
+ if (rnd.get_random_double() < 0.5)
+ sign = -1;
+ m(0) = 2*radius*rnd.get_random_double()-radius;
+ m(1) = sign*sqrt(radius*radius - m(0)*m(0));
+
+ // translate this point away from the origin
+ m(0) += 25;
+ m(1) += 25;
+
+ // add this sample to our set of training samples
+ samples.push_back(m);
+ labels.push_back(3);
+ }
+}
+
+// ----------------------------------------------------------------------------------------
+