summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/svr_ex.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--ml/dlib/examples/svr_ex.cpp96
1 files changed, 96 insertions, 0 deletions
diff --git a/ml/dlib/examples/svr_ex.cpp b/ml/dlib/examples/svr_ex.cpp
new file mode 100644
index 000000000..a18edf24d
--- /dev/null
+++ b/ml/dlib/examples/svr_ex.cpp
@@ -0,0 +1,96 @@
+// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
+/*
+ This is an example illustrating the use of the epsilon-insensitive support vector
+ regression object from the dlib C++ Library.
+
+ In this example we will draw some points from the sinc() function and do a
+ non-linear regression on them.
+*/
+
+#include <iostream>
+#include <vector>
+
+#include <dlib/svm.h>
+
+using namespace std;
+using namespace dlib;
+
+// Here is the sinc function we will be trying to learn with the svr_trainer
+// object.
+double sinc(double x)
+{
+ if (x == 0)
+ return 1;
+ return sin(x)/x;
+}
+
+int main()
+{
+ // Here we declare that our samples will be 1 dimensional column vectors.
+ typedef matrix<double,1,1> sample_type;
+
+ // Now we are making a typedef for the kind of kernel we want to use. I picked the
+ // radial basis kernel because it only has one parameter and generally gives good
+ // results without much fiddling.
+ typedef radial_basis_kernel<sample_type> kernel_type;
+
+
+ std::vector<sample_type> samples;
+ std::vector<double> targets;
+
+ // The first thing we do is pick a few training points from the sinc() function.
+ sample_type m;
+ for (double x = -10; x <= 4; x += 1)
+ {
+ m(0) = x;
+
+ samples.push_back(m);
+ targets.push_back(sinc(x));
+ }
+
+ // Now setup a SVR trainer object. It has three parameters, the kernel and
+ // two parameters specific to SVR.
+ svr_trainer<kernel_type> trainer;
+ trainer.set_kernel(kernel_type(0.1));
+
+ // This parameter is the usual regularization parameter. It determines the trade-off
+ // between trying to reduce the training error or allowing more errors but hopefully
+ // improving the generalization of the resulting function. Larger values encourage exact
+ // fitting while smaller values of C may encourage better generalization.
+ trainer.set_c(10);
+
+ // Epsilon-insensitive regression means we do regression but stop trying to fit a data
+ // point once it is "close enough" to its target value. This parameter is the value that
+ // controls what we mean by "close enough". In this case, I'm saying I'm happy if the
+ // resulting regression function gets within 0.001 of the target value.
+ trainer.set_epsilon_insensitivity(0.001);
+
+ // Now do the training and save the results
+ decision_function<kernel_type> df = trainer.train(samples, targets);
+
+ // now we output the value of the sinc function for a few test points as well as the
+ // value predicted by SVR.
+ m(0) = 2.5; cout << sinc(m(0)) << " " << df(m) << endl;
+ m(0) = 0.1; cout << sinc(m(0)) << " " << df(m) << endl;
+ m(0) = -4; cout << sinc(m(0)) << " " << df(m) << endl;
+ m(0) = 5.0; cout << sinc(m(0)) << " " << df(m) << endl;
+
+ // The output is as follows:
+ // 0.239389 0.23905
+ // 0.998334 0.997331
+ // -0.189201 -0.187636
+ // -0.191785 -0.218924
+
+ // The first column is the true value of the sinc function and the second
+ // column is the output from the SVR estimate.
+
+ // We can also do 5-fold cross-validation and find the mean squared error and R-squared
+ // values. Note that we need to randomly shuffle the samples first. See the svm_ex.cpp
+ // for a discussion of why this is important.
+ randomize_samples(samples, targets);
+ cout << "MSE and R-Squared: "<< cross_validate_regression_trainer(trainer, samples, targets, 5) << endl;
+ // The output is:
+ // MSE and R-Squared: 1.65984e-05 0.999901
+}
+
+