diff options
Diffstat (limited to 'ml/dlib/tools/archive')
-rw-r--r-- | ml/dlib/tools/archive/train_face_5point_model.cpp | 159 |
1 files changed, 159 insertions, 0 deletions
diff --git a/ml/dlib/tools/archive/train_face_5point_model.cpp b/ml/dlib/tools/archive/train_face_5point_model.cpp new file mode 100644 index 00000000..0cd35467 --- /dev/null +++ b/ml/dlib/tools/archive/train_face_5point_model.cpp @@ -0,0 +1,159 @@ + +/* + + This is the program that created the http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2 model file. + +*/ + + +#include <dlib/image_processing/frontal_face_detector.h> +#include <dlib/image_processing.h> +#include <dlib/console_progress_indicator.h> +#include <dlib/data_io.h> +#include <dlib/statistics.h> +#include <iostream> + +using namespace dlib; +using namespace std; + +// ---------------------------------------------------------------------------------------- + +std::vector<std::vector<double> > get_interocular_distances ( + const std::vector<std::vector<full_object_detection> >& objects +); +/*! + ensures + - returns an object D such that: + - D[i][j] == the distance, in pixels, between the eyes for the face represented + by objects[i][j]. +!*/ + +// ---------------------------------------------------------------------------------------- + +template < + typename image_array_type, + typename T + > +void add_image_left_right_flips_5points ( + image_array_type& images, + std::vector<std::vector<T> >& objects +) +{ + // make sure requires clause is not broken + DLIB_ASSERT( images.size() == objects.size(), + "\t void add_image_left_right_flips()" + << "\n\t Invalid inputs were given to this function." + << "\n\t images.size(): " << images.size() + << "\n\t objects.size(): " << objects.size() + ); + + typename image_array_type::value_type temp; + std::vector<T> rects; + + const unsigned long num = images.size(); + for (unsigned long j = 0; j < num; ++j) + { + const point_transform_affine tran = flip_image_left_right(images[j], temp); + + rects.clear(); + for (unsigned long i = 0; i < objects[j].size(); ++i) + { + rects.push_back(impl::tform_object(tran, objects[j][i])); + + DLIB_CASSERT(rects.back().num_parts() == 5); + swap(rects.back().part(0), rects.back().part(2)); + swap(rects.back().part(1), rects.back().part(3)); + } + + images.push_back(temp); + objects.push_back(rects); + } +} + +// ---------------------------------------------------------------------------------------- + +int main(int argc, char** argv) +{ + try + { + if (argc != 2) + { + cout << "give the path to the training data folder" << endl; + return 0; + } + const std::string faces_directory = argv[1]; + dlib::array<array2d<unsigned char> > images_train, images_test; + std::vector<std::vector<full_object_detection> > faces_train, faces_test; + + std::vector<std::string> parts_list; + load_image_dataset(images_train, faces_train, faces_directory+"/train_cleaned.xml", parts_list); + load_image_dataset(images_test, faces_test, faces_directory+"/test_cleaned.xml"); + + add_image_left_right_flips_5points(images_train, faces_train); + add_image_left_right_flips_5points(images_test, faces_test); + add_image_rotations(linspace(-20,20,3)*pi/180.0,images_train, faces_train); + + cout << "num training images: "<< images_train.size() << endl; + + for (auto& part : parts_list) + cout << part << endl; + + shape_predictor_trainer trainer; + trainer.set_oversampling_amount(40); + trainer.set_num_test_splits(150); + trainer.set_feature_pool_size(800); + trainer.set_num_threads(4); + trainer.set_cascade_depth(15); + trainer.be_verbose(); + + // Now finally generate the shape model + shape_predictor sp = trainer.train(images_train, faces_train); + + serialize("shape_predictor_5_face_landmarks.dat") << sp; + + cout << "mean training error: "<< + test_shape_predictor(sp, images_train, faces_train, get_interocular_distances(faces_train)) << endl; + + cout << "mean testing error: "<< + test_shape_predictor(sp, images_test, faces_test, get_interocular_distances(faces_test)) << endl; + + } + catch (exception& e) + { + cout << "\nexception thrown!" << endl; + cout << e.what() << endl; + } +} + +// ---------------------------------------------------------------------------------------- + +double interocular_distance ( + const full_object_detection& det +) +{ + dlib::vector<double,2> l, r; + // left eye + l = (det.part(0) + det.part(1))/2; + // right eye + r = (det.part(2) + det.part(3))/2; + + return length(l-r); +} + +std::vector<std::vector<double> > get_interocular_distances ( + const std::vector<std::vector<full_object_detection> >& objects +) +{ + std::vector<std::vector<double> > temp(objects.size()); + for (unsigned long i = 0; i < objects.size(); ++i) + { + for (unsigned long j = 0; j < objects[i].size(); ++j) + { + temp[i].push_back(interocular_distance(objects[i][j])); + } + } + return temp; +} + +// ---------------------------------------------------------------------------------------- + |