summaryrefslogtreecommitdiffstats
path: root/ml/dlib/tools/python/src/image_dataset_metadata.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/tools/python/src/image_dataset_metadata.cpp')
-rw-r--r--ml/dlib/tools/python/src/image_dataset_metadata.cpp279
1 files changed, 0 insertions, 279 deletions
diff --git a/ml/dlib/tools/python/src/image_dataset_metadata.cpp b/ml/dlib/tools/python/src/image_dataset_metadata.cpp
deleted file mode 100644
index 8f23ddd3f..000000000
--- a/ml/dlib/tools/python/src/image_dataset_metadata.cpp
+++ /dev/null
@@ -1,279 +0,0 @@
-// Copyright (C) 2018 Davis E. King (davis@dlib.net)
-// License: Boost Software License See LICENSE.txt for the full license.
-
-#include "opaque_types.h"
-#include <dlib/python.h>
-#include <dlib/data_io.h>
-#include <dlib/image_processing.h>
-#include <pybind11/stl_bind.h>
-#include <pybind11/stl.h>
-#include <iostream>
-
-namespace pybind11
-{
-
- // a version of bind_map that doesn't force it's own __repr__ on you.
-template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
-class_<Map, holder_type> bind_map_no_default_repr(handle scope, const std::string &name, Args&&... args) {
- using KeyType = typename Map::key_type;
- using MappedType = typename Map::mapped_type;
- using Class_ = class_<Map, holder_type>;
-
- // If either type is a non-module-local bound type then make the map binding non-local as well;
- // otherwise (e.g. both types are either module-local or converting) the map will be
- // module-local.
- auto tinfo = detail::get_type_info(typeid(MappedType));
- bool local = !tinfo || tinfo->module_local;
- if (local) {
- tinfo = detail::get_type_info(typeid(KeyType));
- local = !tinfo || tinfo->module_local;
- }
-
- Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
-
- cl.def(init<>());
-
-
- cl.def("__bool__",
- [](const Map &m) -> bool { return !m.empty(); },
- "Check whether the map is nonempty"
- );
-
- cl.def("__iter__",
- [](Map &m) { return make_key_iterator(m.begin(), m.end()); },
- keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
- );
-
- cl.def("items",
- [](Map &m) { return make_iterator(m.begin(), m.end()); },
- keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
- );
-
- cl.def("__getitem__",
- [](Map &m, const KeyType &k) -> MappedType & {
- auto it = m.find(k);
- if (it == m.end())
- throw key_error();
- return it->second;
- },
- return_value_policy::reference_internal // ref + keepalive
- );
-
- // Assignment provided only if the type is copyable
- detail::map_assignment<Map, Class_>(cl);
-
- cl.def("__delitem__",
- [](Map &m, const KeyType &k) {
- auto it = m.find(k);
- if (it == m.end())
- throw key_error();
- return m.erase(it);
- }
- );
-
- cl.def("__len__", &Map::size);
-
- return cl;
-}
-
-}
-
-using namespace dlib;
-using namespace std;
-using namespace dlib::image_dataset_metadata;
-
-namespace py = pybind11;
-
-
-dataset py_load_image_dataset_metadata(
- const std::string& filename
-)
-{
- dataset temp;
- load_image_dataset_metadata(temp, filename);
- return temp;
-}
-
-std::shared_ptr<std::map<std::string,point>> map_from_object(py::dict obj)
-{
- auto ret = std::make_shared<std::map<std::string,point>>();
- for (auto& v : obj)
- {
- (*ret)[v.first.cast<std::string>()] = v.second.cast<point>();
- }
- return ret;
-}
-
-// ----------------------------------------------------------------------------------------
-
-image_dataset_metadata::dataset py_make_bounding_box_regression_training_data (
- const image_dataset_metadata::dataset& truth,
- const py::object& detections
-)
-{
- try
- {
- // if detections is a std::vector then call like this.
- return make_bounding_box_regression_training_data(truth, detections.cast<const std::vector<std::vector<rectangle>>&>());
- }
- catch (py::cast_error&)
- {
- // otherwise, detections should be a list of std::vectors.
- py::list dets(detections);
- std::vector<std::vector<rectangle>> temp;
- for (auto& d : dets)
- temp.emplace_back(d.cast<const std::vector<rectangle>&>());
- return make_bounding_box_regression_training_data(truth, temp);
- }
-}
-
-// ----------------------------------------------------------------------------------------
-
-void bind_image_dataset_metadata(py::module &m_)
-{
- auto m = m_.def_submodule("image_dataset_metadata", "Routines and objects for working with dlib's image dataset metadata XML files.");
-
- auto datasetstr = [](const dataset& item) { return "dlib.dataset_dataset_metadata.dataset: images:" + to_string(item.images.size()) + ", " + item.name; };
- auto datasetrepr = [datasetstr](const dataset& item) { return "<"+datasetstr(item)+">"; };
- py::class_<dataset>(m, "dataset",
- "This object represents a labeled set of images. In particular, it contains the filename for each image as well as annotated boxes.")
- .def("__str__", datasetstr)
- .def("__repr__", datasetrepr)
- .def_readwrite("images", &dataset::images)
- .def_readwrite("comment", &dataset::comment)
- .def_readwrite("name", &dataset::name);
-
- auto imagestr = [](const image& item) { return "dlib.image_dataset_metadata.image: boxes:"+to_string(item.boxes.size())+ ", " + item.filename; };
- auto imagerepr = [imagestr](const image& item) { return "<"+imagestr(item)+">"; };
- py::class_<image>(m, "image", "This object represents an annotated image.")
- .def_readwrite("filename", &image::filename)
- .def("__str__", imagestr)
- .def("__repr__", imagerepr)
- .def_readwrite("boxes", &image::boxes);
-
-
- auto partsstr = [](const std::map<std::string,point>& item) {
- std::ostringstream sout;
- sout << "{";
- for (auto& v : item)
- sout << "'" << v.first << "': " << v.second << ", ";
- sout << "}";
- return sout.str();
- };
- auto partsrepr = [](const std::map<std::string,point>& item) {
- std::ostringstream sout;
- sout << "dlib.image_dataset_metadata.parts({\n";
- for (auto& v : item)
- sout << "'" << v.first << "': dlib.point" << v.second << ",\n";
- sout << "})";
- return sout.str();
- };
-
- py::bind_map_no_default_repr<std::map<std::string,point>, std::shared_ptr<std::map<std::string,point>> >(m, "parts",
- "This object is a dictionary mapping string names to object part locations.")
- .def(py::init(&map_from_object))
- .def("__str__", partsstr)
- .def("__repr__", partsrepr);
-
-
- auto rectstr = [](const rectangle& r) {
- std::ostringstream sout;
- sout << "dlib.rectangle(" << r.left() << "," << r.top() << "," << r.right() << "," << r.bottom() << ")";
- return sout.str();
- };
- auto boxstr = [rectstr](const box& item) { return "dlib.image_dataset_metadata.box at " + rectstr(item.rect); };
- auto boxrepr = [boxstr](const box& item) { return "<"+boxstr(item)+">"; };
- py::class_<box> pybox(m, "box",
- "This object represents an annotated rectangular area of an image. \n"
- "It is typically used to mark the location of an object such as a \n"
- "person, car, etc.\n"
- "\n"
- "The main variable of interest is rect. It gives the location of \n"
- "the box. All the other variables are optional." ); pybox
- .def("__str__", boxstr)
- .def("__repr__", boxrepr)
- .def_readwrite("rect", &box::rect)
- .def_readonly("parts", &box::parts)
- .def_readwrite("label", &box::label)
- .def_readwrite("difficult", &box::difficult)
- .def_readwrite("truncated", &box::truncated)
- .def_readwrite("occluded", &box::occluded)
- .def_readwrite("ignore", &box::ignore)
- .def_readwrite("pose", &box::pose)
- .def_readwrite("detection_score", &box::detection_score)
- .def_readwrite("angle", &box::angle)
- .def_readwrite("gender", &box::gender)
- .def_readwrite("age", &box::age);
-
- py::enum_<gender_t>(pybox,"gender_type")
- .value("MALE", gender_t::MALE)
- .value("FEMALE", gender_t::FEMALE)
- .value("UNKNOWN", gender_t::UNKNOWN)
- .export_values();
-
-
- m.def("save_image_dataset_metadata", &save_image_dataset_metadata, py::arg("data"), py::arg("filename"),
- "Writes the contents of the meta object to a file with the given filename. The file will be in an XML format."
- );
-
- m.def("load_image_dataset_metadata", &py_load_image_dataset_metadata, py::arg("filename"),
- "Attempts to interpret filename as a file containing XML formatted data as produced "
- "by the save_image_dataset_metadata() function. The data is loaded and returned as a dlib.image_dataset_metadata.dataset object."
- );
-
- m_.def("make_bounding_box_regression_training_data", &py_make_bounding_box_regression_training_data,
- py::arg("truth"), py::arg("detections"),
-"requires \n\
- - len(truth.images) == len(detections) \n\
- - detections == A dlib.rectangless object or a list of dlib.rectangles. \n\
-ensures \n\
- - Suppose you have an object detector that can roughly locate objects in an \n\
- image. This means your detector draws boxes around objects, but these are \n\
- *rough* boxes in the sense that they aren't positioned super accurately. For \n\
- instance, HOG based detectors usually have a stride of 8 pixels. So the \n\
- positional accuracy is going to be, at best, +/-8 pixels. \n\
- \n\
- If you want to get better positional accuracy one easy thing to do is train a \n\
- shape_predictor to give you the corners of the object. The \n\
- make_bounding_box_regression_training_data() routine helps you do this by \n\
- creating an appropriate training dataset. It does this by taking the dataset \n\
- you used to train your detector (the truth object), and combining that with \n\
- the output of your detector on each image in the training dataset (the \n\
- detections object). In particular, it will create a new annotated dataset \n\
- where each object box is one of the rectangles from detections and that \n\
- object has 4 part annotations, the corners of the truth rectangle \n\
- corresponding to that detection rectangle. You can then take the returned \n\
- dataset and train a shape_predictor on it. The resulting shape_predictor can \n\
- then be used to do bounding box regression. \n\
- - We assume that detections[i] contains object detections corresponding to \n\
- the image truth.images[i]."
- /*!
- requires
- - len(truth.images) == len(detections)
- - detections == A dlib.rectangless object or a list of dlib.rectangles.
- ensures
- - Suppose you have an object detector that can roughly locate objects in an
- image. This means your detector draws boxes around objects, but these are
- *rough* boxes in the sense that they aren't positioned super accurately. For
- instance, HOG based detectors usually have a stride of 8 pixels. So the
- positional accuracy is going to be, at best, +/-8 pixels.
-
- If you want to get better positional accuracy one easy thing to do is train a
- shape_predictor to give you the corners of the object. The
- make_bounding_box_regression_training_data() routine helps you do this by
- creating an appropriate training dataset. It does this by taking the dataset
- you used to train your detector (the truth object), and combining that with
- the output of your detector on each image in the training dataset (the
- detections object). In particular, it will create a new annotated dataset
- where each object box is one of the rectangles from detections and that
- object has 4 part annotations, the corners of the truth rectangle
- corresponding to that detection rectangle. You can then take the returned
- dataset and train a shape_predictor on it. The resulting shape_predictor can
- then be used to do bounding box regression.
- - We assume that detections[i] contains object detections corresponding to
- the image truth.images[i].
- !*/
- );
-}
-
-