summaryrefslogtreecommitdiffstats
path: root/ml/ml-private.h
diff options
context:
space:
mode:
Diffstat (limited to 'ml/ml-private.h')
-rw-r--r--ml/ml-private.h363
1 files changed, 0 insertions, 363 deletions
diff --git a/ml/ml-private.h b/ml/ml-private.h
deleted file mode 100644
index f373456fa..000000000
--- a/ml/ml-private.h
+++ /dev/null
@@ -1,363 +0,0 @@
-// SPDX-License-Identifier: GPL-3.0-or-later
-
-#ifndef NETDATA_ML_PRIVATE_H
-#define NETDATA_ML_PRIVATE_H
-
-#include "dlib/matrix.h"
-#include "ml/ml.h"
-
-#include <vector>
-#include <queue>
-#include <unordered_map>
-
-typedef double calculated_number_t;
-typedef dlib::matrix<calculated_number_t, 6, 1> DSample;
-
-/*
- * Features
- */
-
-typedef struct {
- size_t diff_n;
- size_t smooth_n;
- size_t lag_n;
-
- calculated_number_t *dst;
- size_t dst_n;
-
- calculated_number_t *src;
- size_t src_n;
-
- std::vector<DSample> &preprocessed_features;
-} ml_features_t;
-
-/*
- * KMeans
- */
-
-typedef struct {
- std::vector<DSample> cluster_centers;
-
- calculated_number_t min_dist;
- calculated_number_t max_dist;
-
- uint32_t after;
- uint32_t before;
-} ml_kmeans_t;
-
-typedef struct machine_learning_stats_t {
- size_t num_machine_learning_status_enabled;
- size_t num_machine_learning_status_disabled_sp;
-
- size_t num_metric_type_constant;
- size_t num_metric_type_variable;
-
- size_t num_training_status_untrained;
- size_t num_training_status_pending_without_model;
- size_t num_training_status_trained;
- size_t num_training_status_pending_with_model;
- size_t num_training_status_silenced;
-
- size_t num_anomalous_dimensions;
- size_t num_normal_dimensions;
-} ml_machine_learning_stats_t;
-
-typedef struct training_stats_t {
- size_t queue_size;
- size_t num_popped_items;
-
- usec_t allotted_ut;
- usec_t consumed_ut;
- usec_t remaining_ut;
-
- size_t training_result_ok;
- size_t training_result_invalid_query_time_range;
- size_t training_result_not_enough_collected_values;
- size_t training_result_null_acquired_dimension;
- size_t training_result_chart_under_replication;
-} ml_training_stats_t;
-
-enum ml_metric_type {
- // The dimension has constant values, no need to train
- METRIC_TYPE_CONSTANT,
-
- // The dimension's values fluctuate, we need to generate a model
- METRIC_TYPE_VARIABLE,
-};
-
-enum ml_machine_learning_status {
- // Enable training/prediction
- MACHINE_LEARNING_STATUS_ENABLED,
-
- // Disable because configuration pattern matches the chart's id
- MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART,
-};
-
-enum ml_training_status {
- // We don't have a model for this dimension
- TRAINING_STATUS_UNTRAINED,
-
- // Request for training sent, but we don't have any models yet
- TRAINING_STATUS_PENDING_WITHOUT_MODEL,
-
- // Request to update existing models sent
- TRAINING_STATUS_PENDING_WITH_MODEL,
-
- // Have a valid, up-to-date model
- TRAINING_STATUS_TRAINED,
-
- // Have a valid, up-to-date model that is silenced because its too noisy
- TRAINING_STATUS_SILENCED,
-};
-
-enum ml_training_result {
- // We managed to create a KMeans model
- TRAINING_RESULT_OK,
-
- // Could not query DB with a correct time range
- TRAINING_RESULT_INVALID_QUERY_TIME_RANGE,
-
- // Did not gather enough data from DB to run KMeans
- TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES,
-
- // Acquired a null dimension
- TRAINING_RESULT_NULL_ACQUIRED_DIMENSION,
-
- // Chart is under replication
- TRAINING_RESULT_CHART_UNDER_REPLICATION,
-};
-
-typedef struct {
- // Chart/dimension we want to train
- char machine_guid[GUID_LEN + 1];
- STRING *chart_id;
- STRING *dimension_id;
-
- // Creation time of request
- time_t request_time;
-
- // First/last entry of this dimension in DB
- // at the point the request was made
- time_t first_entry_on_request;
- time_t last_entry_on_request;
-} ml_training_request_t;
-
-typedef struct {
- // Time when the request for this response was made
- time_t request_time;
-
- // First/last entry of the dimension in DB when generating the request
- time_t first_entry_on_request;
- time_t last_entry_on_request;
-
- // First/last entry of the dimension in DB when generating the response
- time_t first_entry_on_response;
- time_t last_entry_on_response;
-
- // After/Before timestamps of our DB query
- time_t query_after_t;
- time_t query_before_t;
-
- // Actual after/before returned by the DB query ops
- time_t db_after_t;
- time_t db_before_t;
-
- // Number of doubles returned by the DB query
- size_t collected_values;
-
- // Number of values we return to the caller
- size_t total_values;
-
- // Result of training response
- enum ml_training_result result;
-} ml_training_response_t;
-
-/*
- * Queue
-*/
-
-typedef struct {
- std::queue<ml_training_request_t> internal;
- netdata_mutex_t mutex;
- pthread_cond_t cond_var;
- std::atomic<bool> exit;
-} ml_queue_t;
-
-typedef struct {
- RRDDIM *rd;
-
- enum ml_metric_type mt;
- enum ml_training_status ts;
- enum ml_machine_learning_status mls;
-
- ml_training_response_t tr;
- time_t last_training_time;
-
- std::vector<calculated_number_t> cns;
-
- std::vector<ml_kmeans_t> km_contexts;
- SPINLOCK slock;
- ml_kmeans_t kmeans;
- std::vector<DSample> feature;
-
- uint32_t suppression_window_counter;
- uint32_t suppression_anomaly_counter;
-} ml_dimension_t;
-
-typedef struct {
- RRDSET *rs;
- ml_machine_learning_stats_t mls;
-} ml_chart_t;
-
-void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous);
-
-typedef struct {
- RRDDIM *rd;
- size_t normal_dimensions;
- size_t anomalous_dimensions;
-} ml_type_anomaly_rate_t;
-
-typedef struct {
- RRDHOST *rh;
-
- std::atomic<bool> ml_running;
-
- ml_machine_learning_stats_t mls;
-
- calculated_number_t host_anomaly_rate;
-
- netdata_mutex_t mutex;
-
- ml_queue_t *training_queue;
-
- /*
- * bookkeeping for anomaly detection charts
- */
-
- RRDSET *ml_running_rs;
- RRDDIM *ml_running_rd;
-
- RRDSET *machine_learning_status_rs;
- RRDDIM *machine_learning_status_enabled_rd;
- RRDDIM *machine_learning_status_disabled_sp_rd;
-
- RRDSET *metric_type_rs;
- RRDDIM *metric_type_constant_rd;
- RRDDIM *metric_type_variable_rd;
-
- RRDSET *training_status_rs;
- RRDDIM *training_status_untrained_rd;
- RRDDIM *training_status_pending_without_model_rd;
- RRDDIM *training_status_trained_rd;
- RRDDIM *training_status_pending_with_model_rd;
- RRDDIM *training_status_silenced_rd;
-
- RRDSET *dimensions_rs;
- RRDDIM *dimensions_anomalous_rd;
- RRDDIM *dimensions_normal_rd;
-
- RRDSET *anomaly_rate_rs;
- RRDDIM *anomaly_rate_rd;
-
- RRDSET *detector_events_rs;
- RRDDIM *detector_events_above_threshold_rd;
- RRDDIM *detector_events_new_anomaly_event_rd;
-
- RRDSET *type_anomaly_rate_rs;
- std::unordered_map<STRING *, ml_type_anomaly_rate_t> type_anomaly_rate;
-} ml_host_t;
-
-typedef struct {
- uuid_t metric_uuid;
- ml_kmeans_t kmeans;
-} ml_model_info_t;
-
-typedef struct {
- size_t id;
- netdata_thread_t nd_thread;
- netdata_mutex_t nd_mutex;
-
- ml_queue_t *training_queue;
- ml_training_stats_t training_stats;
-
- calculated_number_t *training_cns;
- calculated_number_t *scratch_training_cns;
- std::vector<DSample> training_samples;
-
- std::vector<ml_model_info_t> pending_model_info;
-
- RRDSET *queue_stats_rs;
- RRDDIM *queue_stats_queue_size_rd;
- RRDDIM *queue_stats_popped_items_rd;
-
- RRDSET *training_time_stats_rs;
- RRDDIM *training_time_stats_allotted_rd;
- RRDDIM *training_time_stats_consumed_rd;
- RRDDIM *training_time_stats_remaining_rd;
-
- RRDSET *training_results_rs;
- RRDDIM *training_results_ok_rd;
- RRDDIM *training_results_invalid_query_time_range_rd;
- RRDDIM *training_results_not_enough_collected_values_rd;
- RRDDIM *training_results_null_acquired_dimension_rd;
- RRDDIM *training_results_chart_under_replication_rd;
-
- size_t num_db_transactions;
- size_t num_models_to_prune;
-} ml_training_thread_t;
-
-typedef struct {
- bool enable_anomaly_detection;
-
- unsigned max_train_samples;
- unsigned min_train_samples;
- unsigned train_every;
-
- unsigned num_models_to_use;
- unsigned delete_models_older_than;
-
- unsigned db_engine_anomaly_rate_every;
-
- unsigned diff_n;
- unsigned smooth_n;
- unsigned lag_n;
-
- double random_sampling_ratio;
- unsigned max_kmeans_iters;
-
- double dimension_anomaly_score_threshold;
-
- double host_anomaly_rate_threshold;
- RRDR_TIME_GROUPING anomaly_detection_grouping_method;
- time_t anomaly_detection_query_duration;
-
- bool stream_anomaly_detection_charts;
-
- std::string hosts_to_skip;
- SIMPLE_PATTERN *sp_host_to_skip;
-
- std::string charts_to_skip;
- SIMPLE_PATTERN *sp_charts_to_skip;
-
- std::vector<uint32_t> random_nums;
-
- netdata_thread_t detection_thread;
- std::atomic<bool> detection_stop;
-
- size_t num_training_threads;
- size_t flush_models_batch_size;
-
- std::vector<ml_training_thread_t> training_threads;
- std::atomic<bool> training_stop;
-
- size_t suppression_window;
- size_t suppression_threshold;
-
- bool enable_statistics_charts;
-} ml_config_t;
-
-void ml_config_load(ml_config_t *cfg);
-
-extern ml_config_t Cfg;
-
-#endif /* NETDATA_ML_PRIVATE_H */