summaryrefslogtreecommitdiffstats
path: root/ml/dlib/tools/archive
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/tools/archive')
-rw-r--r--ml/dlib/tools/archive/train_face_5point_model.cpp159
1 files changed, 159 insertions, 0 deletions
diff --git a/ml/dlib/tools/archive/train_face_5point_model.cpp b/ml/dlib/tools/archive/train_face_5point_model.cpp
new file mode 100644
index 00000000..0cd35467
--- /dev/null
+++ b/ml/dlib/tools/archive/train_face_5point_model.cpp
@@ -0,0 +1,159 @@
+
+/*
+
+ This is the program that created the http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2 model file.
+
+*/
+
+
+#include <dlib/image_processing/frontal_face_detector.h>
+#include <dlib/image_processing.h>
+#include <dlib/console_progress_indicator.h>
+#include <dlib/data_io.h>
+#include <dlib/statistics.h>
+#include <iostream>
+
+using namespace dlib;
+using namespace std;
+
+// ----------------------------------------------------------------------------------------
+
+std::vector<std::vector<double> > get_interocular_distances (
+ const std::vector<std::vector<full_object_detection> >& objects
+);
+/*!
+ ensures
+ - returns an object D such that:
+ - D[i][j] == the distance, in pixels, between the eyes for the face represented
+ by objects[i][j].
+!*/
+
+// ----------------------------------------------------------------------------------------
+
+template <
+ typename image_array_type,
+ typename T
+ >
+void add_image_left_right_flips_5points (
+ image_array_type& images,
+ std::vector<std::vector<T> >& objects
+)
+{
+ // make sure requires clause is not broken
+ DLIB_ASSERT( images.size() == objects.size(),
+ "\t void add_image_left_right_flips()"
+ << "\n\t Invalid inputs were given to this function."
+ << "\n\t images.size(): " << images.size()
+ << "\n\t objects.size(): " << objects.size()
+ );
+
+ typename image_array_type::value_type temp;
+ std::vector<T> rects;
+
+ const unsigned long num = images.size();
+ for (unsigned long j = 0; j < num; ++j)
+ {
+ const point_transform_affine tran = flip_image_left_right(images[j], temp);
+
+ rects.clear();
+ for (unsigned long i = 0; i < objects[j].size(); ++i)
+ {
+ rects.push_back(impl::tform_object(tran, objects[j][i]));
+
+ DLIB_CASSERT(rects.back().num_parts() == 5);
+ swap(rects.back().part(0), rects.back().part(2));
+ swap(rects.back().part(1), rects.back().part(3));
+ }
+
+ images.push_back(temp);
+ objects.push_back(rects);
+ }
+}
+
+// ----------------------------------------------------------------------------------------
+
+int main(int argc, char** argv)
+{
+ try
+ {
+ if (argc != 2)
+ {
+ cout << "give the path to the training data folder" << endl;
+ return 0;
+ }
+ const std::string faces_directory = argv[1];
+ dlib::array<array2d<unsigned char> > images_train, images_test;
+ std::vector<std::vector<full_object_detection> > faces_train, faces_test;
+
+ std::vector<std::string> parts_list;
+ load_image_dataset(images_train, faces_train, faces_directory+"/train_cleaned.xml", parts_list);
+ load_image_dataset(images_test, faces_test, faces_directory+"/test_cleaned.xml");
+
+ add_image_left_right_flips_5points(images_train, faces_train);
+ add_image_left_right_flips_5points(images_test, faces_test);
+ add_image_rotations(linspace(-20,20,3)*pi/180.0,images_train, faces_train);
+
+ cout << "num training images: "<< images_train.size() << endl;
+
+ for (auto& part : parts_list)
+ cout << part << endl;
+
+ shape_predictor_trainer trainer;
+ trainer.set_oversampling_amount(40);
+ trainer.set_num_test_splits(150);
+ trainer.set_feature_pool_size(800);
+ trainer.set_num_threads(4);
+ trainer.set_cascade_depth(15);
+ trainer.be_verbose();
+
+ // Now finally generate the shape model
+ shape_predictor sp = trainer.train(images_train, faces_train);
+
+ serialize("shape_predictor_5_face_landmarks.dat") << sp;
+
+ cout << "mean training error: "<<
+ test_shape_predictor(sp, images_train, faces_train, get_interocular_distances(faces_train)) << endl;
+
+ cout << "mean testing error: "<<
+ test_shape_predictor(sp, images_test, faces_test, get_interocular_distances(faces_test)) << endl;
+
+ }
+ catch (exception& e)
+ {
+ cout << "\nexception thrown!" << endl;
+ cout << e.what() << endl;
+ }
+}
+
+// ----------------------------------------------------------------------------------------
+
+double interocular_distance (
+ const full_object_detection& det
+)
+{
+ dlib::vector<double,2> l, r;
+ // left eye
+ l = (det.part(0) + det.part(1))/2;
+ // right eye
+ r = (det.part(2) + det.part(3))/2;
+
+ return length(l-r);
+}
+
+std::vector<std::vector<double> > get_interocular_distances (
+ const std::vector<std::vector<full_object_detection> >& objects
+)
+{
+ std::vector<std::vector<double> > temp(objects.size());
+ for (unsigned long i = 0; i < objects.size(); ++i)
+ {
+ for (unsigned long j = 0; j < objects[i].size(); ++j)
+ {
+ temp[i].push_back(interocular_distance(objects[i][j]));
+ }
+ }
+ return temp;
+}
+
+// ----------------------------------------------------------------------------------------
+