diff options
Diffstat (limited to 'web/gui/v2/281.93a7bf4372306eb81264.chunk.js')
-rw-r--r-- | web/gui/v2/281.93a7bf4372306eb81264.chunk.js | 1 |
1 files changed, 0 insertions, 1 deletions
diff --git a/web/gui/v2/281.93a7bf4372306eb81264.chunk.js b/web/gui/v2/281.93a7bf4372306eb81264.chunk.js deleted file mode 100644 index f57e90fce..000000000 --- a/web/gui/v2/281.93a7bf4372306eb81264.chunk.js +++ /dev/null @@ -1 +0,0 @@ -!function(){try{var e="undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:{},t=(new Error).stack;t&&(e._sentryDebugIds=e._sentryDebugIds||{},e._sentryDebugIds[t]="514536a7-7d1e-4803-9197-71feb742c1bf",e._sentryDebugIdIdentifier="sentry-dbid-514536a7-7d1e-4803-9197-71feb742c1bf")}catch(e){}}();var _global="undefined"!==typeof window?window:"undefined"!==typeof global?global:"undefined"!==typeof self?self:{};_global.SENTRY_RELEASE={id:"8b7b01b6c705cf50f8050ce0fb8fc6b58fe68567"},(self.webpackChunkcloud_frontend=self.webpackChunkcloud_frontend||[]).push([[281],{85287:function(e,t,s){s.d(t,{d:function(){return a}});s(40658);var n=["","k","m","B","T","P","E"],a=function(e){if(!e)return 0;var t=Math.log10(Math.abs(e))/3|0;if(!t)return e;var s=n[t];return(e/Math.pow(10,3*t)).toFixed(1)+s}},62340:function(e,t){t.Z={clear:"clear",normal:"normal",warning:"warning",critical:"critical",unreachable:"unreachable"}},17638:function(e,t,s){s.d(t,{n:function(){return c}});var n=s(87462),a=s(45987),o=s(67294),r=s(93416),i=["children"],c=(0,o.memo)((0,o.forwardRef)((function(e,t){var s=e.children,c=(0,a.Z)(e,i);return o.createElement(r.Flex,(0,n.Z)({justifyContent:"start",alignItems:"center","data-testid":"ChartHeadsWrapper"},c,{ref:t}),s)})))},11835:function(e,t,s){s.d(t,{f:function(){return r}});var n=s(87462),a=s(67294),o=s(71929),r=(0,s(85993).Lj)((function(e){return e.children?a.createElement(o.Z,(0,n.Z)({as:"p",role:"document"},e)):null}),(function(e){return{children:e.info}}))},56102:function(e,t,s){s.d(t,{Y:function(){return p}});var n=s(87462),a=s(45987),o=s(67294),r=s(93416),i=s(82351),c=s(85993),l=s(11835),h=["name","tiny"],d=["hasTooltip","hasInfo"],u=(0,o.forwardRef)((function(e,t){var s=e.name,i=e.tiny,c=(0,a.Z)(e,h),l=i?r.Text:r.H3;return"string"===typeof s?o.createElement(l,(0,n.Z)({strong:!0},c,{ref:t}),s):s||null})),p=(0,c.Lj)((function(e){var t=e.hasTooltip,s=e.hasInfo,n=(0,a.Z)(e,d);return t&&s?o.createElement(i.Z,{content:o.createElement(l.f,{id:n.id}),isBasic:!0},o.createElement(u,n)):o.createElement(u,n)}),(function(e){return{name:e.name,hasInfo:!!e.info}}))},69743:function(e,t,s){s.d(t,{d:function(){return c}});var n=s(87462),a=s(45987),o=s(67294),r=s(93416),i=["id"],c=(0,o.forwardRef)((function(e,t){var s=e.id,c=(0,a.Z)(e,i);return o.createElement(r.Flex,(0,n.Z)({column:!0,"data-menuid":s,ref:t},c))}))},83367:function(e,t,s){s.d(t,{X:function(){return i}});var n=s(87462),a=s(67294),o=s(62525),r=s(71929),i=(0,o.Ji)((function(e){return e.children?a.createElement(r.Z,(0,n.Z)({as:"p",role:"document"},e)):null}),(function(e){return{children:e.info}}))},12664:function(e,t,s){s.d(t,{o:function(){return p}});var n=s(87462),a=s(45987),o=s(67294),r=s(93416),i=s(82351),c=s(62525),l=s(83367),h=["name"],d=["hasTooltip","hasInfo"],u=(0,o.forwardRef)((function(e,t){var s=e.name,i=(0,a.Z)(e,h);return"string"===typeof s?o.createElement(r.Text,(0,n.Z)({strong:!0,ref:t},i),s):s||null})),p=(0,c.Ji)((function(e){var t=e.hasTooltip,s=e.hasInfo,n=(0,a.Z)(e,d);return t&&s?o.createElement(i.Z,{content:o.createElement(l.X,{id:n.id}),isBasic:!0},o.createElement(u,n)):o.createElement(u,n)}),(function(e){return{name:e.name,hasInfo:!!e.info}}))},14048:function(e,t,s){s.d(t,{D:function(){return h}});var n=s(87462),a=s(45987),o=s(67294),r=s(93416),i=s(62525),c=["id"],l=function(e){return e.link},h=(0,o.forwardRef)((function(e,t){var s=e.id,h=(0,a.Z)(e,c),d=(0,i.Yo)(s,l);return o.createElement(r.Flex,(0,n.Z)({column:!0,gap:2,id:d,"data-submenuid":s,ref:t},h))}))},7592:function(e,t,s){var n,a=s(4942),o=s(88577),r="The amount of traffic transferred by the network interface.",i='The number of packets transferred by the network interface. Received <a href="https://en.wikipedia.org/wiki/Multicast" target="_blank">multicast</a> counter is commonly calculated at the device level (unlike <b>received</b>) and therefore may include packets which did not reach the host.',c="<p>The number of errors encountered by the network interface.</p><p><b>Inbound</b> - bad packets received on this interface. It includes dropped packets due to invalid length, CRC, frame alignment, and other errors. <b>Outbound</b> - transmit problems. It includes frames transmission errors due to loss of carrier, FIFO underrun/underflow, heartbeat, late collisions, and other problems.</p>",l="<p>The number of FIFO errors encountered by the network interface.</p><p><b>Inbound</b> - packets dropped because they did not fit into buffers provided by the host, e.g. packets larger than MTU or next buffer in the ring was not available for a scatter transfer. <b>Outbound</b> - frame transmission errors due to device FIFO underrun/underflow. This condition occurs when the device begins transmission of a frame but is unable to deliver the entire frame to the transmitter in time for transmission.</p>",h='<p>The number of packets that have been dropped at the network interface level.</p><p><b>Inbound</b> - packets received but not processed, e.g. due to <a href="#menu_system_submenu_softnet_stat">softnet backlog</a> overflow, bad/unintended VLAN tags, unknown or unregistered protocols, IPv6 frames when the server is not configured for IPv6. <b>Outbound</b> - packets dropped on their way to transmission, e.g. due to lack of resources.</p>',d="The number of correctly transferred compressed packets by the network interface. These counters are only meaningful for interfaces which support packet compression (e.g. CSLIP, PPP).",u='<p>The number of errors encountered by the network interface.</p><p><b>Frames</b> - aggregated counter for dropped packets due to invalid length, FIFO overflow, CRC, and frame alignment errors. <b>Collisions</b> - <a href="https://en.wikipedia.org/wiki/Collision_(telecommunications)" target="blank">collisions</a> during packet transmissions. <b>Carrier</b> - aggregated counter for frame transmission errors due to excessive collisions, loss of carrier, device FIFO underrun/underflow, Heartbeat/SQE Test errors, and late collisions.</p>',p='<p>The interface\'s latest or current <a href="https://en.wikipedia.org/wiki/Duplex_(telecommunications)" target="_blank">duplex</a> that the network adapter <a href="https://en.wikipedia.org/wiki/Autonegotiation" target="_blank">negotiated</a> with the device it is connected to.</p><p><b>Unknown</b> - the duplex mode can not be determined. <b>Half duplex</b> - the communication is one direction at a time. <b>Full duplex</b> - the interface is able to send and receive data simultaneously.</p>',m='<p>The current <a href="https://datatracker.ietf.org/doc/html/rfc2863" target="_blank">operational state</a> of the interface.</p><p><b>Unknown</b> - the state can not be determined. <b>NotPresent</b> - the interface has missing (typically, hardware) components. <b>Down</b> - the interface is unable to transfer data on L1, e.g. ethernet is not plugged or interface is administratively down. <b>LowerLayerDown</b> - the interface is down due to state of lower-layer interface(s). <b>Testing</b> - the interface is in testing mode, e.g. cable test. It can\u2019t be used for normal traffic until tests complete. <b>Dormant</b> - the interface is L1 up, but waiting for an external event, e.g. for a protocol to establish. <b>Up</b> - the interface is ready to pass packets and can be used.</p>',f="The current physical link state of the interface.",g='The interface\'s latest or current speed that the network adapter <a href="https://en.wikipedia.org/wiki/Autonegotiation" target="_blank">negotiated</a> with the device it is connected to. This does not give the max supported speed of the NIC.',b='The interface\'s currently configured <a href="https://en.wikipedia.org/wiki/Maximum_transmission_unit" target="_blank">Maximum transmission unit</a> (MTU) value. MTU is the size of the largest protocol data unit that can be communicated in a single network layer transaction.',y=' This chart is provided by the <a href="#menu_netdata_submenu_ebpf">eBPF plugin</a>.',_='Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#processes" target="_blank">a function</a> that starts a process is called. Netdata gives a summary for this chart in <a href="#ebpf_system_process_thread">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_apps_process_create">application</a>.'+y,v='Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#processes" target="_blank">a function</a> that starts a thread is called. Netdata gives a summary for this chart in <a href="#ebpf_system_process_thread">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_apps_thread_create">application</a>.'+y,w='Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#processes" target="_blank">a function</a> that responsible for closing tasks is called. Netdata gives a summary for this chart in <a href="#ebpf_system_process_exit">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_apps_process_exit">application</a>.'+y,k='Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#processes" target="_blank">a function</a> that responsible for releasing tasks is called. Netdata gives a summary for this chart in <a href="#ebpf_system_process_exit">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_apps_task_release">application</a>.'+y,T='Number of errors to create a new <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#task-error" target="_blank">task</a>. Netdata gives a summary for this chart in <a href="#ebpf_system_task_error">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_apps_task_error">application</a>.'+y,S='Number of calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to open files</a>. Netdata gives a summary for this chart in <a href="#menu_filesystem_submenu_file_access">file access</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_file_open">application</a>.'+y,Z='Number of failed calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to open files</a>. Netdata gives a summary for this chart in <a href="#menu_filesystem_submenu_file_error">file access</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_file_open_error">application</a>.'+y,x='Number of calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to close files</a>. Netdata gives a summary for this chart in <a href="#menu_filesystem_submenu_file_access">file access</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_file_closed">application</a>.'+y,P='Number of failed calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to close files</a>. Netdata gives a summary for this chart in <a href="#menu_filesystem_submenu_file_error">file access</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_file_close_error">application</a>.'+y,M='Percentage of file accesses that were present in the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#directory-cache" target="_blank">directory cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_dc_hit_ratio">directory cache</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows directory cache per <a href="#ebpf_apps_dc_hit">application</a>.'+y,q='Number of times a file is accessed inside <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#directory-cache" target="_blank">directory cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_dc_reference">directory cache</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows directory cache per <a href="#ebpf_apps_dc_reference">application</a>.'+y,C='Number of times a file is accessed in the file system, because it is not present inside the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#directory-cache" target="_blank">directory cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_dc_reference">directory cache</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows directory cache per <a href="#ebpf_apps_dc_not_cache">application</a>.'+y,L='Number of times a file was not found on the file system. Netdata gives a summary for this chart in <a href="#ebpf_dc_reference">directory cache</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows directory cache per <a href="#ebpf_apps_dc_not_found">application</a>.'+y,D='Number of successful calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS writer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_write">application</a>.'+y,I='Number of successful calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS reader function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_read">application</a>.'+y,N='Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS writer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_write_error">application</a>.'+y,R='Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS reader function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_read_error">application</a>.'+y,U='Total of bytes successfully written using the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS writer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io_bytes">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_write_bytes">application</a>.'+y,A='Total of bytes successfully read using the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS reader function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io_bytes">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_read_bytes">application</a>.'+y,B='Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS unlinker function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_unlink">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_unlink">application</a>.'+y,F='Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS syncer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_sync">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_sync">application</a>.'+y,O='Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS syncer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_sync_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_sync_error">application</a>.'+y,z='Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS opener function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_open">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_open">application</a>.'+y,E='Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS opener function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_open_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_open_error">application</a>.'+y,H='Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS creator function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_create">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_create">application</a>.'+y,Q='Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS creator function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_create_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_apps_vfs_create_error">application</a>.'+y,V='Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#swap" target="_blank">swap reader function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_swap">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows swap per <a href="#ebpf_apps_swap_read">application</a>.'+y,j='Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#swap" target="_blank">swap writer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_swap">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows swap per <a href="#ebpf_apps_swap_write">application</a>.'+y,G='The <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-ratio" target="_blank">ratio</a> shows the percentage of data accessed directly in memory. Netdata gives a summary for this chart in <a href="#menu_mem_submenu_page_cache">Memory</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows page cache hit per <a href="#ebpf_apps_cachestat_ratio">application</a>.'+y,W='Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#dirty-pages" target="_blank">modified pages</a> in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_cachestat_dirty">Memory</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows page cache hit per <a href="#ebpf_apps_cachestat_dirties">application</a>.'+y,K='Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-hits" target="_blank">access</a> to data in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_cachestat_hits">Memory</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows page cache hit per <a href="#ebpf_apps_cachestat_hits">application</a>.'+y,Y='Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-misses" target="_blank">access</a> to data was not present in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_cachestat_misses">Memory</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows page cache misses per <a href="#ebpf_apps_cachestat_misses">application</a>.'+y,J='Number of calls to <b>shmget</b>. Netdata gives a summary for this chart in <a href="#ebpf_global_shm">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows shared memory metrics per <a href="#ebpf_apps_shm_get">application</a>.'+y,X='Number of calls to <b>shmat</b>. Netdata gives a summary for this chart in <a href="#ebpf_global_shm">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows shared memory metrics per <a href="#ebpf_apps_shm_at">application</a>.'+y,$='Number of calls to <b>shmctl</b>. Netdata gives a summary for this chart in <a href="#ebpf_global_shm">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows shared memory metrics per <a href="#ebpf_apps_shm_ctl">application</a>.'+y,ee='Number of calls to <b>shmdt</b>. Netdata gives a summary for this chart in <a href="#ebpf_global_shm">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows shared memory metrics per <a href="#ebpf_apps_shm_dt">application</a>.'+y,te='Number of calls to IPV4 TCP function responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-outbound-connections" target="_blank">starting connections</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_outbound_conn">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows outbound connections per <a href="#ebpf_apps_outbound_conn_ipv4">application</a>.'+y,se='Number of calls to IPV6 TCP function responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-outbound-connections" target="_blank">starting connections</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_outbound_conn">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows outbound connections per <a href="#ebpf_apps_outbound_conn_ipv6">application</a>.'+y,ne='Total bytes sent with <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">UDP</a> internal functions. Netdata gives a summary for this chart in <a href="#ebpf_global_bandwidth_tcp_bytes">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows bandwidth per <a href="#ebpf_apps_bandwidth_sent">application</a>.'+y,ae='Total bytes received with <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">UDP</a> internal functions. Netdata gives a summary for this chart in <a href="#ebpf_global_bandwidth_tcp_bytes">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows bandwidth per <a href="#ebpf_apps_bandwidth_received">application</a>.'+y,oe='Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP</a> functions responsible to send data. Netdata gives a summary for this chart in <a href="#ebpf_global_tcp_bandwidth_call">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows TCP calls per <a href="#ebpf_apps_bandwidth_tcp_sent">application</a>.'+y,re='Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP</a> functions responsible to receive data. Netdata gives a summary for this chart in <a href="#ebpf_global_tcp_bandwidth_call">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows TCP calls per <a href="#ebpf_apps_bandwidth_tcp_received">application</a>.'+y,ie='Number of times a <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-retransmit" target="_blank">TCP</a> packet was retransmitted. Netdata gives a summary for this chart in <a href="#ebpf_global_tcp_retransmit">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows TCP calls per <a href="#ebpf_apps_tcp_retransmit">application</a>.'+y,ce='Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">UDP</a> functions responsible to send data. Netdata gives a summary for this chart in <a href="#ebpf_global_udp_bandwidth_call">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows UDP calls per <a href="#ebpf_apps_udp_sendmsg">application</a>.'+y,le='Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">UDP</a> functions responsible to receive data. Netdata gives a summary for this chart in <a href="#ebpf_global_udp_bandwidth_call">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">enabled</a>, Netdata shows UDP calls per <a href="#ebpf_apps_udp_recv">application</a>.'+y,he="Total CPU utilization within the configured or system-wide (if not set) limits. When the CPU utilization of a cgroup exceeds the limit for the configured period, the tasks belonging to its hierarchy will be throttled and are not allowed to run again until the next period.",de='Total CPU utilization within the system-wide CPU resources (all cores). The amount of time spent by tasks of the cgroup in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user and kernel</a> modes.',ue="The percentage of runnable periods when tasks in a cgroup have been throttled. The tasks have not been allowed to run because they have exhausted all of the available time as specified by their CPU quota.",pe="The total time duration for which tasks in a cgroup have been throttled. When an application has used its allotted CPU quota for a given period, it gets throttled until the next period.",me="<p>The weight of each group living in the same hierarchy, that translates into the amount of CPU it is expected to get. The percentage of CPU assigned to the cgroup is the value of shares divided by the sum of all shares in all cgroups in the same level.</p> <p>For example, tasks in two cgroups that have <b>cpu.shares</b> set to 100 will receive equal CPU time, but tasks in a cgroup that has <b>cpu.shares</b> set to 200 receive twice the CPU time of tasks in a cgroup where <b>cpu.shares</b> is set to 100.</p>",fe="Total CPU utilization per core within the system-wide CPU resources.",ge='CPU <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Some</b> indicates the share of time in which at least <b>some tasks</b> are stalled on CPU. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',be="The amount of time some processes have been waiting for CPU time.",ye='CPU <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Full</b> indicates the share of time in which <b>all non-idle tasks</b> are stalled on CPU resource simultaneously. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',_e="The amount of time all non-idle processes have been stalled due to CPU congestion.",ve="RAM utilization within the configured or system-wide (if not set) limits. When the RAM utilization of a cgroup exceeds the limit, OOM killer will start killing the tasks belonging to the cgroup.",we="RAM usage within the configured or system-wide (if not set) limits. When the RAM usage of a cgroup exceeds the limit, OOM killer will start killing the tasks belonging to the cgroup.",ke="The amount of used RAM and swap memory.",Te='Memory usage statistics. The individual metrics are described in the memory.stat section for <a href="https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/memory.html#per-memory-cgroup-local-status" target="_blank">cgroup-v1</a> and <a href="https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#memory-interface-files" target="_blank">cgroup-v2</a>.',Se="The number of memory usage hits limits.",Ze="<b>Dirty</b> is the amount of memory waiting to be written to disk. <b>Writeback</b> is how much memory is actively being written to disk.",xe="<p>Memory accounting statistics.</p><p><b>In</b> - a page is accounted as either mapped anon page (RSS) or cache page (Page Cache) to the cgroup. <b>Out</b> - a page is unaccounted from the cgroup.</p>",Pe='<p>Memory <a href="https://en.wikipedia.org/wiki/Page_fault" target="_blank">page fault</a> statistics.</p><p><b>Pgfault</b> - all page faults. <b>Swap</b> - major page faults.</p>',Me='Memory <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Some</b> indicates the share of time in which at least <b>some tasks</b> are stalled on memory. In this state the CPU is still doing productive work. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',qe="The amount of time some processes have been waiting due to memory congestion.",Ce='Memory <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Full</b> indicates the share of time in which <b>all non-idle tasks</b> are stalled on memory resource simultaneously. In this state actual CPU cycles are going to waste, and a workload that spends extended time in this state is considered to be thrashing. This has severe impact on performance. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',Le="The amount of time all non-idle processes have been stalled due to memory congestion.",De="The amount of data transferred to and from specific devices as seen by the CFQ scheduler. It is not updated when the CFQ scheduler is operating on a request queue.",Ie="The number of I/O operations performed on specific devices as seen by the CFQ scheduler.",Ne="The number of requests queued for I/O operations.",Re="The number of BIOS requests merged into requests for I/O operations.",Ue="The amount of data transferred to and from specific devices as seen by the throttling policy.",Ae="The number of processes currently in the cgroup.",Be="The number of I/O operations performed on specific devices as seen by the throttling policy.",Fe='I/O <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Some</b> indicates the share of time in which at least <b>some tasks</b> are stalled on I/O. In this state the CPU is still doing productive work. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',Oe="The amount of time some processes have been waiting due to I/O congestion.",ze='I/O <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Full</b> line indicates the share of time in which <b>all non-idle tasks</b> are stalled on I/O resource simultaneously. In this state actual CPU cycles are going to waste, and a workload that spends extended time in this state is considered to be thrashing. This has severe impact on performance. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',Ee="The amount of time all non-idle processes have been stalled due to I/O congestion.";t.Z=(n={"system.cpu":{aggregationMethod:"avg",info:function(){return'Total CPU utilization (all cores). 100% here means there is no CPU idle time at all. You can get per core usage at the <a href="#menu_cpu">CPUs</a> section and per application usage at the <a href="#menu_apps">Applications Monitoring</a> section.'},valueRange:[0,100],en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",urlOptions:[],chartLibrary:"gauge",valueRange:[0,100],title:"Average CPU per Node",colors:o.default[0],layout:{x:3.4,y:0,w:2.6,h:5}},{"group_by[0]":["node"],"aggregation[0]":"sum",chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top Nodes by CPU",layout:{x:3.4,y:5,w:2.6,h:5}}]},"system.load":{mainheads:[{"aggregation[0]":"avg",chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,selectedDimensions:["load1"],title:"Average System Load (1 min)",colors:o.default[0],layout:{x:10.3,y:5,w:1.7,h:5}}],aggregationMethod:"avg",info:'Current system load, i.e. the number of processes using CPU or waiting for system resources (usually CPU and disk). The 3 metrics refer to 1, 5 and 15 minute averages. The system calculates this once every 5 seconds. For more information check <a href="https://en.wikipedia.org/wiki/Load_(computing)" target="_blank">this wikipedia article</a>.',en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["load1"]},"system.cpu_some_pressure":{aggregationMethod:"avg",mainheads:[{"aggregation[0]":"avg",selectedDimensions:["some 10"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Average CPU Pressure (10 sec, some)",colors:o.default[0],layout:{x:1.7,y:5,w:1.7,h:5}}],info:'CPU <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Some</b> indicates the share of time in which at least <b>some tasks</b> are stalled on CPU. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',en:{instance:{one:"system",other:"systems"}}},"system.cpu_some_pressure_stall_time":{info:"The amount of time some processes have been waiting for CPU time.",en:{instance:{one:"system",other:"systems"}}},"system.memory_some_pressure":{aggregationMethod:"avg",info:'Memory <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Some</b> indicates the share of time in which at least <b>some tasks</b> are stalled on memory. In this state the CPU is still doing productive work. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',en:{instance:{one:"system",other:"systems"}}},"system.memory_some_pressure_stall_time":{info:"The amount of time some processes have been waiting due to memory congestion.",en:{instance:{one:"system",other:"systems"}}},"system.memory_full_pressure":{aggregationMethod:"avg",mainheads:[{"aggregation[0]":"avg",selectedDimensions:["full 10"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Average Memory Pressure (10 sec, full)",colors:o.default[0],layout:{x:8.6,y:5,w:1.7,h:5}}],info:'Memory <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Full</b> indicates the share of time in which <b>all non-idle tasks</b> are stalled on memory resource simultaneously. In this state actual CPU cycles are going to waste, and a workload that spends extended time in this state is considered to be thrashing. This has severe impact on performance. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',en:{instance:{one:"system",other:"systems"}}},"system.memory_full_pressure_stall_time":{info:"The amount of time all non-idle processes have been stalled due to memory congestion.",en:{instance:{one:"system",other:"systems"}}},"system.io_some_pressure":{aggregationMethod:"avg",info:'I/O <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Some</b> indicates the share of time in which at least <b>some tasks</b> are stalled on I/O. In this state the CPU is still doing productive work. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',en:{instance:{one:"system",other:"systems"}}},"system.io_some_pressure_stall_time":{info:"The amount of time some processes have been waiting due to I/O congestion.",en:{instance:{one:"system",other:"systems"}}},"system.io_full_pressure":{aggregationMethod:"avg",mainheads:[{"aggregation[0]":"avg",selectedDimensions:["full 10"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Average Disk I/O Pressure (10 sec, full)",colors:o.default[0],layout:{x:0,y:5,w:1.7,h:5}}],info:'I/O <a href="https://www.kernel.org/doc/html/latest/accounting/psi.html" target="_blank">Pressure Stall Information</a>. <b>Full</b> line indicates the share of time in which <b>all non-idle tasks</b> are stalled on I/O resource simultaneously. In this state actual CPU cycles are going to waste, and a workload that spends extended time in this state is considered to be thrashing. This has severe impact on performance. The ratios are tracked as recent trends over 10-, 60-, and 300-second windows.',en:{instance:{one:"system",other:"systems"}}},"system.io_full_pressure_stall_time":{info:"The amount of time all non-idle processes have been stalled due to I/O congestion.",en:{instance:{one:"system",other:"systems"}}},"system.io":{info:function(e){var t='Total Disk I/O, for all physical disks. You can get detailed information about each disk at the <a href="#menu_disk">Disks</a> section and per application Disk usage at the <a href="#menu_apps">Applications Monitoring</a> section.';return"linux"===e.os?t+" Physical are all the disks that are listed in <b>/sys/block</b>, but do not exist in <b>/sys/devices/virtual/block</b>.":t},en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["in"],title:"Total Disk Reads",layout:{x:1.7,y:0,w:1.7,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["out"],title:"Total Disk Writes",layout:{x:0,y:0,w:1.7,h:5}}]},"system.pgpgio":{info:"Memory paged from/to disk. This is usually the total disk I/O of the system.",en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["in"],title:"Total Pages read from Disk",hiddenWhen:"system.io",layout:{x:1.6,y:0,w:1.6,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["out"],title:"Total Pages written to Disk",hiddenWhen:"system.io",layout:{x:1.6,y:0,w:1.6,h:5}}]},"system.swapio":{info:"<p>System swap I/O.</p><b>In</b> - pages the system has swapped in from disk to RAM. <b>Out</b> - pages the system has swapped out from RAM to disk.",en:{instance:{one:"system",other:"systems"}}},"system.pgfaults":{info:'Total page faults. <b>Major page faults</b> indicates that the system is using its swap. You can find which applications use the swap at the <a href="#menu_apps">Applications Monitoring</a> section.',en:{instance:{one:"system",other:"systems"}}},"system.entropy":{aggregationMethod:"min",colors:o.default[5],info:'<a href="https://en.wikipedia.org/wiki/Entropy_(computing)" target="_blank">Entropy</a>, is a pool of random numbers (<a href="https://en.wikipedia.org/wiki//dev/random" target="_blank">/dev/random</a>) that is mainly used in cryptography. If the pool of entropy gets empty, processes requiring random numbers may run a lot slower (it depends on the interface each program uses), waiting for the pool to be replenished. Ideally a system with high entropy demands should have a hardware device for that purpose (TPM is one such device). There are also several software-only options you may install, like <b>haveged</b>, although these are generally useful only in servers.',en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["entropy"]},"system.clock_sync_state":{info:'<p>The system clock synchronization state as provided by the <a href="https://man7.org/linux/man-pages/man2/adjtimex.2.html" target="_blank">ntp_adjtime()</a> system call. An unsynchronized clock may be the result of synchronization issues by the NTP daemon or a hardware clock fault. It can take several minutes (usually up to 17) before NTP daemon selects a server to synchronize with. <p><b>State map</b>: 0 - not synchronized, 1 - synchronized.</p>',en:{instance:{one:"system",other:"systems"}}},"system.clock_status":{info:'<p>The kernel code can operate in various modes and with various features enabled or disabled, as selected by the <a href="https://man7.org/linux/man-pages/man2/adjtimex.2.html" target="_blank">ntp_adjtime()</a> system call. The system clock status shows the value of the <b>time_status</b> variable in the kernel. The bits of the variable are used to control these functions and record error conditions as they exist.</p><p><b>UNSYNC</b> - set/cleared by the caller to indicate clock unsynchronized (e.g., when no peers are reachable). This flag is usually controlled by an application program, but the operating system may also set it. <b>CLOCKERR</b> - set/cleared by the external hardware clock driver to indicate hardware fault.</p><p><b>Status map</b>: 0 - bit unset, 1 - bit set.</p>',en:{instance:{one:"system",other:"systems"}}},"system.clock_sync_offset":{aggregationMethod:"avg",info:'A typical NTP client regularly polls one or more NTP servers. The client must compute its <a href="https://en.wikipedia.org/wiki/Network_Time_Protocol#Clock_synchronization_algorithm" target="_blank">time offset</a> and round-trip delay. Time offset is the difference in absolute time between the two clocks.',en:{instance:{one:"system",other:"systems"}}},"system.forks":{colors:o.default[6],info:"The number of new processes created.",en:{instance:{one:"system",other:"systems"}}},"system.intr":{colors:o.default[1],info:'Total number of CPU interrupts. Check <b>system.interrupts</b> that gives more detail about each interrupt and also the <a href="#menu_cpu">CPUs</a> section where interrupts are analyzed <a href="#menu_cpu_submenu_interrupts">per CPU core</a>.',en:{instance:{one:"system",other:"systems"}}},"system.interrupts":{info:'CPU interrupts in detail. At the <a href="#menu_cpu">CPUs</a> section, interrupts are analyzed <a href="#menu_cpu_submenu_interrupts">per CPU core</a>. The last column in <b>/proc/interrupts</b> provides an interrupt description or the device name that registered the handler for that interrupt.',en:{instance:{one:"system",other:"systems"}}},"system.hardirq_latency":{aggregationMethod:"avg",info:'Total time spent servicing <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#hard-irq" target="_blank">hardware interrupts</a>. Based on the eBPF <a href="https://github.com/iovisor/bcc/blob/master/tools/hardirqs_example.txt" target="_blank">hardirqs</a> from BCC tools.'+y+'<div id="ebpf_global_hard_irq"></div>',en:{instance:{one:"system",other:"systems"}}},"system.softirqs":{info:'<p>Total number of software interrupts in the system. At the <a href="#menu_cpu">CPUs</a> section, softirqs are analyzed <a href="#menu_cpu_submenu_softirqs">per CPU core</a>.</p><p><b>HI</b> - high priority tasklets. <b>TIMER</b> - tasklets related to timer interrupts. <b>NET_TX</b>, <b>NET_RX</b> - used for network transmit and receive processing. <b>BLOCK</b> - handles block I/O completion events. <b>IRQ_POLL</b> - used by the IO subsystem to increase performance (a NAPI like approach for block devices). <b>TASKLET</b> - handles regular tasklets. <b>SCHED</b> - used by the scheduler to perform load-balancing and other scheduling tasks. <b>HRTIMER</b> - used for high-resolution timers. <b>RCU</b> - performs read-copy-update (RCU) processing.</p>',en:{instance:{one:"system",other:"systems"}}},"system.softnet_stat":{en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["processed"]},"system.softirq_latency":{aggregationMethod:"avg",info:'Total time spent servicing <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#soft-irq" target="_blank">software interrupts</a>. Based on the eBPF <a href="https://github.com/iovisor/bcc/blob/master/tools/softirqs_example.txt" target="_blank">softirqs</a> from BCC tools.'+y+'<div id="ebpf_global_soft_irq"></div>',en:{instance:{one:"system",other:"systems"}}},"system.processes":{info:"<p>System processes.</p><p><b>Running</b> - running or ready to run (runnable). <b>Blocked</b> - currently blocked, waiting for I/O to complete.</p>",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["blocked"]},"system.processes_state":{info:"<p>The number of processes in different states. </p> <p><b>Running</b> - Process using the CPU at a particular moment. <b>Sleeping (uninterruptible)</b> - Process will wake when a waited-upon resource becomes available or after a time-out occurs during that wait. Mostly used by device drivers waiting for disk or network I/O. <b>Sleeping (interruptible)</b> - Process is waiting either for a particular time slot or for a particular event to occur. <b>Zombie</b> - Process that has completed its execution, released the system resources, but its entry is not removed from the process table. Usually occurs in child processes when the parent process still needs to read its child\u2019s exit status. A process that stays a zombie for a long time is generally an error and causes system PID space leak. <b>Stopped</b> - Process is suspended from proceeding further due to STOP or TSTP signals. In this state, a process will not do anything (not even terminate) until it receives a CONT signal.</p>",en:{instance:{one:"system",other:"systems"}}},"system.active_processes":{info:"The total number of processes in the system.",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["active"]},"system.ctxt":{info:'<a href="https://en.wikipedia.org/wiki/Context_switch" target="_blank">Context Switches</a>, is the switching of the CPU from one process, task or thread to another. If there are many processes or threads willing to execute and very few CPU cores available to handle them, the system is making more context switching to balance the CPU resources among them. The whole process is computationally intensive. The more the context switches, the slower the system gets.',en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["switches"]},"system.idlejitter":{aggregationMethod:"max",info:"Idle jitter is calculated by netdata. A thread is spawned that requests to sleep for a few microseconds. When the system wakes it up, it measures how many microseconds have passed. The difference between the requested and the actual duration of the sleep, is the <b>idle jitter</b>. This number is useful in real-time environments, where CPU jitter can affect the quality of the service (like VoIP media gateways).",en:{instance:{one:"system",other:"systems"}},heatmapType:"default"},"system.net":{info:function(e){var t="Total bandwidth of all physical network interfaces. This does not include <b>lo</b>, VPNs, network bridges, IFB devices, bond interfaces, etc. Only the bandwidth of physical network interfaces is aggregated.";return"linux"===e.os?t+" Physical are all the network interfaces that are listed in <b>/proc/net/dev</b>, but do not exist in <b>/sys/devices/virtual/net</b>.":t},en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total Network Inbound",layout:{x:8.6,y:0,w:1.7,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total Network Outbound",layout:{x:10.3,y:0,w:1.7,h:5}}]},"system.ip":{info:"Total IP traffic in the system.",en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total IP Traffic In",hiddenWhen:"system.net",layout:{x:7.2,y:0,w:1.6,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total IP Traffic Out",hiddenWhen:"system.net",layout:{x:8.8,y:0,w:1.6,h:5}}]},"system.ipv4":{info:"Total IPv4 Traffic.",en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total IPv4 Traffic In",hiddenWhen:["system.net","system.ip"],layout:{x:7.2,y:0,w:1.6,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total IPv4 Traffic Out",hiddenWhen:["system.net","system.ip"],layout:{x:8.8,y:0,w:1.6,h:5}}]},"system.ipv6":{info:"Total IPv6 Traffic.",en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total IPv6 Traffic In",hiddenWhen:["system.net","system.ip","system.ipv4"],layout:{x:7.2,y:0,w:1.6,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total IPv6 Traffic Out",hiddenWhen:["system.net","system.ip","system.ipv4"],layout:{x:8.8,y:0,w:1.6,h:5}}]},"system.ram":{info:"System Random Access Memory (i.e. physical memory) usage.",en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["percentage-of-instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",chartLibrary:"gauge",selectedDimensions:["used","buffers","active","wired"],desiredUnits:"percentage",colors:o.default[10],title:"Average Used RAM per Node",valueRange:[0,100],layout:{x:6,y:0,w:2.6,h:5}},{groupBy:["percentage-of-instance"],"group_by[1]":["node"],urlOptions:["percentage"],selectedDimensions:["used","buffers","active","wired"],desiredUnits:"percentage",valueRange:[0,100],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top Nodes by Used RAM",layout:{x:6,y:5,w:2.6,h:5}}]},"system.swap":{info:"System swap memory usage. Swap space is used when the amount of physical memory (RAM) is full. When the system needs more memory resources and the RAM is full, inactive pages in memory are moved to the swap space (usually a disk, a disk partition or a file).",en:{instance:{one:"system",other:"systems"}}},"system.swapcalls":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#swap" target="_blank">functions</a> used to manipulate swap data. Netdata shows swap metrics per <a href="#ebpf_apps_swap_read">application</a> and <a href="#ebpf_services_swap_read">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_swap"></div>',en:{instance:{one:"system",other:"systems"}}},"system.ipc_semaphores":{info:"Number of allocated System V IPC semaphores. The system-wide limit on the number of semaphores in all semaphore sets is specified in <b>/proc/sys/kernel/sem</b> file (2nd field).",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["semaphores"]},"system.ipc_semaphore_arrays":{info:"Number of used System V IPC semaphore arrays (sets). Semaphores support semaphore sets where each one is a counting semaphore. So when an application requests semaphores, the kernel releases them in sets. The system-wide limit on the maximum number of semaphore sets is specified in <b>/proc/sys/kernel/sem</b> file (4th field).",en:{instance:{one:"system",other:"systems"}}},"system.shared_memory_segments":{info:"Number of allocated System V IPC memory segments. The system-wide maximum number of shared memory segments that can be created is specified in <b>/proc/sys/kernel/shmmni</b> file.",en:{instance:{one:"system",other:"systems"}}},"system.shared_memory_bytes":{info:"Amount of memory currently used by System V IPC memory segments. The run-time limit on the maximum shared memory segment size that can be created is specified in <b>/proc/sys/kernel/shmmax</b> file.",en:{instance:{one:"system",other:"systems"}}},"system.shared_memory_calls":{info:'Number of calls to syscalls responsible to manipulate <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#ipc-shared-memory" target="_blank">shared memories</a>. Netdata shows shared memory metrics per <a href="#ebpf_apps_shm_get">application</a> and <a href="#ebpf_services_shm_get">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_shm"></div>',en:{instance:{one:"system",other:"systems"}}},"system.message_queue_messages":{info:"Number of messages that are currently present in System V IPC message queues.",en:{instance:{one:"system",other:"systems"}}},"system.message_queue_bytes":{info:"Amount of memory currently used by messages in System V IPC message queues.",en:{instance:{one:"system",other:"systems"}}},"system.uptime":{aggregationMethod:"min",info:"The amount of time the system has been running, including time spent in suspend.",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["uptime"]},"system.process_thread":{title:"Task creation",info:'Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#processes" target="_blank">a function</a> that starts a process or thread is called. Netdata shows process metrics per <a href="#ebpf_apps_process_create">application</a> and <a href="#ebpf_services_process_create">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_system_process_thread"></div>',en:{instance:{one:"system",other:"systems"}}},"system.exit":{title:"Exit monitoring",info:'Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#process-exit" target="_blank">a function</a> responsible to close a process or thread is called. Netdata shows process metrics per <a href="#ebpf_apps_process_exit">application</a> and <a href="#ebpf_services_process_exit">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_system_process_exit"></div>',en:{instance:{one:"system",other:"systems"}}},"system.task_error":{title:"Task error",info:'Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#task-error" target="_blank">a function</a> that starts a process or thread failed. Netdata shows process metrics per <a href="#ebpf_apps_task_error">application</a> and <a href="#ebpf_services_task_error">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_system_task_error"></div>',en:{instance:{one:"system",other:"systems"}}},"system.process_status":{title:"Task status",info:'Difference between the number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#process-exit" target="_blank">functions</a> that close a task and release a task.'+y,en:{instance:{one:"system",other:"systems"}}},"cpu.cpu":{aggregationMethod:"avg",valueRange:[0,100],en:{instance:{one:"cpu core",other:"cpu cores"}},mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",chartLibrary:"easypiechart",title:"Average CPU Core Utilization",valueRange:[0,100],layout:{x:0,y:5,w:3,h:5}},{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top CPU Core Utilisation Stats",layout:{x:0,y:0,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top CPU Cores by Utilisation",layout:{x:0,y:10,w:3,h:5}}]},"cpu.interrupts":{en:{instance:{one:"cpu core",other:"cpu cores"}},mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",chartLibrary:"easypiechart",title:"Average CPU Core Interrupts",layout:{x:3,y:5,w:3,h:5}},{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",title:"Top CPU Core Interrupt Types",layout:{x:3,y:0,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top CPU Cores by Interrupts",layout:{x:3,y:10,w:3,h:5}}]},"cpu.softirqs":{en:{instance:{one:"cpu core",other:"cpu cores"}},mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",chartLibrary:"easypiechart",title:"Average CPU Core Softirqs",layout:{x:6,y:5,w:3,h:5}},{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top CPU Core Softirq Types",layout:{x:6,y:0,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top CPU Cores by Softirqs",layout:{x:6,y:10,w:3,h:5}}]},"cpu.softnet_stat":{en:{instance:{one:"cpu core",other:"cpu cores"}},dimensionsOnNonDimensionGrouping:["processed"],mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",chartLibrary:"easypiechart",title:"Average CPU Core Softnets",layout:{x:9,y:5,w:3,h:5}},{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",title:"Top CPU Core Softnet Stats",layout:{x:9,y:0,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top CPU Cores by Softnets",layout:{x:9,y:10,w:3,h:5}}]},"cpu.core_throttling":{en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Max CPU Core Throttling",layout:{x:0,y:5,w:3,h:5}}],info:"The number of adjustments made to the clock speed of the CPU based on it's core temperature."},"cpu.package_throttling":{info:"The number of adjustments made to the clock speed of the CPU based on it's package (chip) temperature.",en:{instance:{one:"system",other:"systems"}}},"cpufreq.cpufreq":{info:"The frequency measures the number of cycles your CPU executes per second.",en:{instance:{one:"cpu core",other:"cpu cores"}}},"cpuidle.cpuidle":{info:"The percentage of time spent in C-states.",en:{instance:{one:"cpu core",other:"cpu cores"}}},"cpuidle.cpu_cstate_residency_time":{aggregationMethod:"avg",en:{instance:{one:"cpu core",other:"cpu cores"}}},"mem.ksm":{info:"<p>Memory pages merging statistics. A high ratio of <b>Sharing</b> to <b>Shared</b> indicates good sharing, but a high ratio of <b>Unshared</b> to <b>Sharing</b> indicates wasted effort.</p><p><b>Shared</b> - used shared pages. <b>Unshared</b> - memory no longer shared (pages are unique but repeatedly checked for merging). <b>Sharing</b> - memory currently shared (how many more sites are sharing the pages, i.e. how much saved). <b>Volatile</b> - volatile pages (changing too fast to be placed in a tree).</p>",en:{instance:{one:"system",other:"systems"}}},"mem.ksm_savings":{heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Saved",selectedDimensions:["savings"],colors:o.default[0],layout:{x:0,y:5,w:3,h:5}}],info:"<p>The amount of memory saved by KSM.</p><p><b>Savings</b> - saved memory. <b>Offered</b> - memory marked as mergeable.</p>",en:{instance:{one:"system",other:"systems"}}},"mem.ksm_ratios":{aggregationMethod:"avg",heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Savings",desiredUnits:"percentage",colors:o.default[0],valueRange:[0,100],layout:{x:3,y:5,w:3,h:5}}],info:"The effectiveness of KSM. This is the percentage of the mergeable pages that are currently merged.",en:{instance:{one:"system",other:"systems"}}},"mem.zram_usage":{info:"ZRAM total RAM usage metrics. ZRAM uses some memory to store metadata about stored memory pages, thus introducing an overhead which is proportional to disk size. It excludes same-element-filled-pages since no memory is allocated for them.",en:{instance:{one:"system",other:"systems"}}},"mem.zram_savings":{info:"Displays original and compressed memory data sizes.",en:{instance:{one:"system",other:"systems"}}},"mem.zram_ratio":{heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Compression Ratio",selectedDimensions:["ratio"],colors:o.default[0],valueRange:[0,100],layout:{x:6,y:5,w:3,h:5}}],info:"Compression ratio, calculated as <b>100 * original_size / compressed_size</b>. More means better compression and more RAM savings.",en:{instance:{one:"system",other:"systems"}}},"mem.zram_efficiency":{aggregationMethod:"avg",heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Efficiency",selectedDimensions:["percent"],colors:o.default[0],layout:{x:9,y:5,w:3,h:5}}],valueRange:[0,100],info:"Memory usage efficiency, calculated as <b>100 * compressed_size / total_mem_used</b>.",en:{instance:{one:"system",other:"systems"}}},"mem.pgfaults":{family:"page faults",info:'<p>A <a href="https://en.wikipedia.org/wiki/Page_fault" target="_blank">page fault</a> is a type of interrupt, called trap, raised by computer hardware when a running program accesses a memory page that is mapped into the virtual address space, but not actually loaded into main memory.</p></p><b>Minor</b> - the page is loaded in memory at the time the fault is generated, but is not marked in the memory management unit as being loaded in memory. <b>Major</b> - generated when the system needs to load the memory page from disk or swap memory.</p>',en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["major"]},"mem.directmaps":{family:"overview"},"mem.committed":{family:"overview",colors:o.default[3],info:"Committed Memory, is the sum of all memory which has been allocated by processes.",en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Committed Memory",layout:{x:3,y:0,w:3,h:5},colors:o.default[2]},{"group_by[0]":["node"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top Nodes by Committed Memory",layout:{x:3,y:5,w:3,h:5}}]},"mem.real":{colors:o.default[3],info:"Total amount of real (physical) memory used.",en:{instance:{one:"system",other:"systems"}}},"mem.oom_kill":{family:"OOM kills",info:'The number of processes killed by <a href="https://en.wikipedia.org/wiki/Out_of_memory" target="_blank">Out of Memory</a> Killer. The kernel\'s OOM killer is summoned when the system runs short of free memory and is unable to proceed without killing one or more processes. It tries to pick the process whose demise will free the most memory while causing the least misery for users of the system. This counter also includes processes within containers that have exceeded the memory limit.',en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Out of Memory Kills",desiredUnits:"Kills/s",colors:o.default[1],layout:{x:9,y:5,w:3,h:5}}]},"mem.numa":{info:"<p>NUMA balancing statistics.</p><p><b>Local</b> - pages successfully allocated on this node, by a process on this node. <b>Foreign</b> - pages initially intended for this node that were allocated to another node instead. <b>Interleave</b> - interleave policy pages successfully allocated to this node. <b>Other</b> - pages allocated on this node, by a process on another node. <b>PteUpdates</b> - base pages that were marked for NUMA hinting faults. <b>HugePteUpdates</b> - transparent huge pages that were marked for NUMA hinting faults. In Combination with <b>pte_updates</b> the total address space that was marked can be calculated. <b>HintFaults</b> - NUMA hinting faults that were trapped. <b>HintFaultsLocal</b> - hinting faults that were to local nodes. In combination with <b>HintFaults</b>, the percentage of local versus remote faults can be calculated. A high percentage of local hinting faults indicates that the workload is closer to being converged. <b>PagesMigrated</b> - pages were migrated because they were misplaced. As migration is a copying operation, it contributes the largest part of the overhead created by NUMA balancing.</p>",en:{instance:{one:"system",other:"systems"}}},"mem.numa_nodes":{en:{instance:{one:"system",other:"systems"}}},"mem.available":{family:"overview",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"sum",chartLibrary:"easypiechart",title:"Total Available Memory",layout:{x:0,y:0,w:3,h:5}},{"group_by[0]":["node"],dimensionsSort:"valueAsc",chartLibrary:"bars",title:"Top Nodes by Least Available Memory",layout:{x:0,y:5,w:3,h:5}}],info:function(e){return"freebsd"===e.os?"The amount of memory that can be used by user-space processes without causing swapping. Calculated as the sum of free, cached, and inactive memory.":"Available Memory is estimated by the kernel, as the amount of RAM that can be used by userspace processes, without causing swapping."},en:{instance:{one:"system",other:"systems"}}},"mem.writeback":{family:"writeback",info:"<b>Dirty</b> is the amount of memory waiting to be written to disk. <b>Writeback</b> is how much memory is actively being written to disk.",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["Dirty"]},"mem.kernel":{info:"<p>The total amount of memory being used by the kernel.</p><p><b>Slab</b> - used by the kernel to cache data structures for its own use. <b>KernelStack</b> - allocated for each task done by the kernel. <b>PageTables</b> - dedicated to the lowest level of page tables (A page table is used to turn a virtual address into a physical memory address). <b>VmallocUsed</b> - being used as virtual address space. <b>Percpu</b> - allocated to the per-CPU allocator used to back per-CPU allocations (excludes the cost of metadata). When you create a per-CPU variable, each processor on the system gets its own copy of that variable.</p>",en:{instance:{one:"system",other:"systems"}}},"mem.slab":{info:'<p><a href="https://en.wikipedia.org/wiki/Slab_allocation" target="_blank">Slab memory</a> statistics.<p><p><b>Reclaimable</b> - amount of memory which the kernel can reuse. <b>Unreclaimable</b> - can not be reused even when the kernel is lacking memory.</p>',en:{instance:{one:"system",other:"systems"}}},"mem.hugepages":{info:"Dedicated (or Direct) HugePages is memory reserved for applications configured to utilize huge pages. Hugepages are <b>used</b> memory, even if there are free hugepages available.",en:{instance:{one:"system",other:"systems"}}},"mem.transparent_hugepages":{info:"Transparent HugePages (THP) is backing virtual memory with huge pages, supporting automatic promotion and demotion of page sizes. It works for all applications for anonymous memory mappings and tmpfs/shmem.",en:{instance:{one:"system",other:"systems"}}},"mem.hwcorrupt":{info:'The amount of memory with physical corruption problems, identified by <a href="https://en.wikipedia.org/wiki/ECC_memory" target="_blank">ECC</a> and set aside by the kernel so it does not get used.',en:{instance:{one:"system",other:"systems"}}},"mem.edac_mc":{info:"The number of correctable (single-bit) ECC errors. These errors do not affect the normal operation of the system because they are still being corrected. Periodic correctable errors may indicate that one of the memory modules is slowly failing.",en:{instance:{one:"mem controller",other:"mem controllers"}}},"mem.edac_mc_dimm":{info:"The number of uncorrectable (multi-bit) ECC errors. An uncorrectable error is a fatal issue that will typically lead to an OS crash.",en:{instance:{one:"mem module",other:"mem modules"}}},"mem.pagetype_global":{info:"The amount of memory available in blocks of certain size.",en:{instance:{one:"system",other:"systems"}}},"mem.cachestat_ratio":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Page Cache Hit Ratio",desiredUnits:"Percentage",colors:o.default[0],valueRange:[0,100],layout:{x:6,y:0,w:3,h:5}},{"group_by[0]":["node"],chartLibrary:"bars",dimensionsSort:"valueAsc",title:"Top Nodes by Least Cache Hit Ratio",layout:{x:6,y:5,w:3,h:5}}],info:'The <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-ratio" target="_blank">ratio</a> shows the percentage of data accessed directly in memory. Netdata shows the ratio per <a href="#ebpf_apps_cachestat_ratio">application</a> and <a href="#ebpf_services_cachestat_ratio">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y,en:{instance:{one:"system",other:"systems"}}},"mem.cachestat_dirties":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Dirty Pages",desiredUnits:"Pages/s",colors:o.default[12],layout:{x:9,y:0,w:3,h:5}}],info:'Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#dirty-pages" target="_blank">modified pages</a> in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata shows the dity page <a href="#ebpf_apps_cachestat_dirties">application</a> and <a href="#ebpf_services_cachestat_dirties">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_cachestat_dirty"></div>',en:{instance:{one:"system",other:"systems"}}},"mem.cachestat_hits":{aggregationMethod:"avg",info:'Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-hits" target="_blank">access</a> to data in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata shows the hits per <a href="#ebpf_apps_cachestat_hits">application</a> and <a href="#ebpf_services_cachestat_hits">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_cachestat_hits"></div>',en:{instance:{one:"system",other:"systems"}}},"mem.cachestat_misses":{aggregationMethod:"avg",info:'Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-misses" target="_blank">access</a> to data that was not present in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata shows the missed access per <a href="#ebpf_apps_cachestat_misses">application</a> and <a href="#ebpf_services_cachestat_misses">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_cachestat_misses"></div>',en:{instance:{one:"system",other:"systems"}}},"mem.sync":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-system-sync" target="_blank">syscalls</a> that sync filesystem metadata or cached. This chart has a relationship with <a href="#menu_filesystem">File systems</a> and Linux <a href="#menu_mem_submenu_page_cache">Page Cache</a>.'+y,en:{instance:{one:"system",other:"systems"}}},"mem.file_sync":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-sync" target="_blank">syscalls</a> responsible to transfer modified Linux page cache to disk. This chart has a relationship with <a href="#menu_filesystem">File systems</a> and Linux <a href="#menu_mem_submenu_page_cache">Page Cache</a>.'+y,en:{instance:{one:"system",other:"systems"}}},"mem.memory_map":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#memory-map-sync" target="_blank">syscall</a> responsible to the in-core copy of a file that was mapped. This chart has a relationship with <a href="#menu_filesystem">File systems</a> and Linux <a href="#menu_mem_submenu_page_cache">Page Cache</a>.'+y,en:{instance:{one:"system",other:"systems"}}},"mem.file_segment":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-range-sync" target="_blank">syscall</a> responsible to sync file segments. This chart has a relationship with <a href="#menu_filesystem">File systems</a> and Linux <a href="#menu_mem_submenu_page_cache">Page Cache</a>.'+y,en:{instance:{one:"system",other:"systems"}}},"filesystem.dc_hit_ratio":{aggregationMethod:"avg",info:'Percentage of file accesses that were present in the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#directory-cache" target="_blank">directory cache</a>. Netdata shows directory cache metrics per <a href="#ebpf_apps_dc_hit">application</a> and <a href="#ebpf_services_dc_hit">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_dc_hit_ratio"></div>',en:{instance:{one:"system",other:"systems"}}},"filesystem.dc_reference":{info:'Counters of file accesses. <b>Reference</b> is when there is a file access and the file is not present in the directory cache. <b>Miss</b> is when there is file access and the file is not found in the filesystem. <b>Slow</b> is when there is a file access and the file is present in the filesystem but not in the directory cache. Netdata shows directory cache metrics per <a href="#ebpf_apps_dc_reference">application</a> and <a href="#ebpf_services_dc_reference">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_dc_reference"></div>',en:{instance:{one:"system",other:"systems"}}},"md.health":{family:"health",info:"Number of failed devices per MD array. Netdata retrieves this data from the <b>[n/m]</b> field of the md status line. It means that ideally the array would have <b>n</b> devices however, currently, <b>m</b> devices are in use. <b>failed disks</b> is <b>n-m</b>.",en:{instance:{one:"MD array",other:"MD arrays"}}},"md.disks":{family:"health",info:"Number of devices in use and in the down state. Netdata retrieves this data from the <b>[n/m]</b> field of the md status line. It means that ideally the array would have <b>n</b> devices however, currently, <b>m</b> devices are in use. <b>inuse</b> is <b>m</b>, <b>down</b> is <b>n-m</b>.",en:{instance:{one:"MD array",other:"MD arrays"}}},"md.status":{family:"activity",info:"Completion progress of the ongoing operation.",en:{instance:{one:"MD array",other:"MD arrays"}}},"md.expected_time_until_operation_finish":{family:"activity",info:"Estimated time to complete the ongoing operation. The time is only an approximation since the operation speed will vary according to other I/O demands.",en:{instance:{one:"MD array",other:"MD arrays"}}},"md.operation_speed":{family:"activity",info:"Speed of the ongoing operation. The system-wide rebuild speed limits are specified in <b>/proc/sys/dev/raid/{speed_limit_min,speed_limit_max}</b> files. These options are good for tweaking rebuilt process and may increase overall system load, cpu and memory usage.",en:{instance:{one:"MD array",other:"MD arrays"}}},"md.mismatch_cnt":{family:"errors",info:'When performing <b>check</b> and <b>repair</b>, and possibly when performing <b>resync</b>, md will count the number of errors that are found. A count of mismatches is recorded in the <b>sysfs</b> file <b>md/mismatch_cnt</b>. This value is the number of sectors that were re-written, or (for <b>check</b>) would have been re-written. It may be larger than the number of actual errors by a factor of the number of sectors in a page. Mismatches can not be interpreted very reliably on RAID1 or RAID10, especially when the device is used for swap. On a truly clean RAID5 or RAID6 array, any mismatches should indicate a hardware problem at some level - software issues should never cause such a mismatch. For details, see <a href="https://man7.org/linux/man-pages/man4/md.4.html" target="_blank">md(4)</a>.',en:{instance:{one:"MD array",other:"MD arrays"}}},"md.flush":{family:"flushes",info:'Number of flush counts per MD array. Based on the eBPF <a href="https://github.com/iovisor/bcc/blob/master/tools/mdflush_example.txt" target="_blank">mdflush</a> from BCC tools.',en:{instance:{one:"MD array",other:"MD arrays"}}},"ip.inerrors":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IP Inbound Errors",desiredUnits:"errors",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}}],info:"<p>The number of errors encountered during the reception of IP packets.</p></p><b>NoRoutes</b> - packets that were dropped because there was no route to send them. <b>Truncated</b> - packets which is being discarded because the datagram frame didn't carry enough data. <b>Checksum</b> - packets that were dropped because they had wrong checksum.</p>",en:{instance:{one:"system",other:"systems"}}},"ip.mcast":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total Multicast Traffic Received",layout:{x:9,y:5,w:3,h:5},colors:o.default[2]},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total Multicast Traffic Sent",layout:{x:6,y:5,w:3,h:5},colors:o.default[1]}],info:"Total multicast traffic in the system.",en:{instance:{one:"system",other:"systems"}}},"ip.mcastpkts":{info:"Total transferred multicast packets in the system.",en:{instance:{one:"system",other:"systems"}}},"ip.bcast":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total Broadcast Traffic Received",layout:{x:3,y:5,w:3,h:5},colors:o.default[2]},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total Broadcast Traffic Sent",layout:{x:0,y:5,w:3,h:5},colors:o.default[1]}],info:"Total broadcast traffic in the system.",en:{instance:{one:"system",other:"systems"}}},"ip.bcastpkts":{info:"Total transferred broadcast packets in the system.",en:{instance:{one:"system",other:"systems"}}},"ip.ecnpkts":{info:"<p>Total number of received IP packets with ECN bits set in the system.</p><p><b>CEP</b> - congestion encountered. <b>NoECTP</b> - non ECN-capable transport. <b>ECTP0</b> and <b>ECTP1</b> - ECN capable transport.</p>",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["NoECTP"]},"ip.inbound_conn":{info:'Number of calls to functions responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-inbound-connections" target="_blank">receiving connections</a>.'+y,en:{instance:{one:"system",other:"systems"}}},"ip.tcp_outbound_conn":{info:'Number of calls to TCP functions responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-outbound-connections" target="_blank">starting connections</a>. Netdata shows TCP outbound connections metrics per <a href="#ebpf_apps_outbound_conn_ipv4">application</a> and <a href="#ebpf_services_outbound_conn_ipv4">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_outbound_conn"></div>',en:{instance:{one:"system",other:"systems"}}},"ip.tcp_functions":{info:'Number of calls to TCP functions responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth-functions" target="_blank">exchanging data</a>. Netdata shows TCP outbound connections metrics per <a href="#ebpf_apps_bandwidth_tcp_sent">application</a> and <a href="#ebpf_services_bandwidth_tcp_sent">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_tcp_bandwidth_call"></div>',en:{instance:{one:"system",other:"systems"}}},"ip.total_tcp_bandwidth":{heads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total TCP Bandwidth",desiredUnits:"bps",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:'Total bytes sent and received with <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP internal functions</a>. Netdata shows TCP bandwidth metrics per <a href="#ebpf_apps_bandwidth_sent">application</a> and <a href="#ebpf_services_bandwidth_sent">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_bandwidth_tcp_bytes"></div>',en:{instance:{one:"system",other:"systems"}}},"ip.tcp_error":{heads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"TCP Errors",desiredUnits:"errors",colors:o.default[2],layout:{x:3,y:0,w:3,h:5}}],info:'Number of failed calls to TCP functions responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP bandwidth</a>. Netdata shows TCP error per <a href="#ebpf_apps_tcp_sendmsg_error">application</a> and <a href="#ebpf_services_tcp_sendmsg_error">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_tcp_bandwidth_error"></div>',en:{instance:{one:"system",other:"systems"}}},"ip.tcp_retransmit":{heads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"TCP Retransmits",desiredUnits:"retransmits",colors:o.default[3],layout:{x:6,y:0,w:3,h:5}}],info:'Number of times a TCP packet was <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-retransmit" target="_blank">retransmitted</a>. Netdata shows TCP retransmit per <a href="#ebpf_apps_tcp_retransmit">application</a> and <a href="#ebpf_services_tcp_retransmit">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_tcp_retransmit"></div>',en:{instance:{one:"system",other:"systems"}}},"ip.udp_functions":{info:'Number of calls to UDP functions responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">exchanging data</a>. Netdata shows TCP outbound connections metrics per <a href="#ebpf_apps_udp_sendmsg">application</a> and <a href="#ebpf_services_udp_sendmsg">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_udp_bandwidth_call"></div>',en:{instance:{one:"system",other:"systems"}}},"ip.total_udp_bandwidth":{heads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total UDP Bandwidth",desiredUnits:"bps",colors:o.default[4],layout:{x:9,y:0,w:3,h:5}}],info:'Total bytes sent and received with <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-bandwidth" target="_blank">UDP internal functions</a>. Netdata shows UDP bandwidth metrics per <a href="#ebpf_apps_bandwidth_udp_sendmsg">application</a> and <a href="#ebpf_services_bandwidth_udp_sendmsg">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_bandwidth_udp_sendmsg"></div>',en:{instance:{one:"system",other:"systems"}}},"ip.udp_error":{info:'Number of failed calls to UDP functions responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-bandwidth" target="_blank">UDP bandwidth</a>. Netdata shows UDP error per <a href="#ebpf_apps_udp_sendmsg_error">application</a> and <a href="#ebpf_services_udp_sendmsg_error">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+'<div id="ebpf_global_udp_bandwidth_error"></div>',en:{instance:{one:"system",other:"systems"}}},"ip.tcpreorders":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"TCP Reorders",layout:{x:9,y:0,w:3,h:5}}],info:"<p>TCP prevents out-of-order packets by either sequencing them in the correct order or by requesting the retransmission of out-of-order packets.</p><p><b>Timestamp</b> - detected re-ordering using the timestamp option. <b>SACK</b> - detected re-ordering using Selective Acknowledgment algorithm. <b>FACK</b> - detected re-ordering using Forward Acknowledgment algorithm. <b>Reno</b> - detected re-ordering using Fast Retransmit algorithm.</p>",en:{instance:{one:"system",other:"systems"}}},"ip.tcpofo":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"TCP Out-Of-Order Queue",layout:{x:6,y:0,w:3,h:5}}],info:"<p>TCP maintains an out-of-order queue to keep the out-of-order packets in the TCP communication.</p><p><b>InQueue</b> - the TCP layer receives an out-of-order packet and has enough memory to queue it. <b>Dropped</b> - the TCP layer receives an out-of-order packet but does not have enough memory, so drops it. <b>Merged</b> - the received out-of-order packet has an overlay with the previous packet. The overlay part will be dropped. All these packets will also be counted into <b>InQueue</b>. <b>Pruned</b> - packets dropped from out-of-order queue because of socket buffer overrun.</p>",en:{instance:{one:"system",other:"systems"}}},"ip.tcpsyncookies":{info:'<p><a href="https://en.wikipedia.org/wiki/SYN_cookies" target="_blank">SYN cookies</a> are used to mitigate SYN flood.</p><p><b>Received</b> - after sending a SYN cookie, it came back to us and passed the check. <b>Sent</b> - an application was not able to accept a connection fast enough, so the kernel could not store an entry in the queue for this connection. Instead of dropping it, it sent a SYN cookie to the client. <b>Failed</b> - the MSS decoded from the SYN cookie is invalid. When this counter is incremented, the received packet won\u2019t be treated as a SYN cookie.</p>',en:{instance:{one:"system",other:"systems"}}},"ip.tcpmemorypressures":{info:"The number of times a socket was put in memory pressure due to a non fatal memory allocation failure (the kernel attempts to work around this situation by reducing the send buffers, etc).",en:{instance:{one:"system",other:"systems"}}},"ip.tcpconnaborts":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"TCP Connection Aborts",desiredUnits:"errors",layout:{x:3,y:0,w:3,h:5}}],info:"<p>TCP connection aborts.</p><p><b>BadData</b> - happens while the connection is on FIN_WAIT1 and the kernel receives a packet with a sequence number beyond the last one for this connection - the kernel responds with RST (closes the connection). <b>UserClosed</b> - happens when the kernel receives data on an already closed connection and responds with RST. <b>NoMemory</b> - happens when there are too many orphaned sockets (not attached to an fd) and the kernel has to drop a connection - sometimes it will send an RST, sometimes it won't. <b>Timeout</b> - happens when a connection times out. <b>Linger</b> - happens when the kernel killed a socket that was already closed by the application and lingered around for long enough. <b>Failed</b> - happens when the kernel attempted to send an RST but failed because there was no memory available.</p>",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["timeouts"]},"ip.tcp_syn_queue":{info:"<p>The SYN queue of the kernel tracks TCP handshakes until connections get fully established. It overflows when too many incoming TCP connection requests hang in the half-open state and the server is not configured to fall back to SYN cookies. Overflows are usually caused by SYN flood DoS attacks.</p><p><b>Drops</b> - number of connections dropped because the SYN queue was full and SYN cookies were disabled. <b>Cookies</b> - number of SYN cookies sent because the SYN queue was full.</p>",en:{instance:{one:"system",other:"systems"}}},"ip.tcp_accept_queue":{info:"<p>The accept queue of the kernel holds the fully established TCP connections, waiting to be handled by the listening application.</p><b>Overflows</b> - the number of established connections that could not be handled because the receive queue of the listening application was full. <b>Drops</b> - number of incoming connections that could not be handled, including SYN floods, overflows, out of memory, security issues, no route to destination, reception of related ICMP messages, socket is broadcast or multicast.</p>",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["overflows"]},"ipv4.packets":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],"aggregation[1]":"sum",chartLibrary:"easypiechart",title:"Total IPv4 Packets",desiredUnits:"Kpps",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}},{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IPv4 Packets",layout:{x:0,y:5,w:3,h:5}}],info:'<p>IPv4 packets statistics for this host.</p><p><b>Received</b> - packets received by the IP layer. This counter will be increased even if the packet is dropped later. <b>Sent</b> - packets sent via IP layer, for both single cast and multicast packets. This counter does not include any packets counted in <b>Forwarded</b>. <b>Forwarded</b> - input packets for which this host was not their final IP destination, as a result of which an attempt was made to find a route to forward them to that final destination. In hosts which do not act as IP Gateways, this counter will include only those packets which were <a href="https://en.wikipedia.org/wiki/Source_routing" target="_blank">Source-Routed</a> and the Source-Route option processing was successful. <b>Delivered</b> - packets delivered to the upper layer protocols, e.g. TCP, UDP, ICMP, and so on.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv4.fragsout":{info:'<p><a href="https://en.wikipedia.org/wiki/IPv4#Fragmentation" target="_blank">IPv4 fragmentation</a> statistics for this system.</p><p><b>OK</b> - packets that have been successfully fragmented. <b>Failed</b> - packets that have been discarded because they needed to be fragmented but could not be, e.g. due to <i>Don\'t Fragment</i> (DF) flag was set. <b>Created</b> - fragments that have been generated as a result of fragmentation.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv4.fragsin":{info:'<p><a href="https://en.wikipedia.org/wiki/IPv4#Reassembly" target="_blank">IPv4 reassembly</a> statistics for this system.</p><p><b>OK</b> - packets that have been successfully reassembled. <b>Failed</b> - failures detected by the IP reassembly algorithm. This is not necessarily a count of discarded IP fragments since some algorithms can lose track of the number of fragments by combining them as they are received. <b>All</b> - received IP fragments which needed to be reassembled.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv4.errors":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total IPv4 Errors",desiredUnits:"packets per second",colors:o.default[1],layout:{x:3,y:0,w:3,h:5}},{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IPv4 Errors",layout:{x:3,y:5,w:3,h:5}}],info:"<p>The number of discarded IPv4 packets.</p><p><b>InDiscards</b>, <b>OutDiscards</b> - inbound and outbound packets which were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. <b>InHdrErrors</b> - input packets that have been discarded due to errors in their IP headers, including bad checksums, version number mismatch, other format errors, time-to-live exceeded, errors discovered in processing their IP options, etc. <b>OutNoRoutes</b> - packets that have been discarded because no route could be found to transmit them to their destination. This includes any packets which a host cannot route because all of its default gateways are down. <b>InAddrErrors</b> - input packets that have been discarded due to invalid IP address or the destination IP address is not a local address and IP forwarding is not enabled. <b>InUnknownProtos</b> - input packets which were discarded because of an unknown or unsupported protocol.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv4.icmp":{aggregationMethod:"sum",info:"<p>The number of transferred IPv4 ICMP messages.</p><p><b>Received</b>, <b>Sent</b> - ICMP messages which the host received and attempted to send. Both these counters include errors.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv4.icmp_errors":{info:"<p>The number of IPv4 ICMP errors.</p><p><b>InErrors</b> - received ICMP messages but determined as having ICMP-specific errors, e.g. bad ICMP checksums, bad length, etc. <b>OutErrors</b> - ICMP messages which this host did not send due to problems discovered within ICMP such as a lack of buffers. This counter does not include errors discovered outside the ICMP layer such as the inability of IP to route the resultant datagram. <b>InCsumErrors</b> - received ICMP messages with bad checksum.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv4.icmpmsg":{info:'The number of transferred <a href="https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml" target="_blank">IPv4 ICMP control messages</a>.',en:{instance:{one:"system",other:"systems"}}},"ipv4.udppackets":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total IPv4 UDP Packets",desiredUnits:"Kpps",colors:o.default[4],layout:{x:9,y:0,w:3,h:5}},{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IPv4 UDP Packets",layout:{x:9,y:5,w:3,h:5}}],info:"The number of transferred UDP packets.",en:{instance:{one:"system",other:"systems"}}},"ipv4.udperrors":{info:"<p>The number of errors encountered during transferring UDP packets.</p><b>RcvbufErrors</b> - receive buffer is full. <b>SndbufErrors</b> - send buffer is full, no kernel memory available, or the IP layer reported an error when trying to send the packet and no error queue has been setup. <b>InErrors</b> - that is an aggregated counter for all errors, excluding <b>NoPorts</b>. <b>NoPorts</b> - no application is listening at the destination port. <b>InCsumErrors</b> - a UDP checksum failure is detected. <b>IgnoredMulti</b> - ignored multicast packets.",en:{instance:{one:"system",other:"systems"}}},"ipv4.udplite":{info:"The number of transferred UDP-Lite packets.",en:{instance:{one:"system",other:"systems"}}},"ipv4.udplite_errors":{info:"<p>The number of errors encountered during transferring UDP-Lite packets.</p><b>RcvbufErrors</b> - receive buffer is full. <b>SndbufErrors</b> - send buffer is full, no kernel memory available, or the IP layer reported an error when trying to send the packet and no error queue has been setup. <b>InErrors</b> - that is an aggregated counter for all errors, excluding <b>NoPorts</b>. <b>NoPorts</b> - no application is listening at the destination port. <b>InCsumErrors</b> - a UDP checksum failure is detected. <b>IgnoredMulti</b> - ignored multicast packets.",en:{instance:{one:"system",other:"systems"}}},"ipv4.tcppackets":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total IPv4 TCP Packets",desiredUnits:"Kpps",colors:o.default[3],layout:{x:6,y:0,w:3,h:5}},{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IPv4 TCP Packets",layout:{x:6,y:5,w:3,h:5}}],info:"<p>The number of packets transferred by the TCP layer.</p></p><b>Received</b> - received packets, including those received in error, such as checksum error, invalid TCP header, and so on. <b>Sent</b> - sent packets, excluding the retransmitted packets. But it includes the SYN, ACK, and RST packets.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv4.tcpsock":{info:"The number of TCP connections for which the current state is either ESTABLISHED or CLOSE-WAIT. This is a snapshot of the established connections at the time of measurement (i.e. a connection established and a connection disconnected within the same iteration will not affect this metric).",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["connections"]},"ipv4.tcpopens":{info:"<p>TCP connection statistics.</p><p><b>Active</b> - number of outgoing TCP connections attempted by this host. <b>Passive</b> - number of incoming TCP connections accepted by this host.</p>",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["active"]},"ipv4.tcperrors":{info:"<p>TCP errors.</p><p><b>InErrs</b> - TCP segments received in error (including header too small, checksum errors, sequence errors, bad packets - for both IPv4 and IPv6). <b>InCsumErrors</b> - TCP segments received with checksum errors (for both IPv4 and IPv6). <b>RetransSegs</b> - TCP segments retransmitted.</p>",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["all"]},"ipv4.tcphandshake":{info:"<p>TCP handshake statistics.</p><p><b>EstabResets</b> - established connections resets (i.e. connections that made a direct transition from ESTABLISHED or CLOSE_WAIT to CLOSED). <b>OutRsts</b> - TCP segments sent, with the RST flag set (for both IPv4 and IPv6). <b>AttemptFails</b> - number of times TCP connections made a direct transition from either SYN_SENT or SYN_RECV to CLOSED, plus the number of times TCP connections made a direct transition from the SYN_RECV to LISTEN. <b>SynRetrans</b> - shows retries for new outbound TCP connections, which can indicate general connectivity issues or backlog on the remote host.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv4.sockstat_sockets":{info:'The total number of used sockets for all <a href="https://man7.org/linux/man-pages/man7/address_families.7.html" target="_blank">address families</a> in this system.',en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["used"]},"ipv4.sockstat_tcp_sockets":{info:'<p>The number of TCP sockets in the system in certain <a href="https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Protocol_operation" target="_blank">states</a>.</p><p><b>Alloc</b> - in any TCP state. <b>Orphan</b> - no longer attached to a socket descriptor in any user processes, but for which the kernel is still required to maintain state in order to complete the transport protocol. <b>InUse</b> - in any TCP state, excluding TIME-WAIT and CLOSED. <b>TimeWait</b> - in the TIME-WAIT state.</p>',en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["alloc"]},"ipv4.sockstat_tcp_mem":{info:"The amount of memory used by allocated TCP sockets.",en:{instance:{one:"system",other:"systems"}}},"ipv4.sockstat_udp_sockets":{info:"The number of used UDP sockets.",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["inuse"]},"ipv4.sockstat_udp_mem":{info:"The amount of memory used by allocated UDP sockets.",en:{instance:{one:"system",other:"systems"}}},"ipv4.sockstat_udplite_sockets":{info:"The number of used UDP-Lite sockets.",en:{instance:{one:"system",other:"systems"}}},"ipv4.sockstat_raw_sockets":{info:'The number of used <a href="https://en.wikipedia.org/wiki/Network_socket#Types" target="_blank"> raw sockets</a>.',en:{instance:{one:"system",other:"systems"}}},"ipv4.sockstat_frag_sockets":{info:"The number of entries in hash tables that are used for packet reassembly.",en:{instance:{one:"system",other:"systems"}}},"ipv4.sockstat_frag_mem":{info:"The amount of memory used for packet reassembly.",en:{instance:{one:"system",other:"systems"}}},"ipv6.packets":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],"aggregation[1]":"sum",chartLibrary:"easypiechart",title:"Total IPv6 Packets",desiredUnits:"Kpps",colors:o.default[3],layout:{x:0,y:0,w:3,h:5}},{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IPv6 Packets",layout:{x:0,y:5,w:3,h:5}}],info:'<p>IPv6 packet statistics for this host.</p><p><b>Received</b> - packets received by the IP layer. This counter will be increased even if the packet is dropped later. <b>Sent</b> - packets sent via IP layer, for both single cast and multicast packets. This counter does not include any packets counted in <b>Forwarded</b>. <b>Forwarded</b> - input packets for which this host was not their final IP destination, as a result of which an attempt was made to find a route to forward them to that final destination. In hosts which do not act as IP Gateways, this counter will include only those packets which were <a href="https://en.wikipedia.org/wiki/Source_routing" target="_blank">Source-Routed</a> and the Source-Route option processing was successful. <b>Delivers</b> - packets delivered to the upper layer protocols, e.g. TCP, UDP, ICMP, and so on.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv6.fragsout":{info:'<p><a href="https://en.wikipedia.org/wiki/IP_fragmentation" target="_blank">IPv6 fragmentation</a> statistics for this system.</p><p><b>OK</b> - packets that have been successfully fragmented. <b>Failed</b> - packets that have been discarded because they needed to be fragmented but could not be, e.g. due to <i>Don\'t Fragment</i> (DF) flag was set. <b>All</b> - fragments that have been generated as a result of fragmentation.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv6.fragsin":{info:'<p><a href="https://en.wikipedia.org/wiki/IP_fragmentation" target="_blank">IPv6 reassembly</a> statistics for this system.</p><p><b>OK</b> - packets that have been successfully reassembled. <b>Failed</b> - failures detected by the IP reassembly algorithm. This is not necessarily a count of discarded IP fragments since some algorithms can lose track of the number of fragments by combining them as they are received. <b>Timeout</b> - reassembly timeouts detected. <b>All</b> - received IP fragments which needed to be reassembled.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv6.errors":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total IPv6 Errors",desiredUnits:"Kpps",colors:o.default[3],layout:{x:3,y:0,w:3,h:5}},{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IPv6 Errors",layout:{x:3,y:5,w:3,h:5}}],info:"<p>The number of discarded IPv6 packets.</p><p><b>InDiscards</b>, <b>OutDiscards</b> - packets which were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. <b>InHdrErrors</b> - errors in IP headers, including bad checksums, version number mismatch, other format errors, time-to-live exceeded, etc. <b>InAddrErrors</b> - invalid IP address or the destination IP address is not a local address and IP forwarding is not enabled. <b>InUnknownProtos</b> - unknown or unsupported protocol. <b>InTooBigErrors</b> - the size exceeded the link MTU. <b>InTruncatedPkts</b> - packet frame did not carry enough data. <b>InNoRoutes</b> - no route could be found while forwarding. <b>OutNoRoutes</b> - no route could be found for packets generated by this host.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv6.udppackets":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total IPv6 UDP Packets",desiredUnits:"Kpps",colors:o.default[3],layout:{x:6,y:0,w:3,h:5}},{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IPv6 UDP Packets",layout:{x:6,y:5,w:3,h:5}}],info:"The number of transferred UDP packets.",en:{instance:{one:"system",other:"systems"}}},"ipv6.udperrors":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total IPv6 UDP Errors",desiredUnits:"Kpps",colors:o.default[3],layout:{x:9,y:0,w:3,h:5}},{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"IPv6 UDP Errors",layout:{x:9,y:5,w:3,h:5}}],info:"<p>The number of errors encountered during transferring UDP packets.</p><b>RcvbufErrors</b> - receive buffer is full. <b>SndbufErrors</b> - send buffer is full, no kernel memory available, or the IP layer reported an error when trying to send the packet and no error queue has been setup. <b>InErrors</b> - that is an aggregated counter for all errors, excluding <b>NoPorts</b>. <b>NoPorts</b> - no application is listening at the destination port. <b>InCsumErrors</b> - a UDP checksum failure is detected. <b>IgnoredMulti</b> - ignored multicast packets.",en:{instance:{one:"system",other:"systems"}}},"ipv6.udplitepackets":{info:"The number of transferred UDP-Lite packets.",en:{instance:{one:"system",other:"systems"}}},"ipv6.udpliteerrors":{info:"<p>The number of errors encountered during transferring UDP-Lite packets.</p><p><b>RcvbufErrors</b> - receive buffer is full. <b>SndbufErrors</b> - send buffer is full, no kernel memory available, or the IP layer reported an error when trying to send the packet and no error queue has been setup. <b>InErrors</b> - that is an aggregated counter for all errors, excluding <b>NoPorts</b>. <b>NoPorts</b> - no application is listening at the destination port. <b>InCsumErrors</b> - a UDP checksum failure is detected.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv6.mcast":{info:"Total IPv6 multicast traffic.",en:{instance:{one:"system",other:"systems"}}},"ipv6.bcast":{info:"Total IPv6 broadcast traffic.",en:{instance:{one:"system",other:"systems"}}},"ipv6.mcastpkts":{info:"Total transferred IPv6 multicast packets.",en:{instance:{one:"system",other:"systems"}}},"ipv6.icmp":{aggregationMethod:"sum",info:"<p>The number of transferred ICMPv6 messages.</p><p><b>Received</b>, <b>Sent</b> - ICMP messages which the host received and attempted to send. Both these counters include errors.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv6.icmpredir":{info:"The number of transferred ICMPv6 Redirect messages. These messages inform a host to update its routing information (to send packets on an alternative route).",en:{instance:{one:"system",other:"systems"}}},"ipv6.icmpechos":{info:"The number of ICMPv6 Echo messages.",en:{instance:{one:"system",other:"systems"}}},"ipv6.icmperrors":{info:'<p>The number of ICMPv6 errors and <a href="https://www.rfc-editor.org/rfc/rfc4443.html#section-3" target="_blank">error messages</a>.</p><p><b>InErrors</b>, <b>OutErrors</b> - bad ICMP messages (bad ICMP checksums, bad length, etc.). <b>InCsumErrors</b> - wrong checksum.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv6.groupmemb":{info:"<p>The number of transferred ICMPv6 Group Membership messages.</p><p> Multicast routers send Group Membership Query messages to learn which groups have members on each of their attached physical networks. Host computers respond by sending a Group Membership Report for each multicast group joined by the host. A host computer can also send a Group Membership Report when it joins a new multicast group. Group Membership Reduction messages are sent when a host computer leaves a multicast group.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv6.icmprouter":{info:'<p>The number of transferred ICMPv6 <a href="https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol" target="_blank">Router Discovery</a> messages.</p><p>Router <b>Solicitations</b> message is sent from a computer host to any routers on the local area network to request that they advertise their presence on the network. Router <b>Advertisement</b> message is sent by a router on the local area network to announce its IP address as available for routing.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv6.icmpneighbor":{info:'<p>The number of transferred ICMPv6 <a href="https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol" target="_blank">Neighbour Discovery</a> messages.</p><p>Neighbor <b>Solicitations</b> are used by nodes to determine the link layer address of a neighbor, or to verify that a neighbor is still reachable via a cached link layer address. Neighbor <b>Advertisements</b> are used by nodes to respond to a Neighbor Solicitation message.</p>',en:{instance:{one:"system",other:"systems"}}},"ipv6.icmpmldv2":{info:'The number of transferred ICMPv6 <a href="https://en.wikipedia.org/wiki/Multicast_Listener_Discovery" target="_blank">Multicast Listener Discovery</a> (MLD) messages.',en:{instance:{one:"system",other:"systems"}}},"ipv6.icmptypes":{info:'The number of transferred ICMPv6 messages of <a href="https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol_for_IPv6#Types" target="_blank">certain types</a>.',en:{instance:{one:"system",other:"systems"}}},"ipv6.ect":{info:"<p>Total number of received IPv6 packets with ECN bits set in the system.</p><p><b>CEP</b> - congestion encountered. <b>NoECTP</b> - non ECN-capable transport. <b>ECTP0</b> and <b>ECTP1</b> - ECN capable transport.</p>",en:{instance:{one:"system",other:"systems"}}},"ipv6.sockstat6_tcp_sockets":{info:'The number of TCP sockets in any <a href="https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Protocol_operation" target="_blank">state</a>, excluding TIME-WAIT and CLOSED.',en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["inuse"]},"ipv6.sockstat6_udp_sockets":{info:"The number of used UDP sockets.",en:{instance:{one:"system",other:"systems"}}},"ipv6.sockstat6_udplite_sockets":{info:"The number of used UDP-Lite sockets.",en:{instance:{one:"system",other:"systems"}}},"ipv6.sockstat6_raw_sockets":{info:'The number of used <a href="https://en.wikipedia.org/wiki/Network_socket#Types" target="_blank"> raw sockets</a>.',en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["inuse"]},"ipv6.sockstat6_frag_sockets":{info:"The number of entries in hash tables that are used for packet reassembly.",en:{instance:{one:"system",other:"systems"}}},"sctp.established":{aggregationMethod:"sum",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"SCTP Associations States",desiredUnits:"connections",colors:o.default[0],layout:{x:4,y:0,w:4,h:5}}],info:"The number of associations for which the current state is either ESTABLISHED, SHUTDOWN-RECEIVED or SHUTDOWN-PENDING.",en:{instance:{one:"system",other:"systems"}}},"sctp.transitions":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total SCTP Transitions",desiredUnits:"transitions",colors:o.default[1],layout:{x:0,y:0,w:2,h:5}}],info:"<p>The number of times that associations have made a direct transition between states.</p><p><b>Active</b> - from COOKIE-ECHOED to ESTABLISHED. The upper layer initiated the association attempt. <b>Passive</b> - from CLOSED to ESTABLISHED. The remote endpoint initiated the association attempt. <b>Aborted</b> - from any state to CLOSED using the primitive ABORT. Ungraceful termination of the association. <b>Shutdown</b> - from SHUTDOWN-SENT or SHUTDOWN-ACK-SENT to CLOSED. Graceful termination of the association.</p>",en:{instance:{one:"system",other:"systems"}}},"sctp.packets":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total SCTP Packets",desiredUnits:"packets",colors:o.default[2],layout:{x:2,y:0,w:2,h:5}}],info:"<p>The number of transferred SCTP packets.</p><p><b>Received</b> - includes duplicate packets. <b>Sent</b> - includes retransmitted DATA chunks.</p>",en:{instance:{one:"system",other:"systems"}}},"sctp.packet_errors":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total SCTP Packet Errors",desiredUnits:"errors",colors:o.default[3],layout:{x:8,y:0,w:2,h:5}}],info:"<p>The number of errors encountered during receiving SCTP packets.</p><p><b>Invalid</b> - packets for which the receiver was unable to identify an appropriate association. <b>Checksum</b> - packets with an invalid checksum.</p>",en:{instance:{one:"system",other:"systems"}}},"sctp.fragmentation":{aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total SCTP Fragmentation",desiredUnits:"fragments",colors:o.default[4],layout:{x:10,y:0,w:2,h:5}}],info:"<p>The number of fragmented and reassembled SCTP messages.</p><p><b>Reassembled</b> - reassembled user messages, after conversion into DATA chunks. <b>Fragmented</b> - user messages that have to be fragmented because of the MTU.</p>",en:{instance:{one:"system",other:"systems"}}},"sctp.chunks":{aggregationMethod:"sum",info:"The number of transferred control, ordered, and unordered DATA chunks. Retransmissions and duplicates are not included.",en:{instance:{one:"system",other:"systems"}}},"netfilter.conntrack_sockets":{info:"The number of entries in the conntrack table.",en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"netfilter.conntrack_new":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Conntrack Connections Status",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}}],info:"<p>Packet tracking statistics. <b>New</b> (since v4.9) and <b>Ignore</b> (since v5.10) are hardcoded to zeros in the latest kernel.</p><p><b>New</b> - conntrack entries added which were not expected before. <b>Ignore</b> - packets seen which are already connected to a conntrack entry. <b>Invalid</b> - packets seen which can not be tracked.</p>",en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"netfilter.conntrack_changes":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Conntrack Changes",desiredUnits:"changes",colors:o.default[1],layout:{x:3,y:0,w:3,h:5}}],info:"<p>The number of changes in conntrack tables.</p><p><b>Inserted</b>, <b>Deleted</b> - conntrack entries which were inserted or removed. <b>Delete-list</b> - conntrack entries which were put to dying list.</p>",en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"netfilter.conntrack_expect":{info:'<p>The number of events in the "expect" table. Connection tracking expectations are the mechanism used to "expect" RELATED connections to existing ones. An expectation is a connection that is expected to happen in a period of time.</p><p><b>Created</b>, <b>Deleted</b> - conntrack entries which were inserted or removed. <b>New</b> - conntrack entries added after an expectation for them was already present.</p>',en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"netfilter.conntrack_search":{info:"<p>Conntrack table lookup statistics.</p><p><b>Searched</b> - conntrack table lookups performed. <b>Restarted</b> - conntrack table lookups which had to be restarted due to hashtable resizes. <b>Found</b> - conntrack table lookups which were successful.</p>",en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"netfilter.conntrack_errors":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Conntrack Errors",desiredUnits:"errors",colors:o.default[2],layout:{x:6,y:0,w:3,h:5}}],info:"<p>Conntrack errors.</p><p><b>IcmpError</b> - packets which could not be tracked due to error situation. <b>InsertFailed</b> - entries for which list insertion was attempted but failed (happens if the same entry is already present). <b>Drop</b> - packets dropped due to conntrack failure. Either new conntrack entry allocation failed, or protocol helper dropped the packet. <b>EarlyDrop</b> - dropped conntrack entries to make room for new ones, if maximum table size was reached.</p>",en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"netfilter.synproxy_syn_received":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total TCP SYN Received",desiredUnits:"SYNs",colors:o.default[3],layout:{x:9,y:0,w:3,h:5}}],info:"The number of initial TCP SYN packets received from clients.",en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"netfilter.synproxy_conn_reopened":{info:"The number of reopened connections by new TCP SYN packets directly from the TIME-WAIT state.",en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"netfilter.synproxy_cookies":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"SYN Proxy Cookie Stats",desiredUnits:"cookies",colors:o.default[4],layout:{x:0,y:5,w:3,h:5}}],info:"<p>SYNPROXY cookie statistics.</p><p><b>Valid</b>, <b>Invalid</b> - result of cookie validation in TCP ACK packets received from clients. <b>Retransmits</b> - TCP SYN packets retransmitted to the server. It happens when the client repeats TCP ACK and the connection to the server is not yet established.</p>",en:{instance:{one:"firewall",other:"firewalls"}},aggregationMethod:"sum"},"app.cpu_utilization":{info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user and kernel modes</a> (all cores).',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["app_group"],chartLibrary:"bars",title:"Top Apps by CPU",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:0,y:0,w:3,h:5}}],en:{instance:{one:"application",other:"applications"}}},"app.cpu_guest_utilization":{info:"The amount of time spent running a virtual CPU for a guest operating system (all cores).",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",en:{instance:{one:"application",other:"applications"}}},"app.cpu_context_switches":{info:"The number of CPU context switches. Voluntary context switches occur when a process yields control of the CPU to another process. Nonvoluntary context switches occur when the kernel preempts a process and gives control of the CPU to another process.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],en:{instance:{one:"application",other:"applications"}}},"app.mem_usage":{info:"Resident Set Size (RSS) is the amount of physical memory that is currently being used by the processes. This includes the process's code, data, stack, and shared libraries.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["app_group"],chartLibrary:"bars",title:"Top Apps by Memory",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:3,y:0,w:3,h:5}}],en:{instance:{one:"application",other:"applications"}}},"app.mem_private_usage":{info:"The amount of used memory, excluding shared memory.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",en:{instance:{one:"application",other:"applications"}}},"app.mem_page_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Minor" target="_blank">minor</a> and <a href="https://en.wikipedia.org/wiki/Page_fault#Major" target="_blank">major</a> page faults.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",en:{instance:{one:"application",other:"applications"}}},"app.vmem_usage":{info:'The amount of allocated virtual memory. Check <a href="https://github.com/netdata/netdata/tree/master/daemon#virtual-memory" target="_blank">this article</a> for more details.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",en:{instance:{one:"application",other:"applications"}}},"app.swap_usage":{info:"The amount of swapped-out virtual memory by anonymous private pages. This does not include shared swap memory.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",en:{instance:{one:"application",other:"applications"}}},"app.disk_physical_io":{info:"The amount of data that has been transferred to/from the storage layer. Actual physical disk I/O was required.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["app_group"],selectedDimensions:["reads"],chartLibrary:"bars",title:"Top Apps by Disk Reads",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["app_group"],selectedDimensions:["writes"],chartLibrary:"bars",title:"Top Apps by Disk Writes",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:9,y:0,w:3,h:5}}],en:{instance:{one:"application",other:"applications"}}},"app.disk_logical_io":{info:"The amount of data that has been transferred to/from the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required (the read/write operation might have been satisfied from pagecache).",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",en:{instance:{one:"application",other:"applications"}}},"app.processes":{info:'The number of <a href="https://en.wikipedia.org/wiki/Process_(computing)" target="_blank">processes</a>.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",en:{instance:{one:"application",other:"applications"}}},"app.threads":{info:'The number of <a href="https://en.wikipedia.org/wiki/Thread_(computing)" target="_blank">threads</a>.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],chartType:"stacked",en:{instance:{one:"application",other:"applications"}}},"app.fds_open_limit":{info:"Percentage of available file descriptors used.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["app_group"],en:{instance:{one:"application",other:"applications"}}},"app.fds_open":{info:"Number of file descriptors used.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["app_group"],en:{instance:{one:"application",other:"applications"}}},"app.uptime":{info:"The period of time within which at least one process in the group has been running.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["app_group"],en:{instance:{one:"application",other:"applications"}}},"app.uptime_summary":{info:"The shorted, average and longest uptime among processes in the group.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["app_group"],en:{instance:{one:"application",other:"applications"}}},"usergroup.cpu_utilization":{info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user and kernel modes</a> (all cores).',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["user_group"],chartLibrary:"bars",title:"Top Groups by CPU",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:0,y:0,w:3,h:5}}],en:{instance:{one:"group",other:"groups"}}},"usergroup.cpu_guest_utilization":{info:"The amount of time spent running a virtual CPU for a guest operating system (all cores).",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",en:{instance:{one:"group",other:"groups"}}},"usergroup.cpu_context_switches":{info:"The number of CPU context switches. Voluntary context switches occur when a process yields control of the CPU to another process. Nonvoluntary context switches occur when the kernel preempts a process and gives control of the CPU to another process.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],en:{instance:{one:"group",other:"groups"}}},"usergroup.mem_usage":{info:"Resident Set Size (RSS) is the amount of physical memory that is currently being used by the processes. This includes the process's code, data, stack, and shared libraries.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["user_group"],chartLibrary:"bars",title:"Top Groups by Memory",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:3,y:0,w:3,h:5}}],en:{instance:{one:"group",other:"groups"}}},"usergroup.mem_private_usage":{info:"The amount of used memory, excluding shared memory.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",en:{instance:{one:"group",other:"groups"}}},"usergroup.mem_page_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Minor" target="_blank">minor</a> and <a href="https://en.wikipedia.org/wiki/Page_fault#Major" target="_blank">major</a> page faults.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",en:{instance:{one:"group",other:"groups"}}},"usergroup.vmem_usage":{info:'The amount of allocated virtual memory. Check <a href="https://github.com/netdata/netdata/tree/master/daemon#virtual-memory" target="_blank">this article</a> for more details.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",en:{instance:{one:"group",other:"groups"}}},"usergroup.swap_usage":{info:"The amount of swapped-out virtual memory by anonymous private pages. This does not include shared swap memory.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",en:{instance:{one:"group",other:"groups"}}},"usergroup.disk_physical_io":{info:"The amount of data that has been transferred to/from the storage layer. Actual physical disk I/O was required.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["user_group"],selectedDimensions:["reads"],chartLibrary:"bars",title:"Top Groups by Disk Reads",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["user_group"],selectedDimensions:["writes"],chartLibrary:"bars",title:"Top Groups by Disk Writes",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:9,y:0,w:3,h:5}}],en:{instance:{one:"group",other:"groups"}}},"usergroup.disk_logical_io":{info:"The amount of data that has been transferred to/from the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required (the read/write operation might have been satisfied from pagecache).",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",en:{instance:{one:"group",other:"groups"}}},"usergroup.processes":{info:'The number of <a href="https://en.wikipedia.org/wiki/Process_(computing)" target="_blank">processes</a>.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",en:{instance:{one:"group",other:"groups"}}},"usergroup.threads":{info:'The number of <a href="https://en.wikipedia.org/wiki/Thread_(computing)" target="_blank">threads</a>.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],chartType:"stacked",en:{instance:{one:"group",other:"groups"}}},"usergroup.fds_open_limit":{info:"Percentage of available file descriptors used.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["user_group"],en:{instance:{one:"group",other:"groups"}}},"usergroup.fds_open":{info:"Number of file descriptors used.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user_group"],en:{instance:{one:"group",other:"groups"}}},"usergroup.uptime":{info:"The period of time within which at least one process in the group has been running.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["user_group"],en:{instance:{one:"group",other:"groups"}}},"usergroup.uptime_summary":{info:"The shorted, average and longest uptime among processes in the group.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["user_group"],en:{instance:{one:"group",other:"groups"}}},"user.cpu_utilization":{info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user and kernel modes</a> (all cores).',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["user"],chartLibrary:"bars",title:"Top Users by CPU",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:0,y:0,w:3,h:5}}],en:{instance:{one:"user",other:"users"}}},"user.cpu_guest_utilization":{info:"The amount of time spent running a virtual CPU for a guest operating system (all cores).",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",en:{instance:{one:"user",other:"users"}}},"user.cpu_context_switches":{info:"The number of CPU context switches. Voluntary context switches occur when a process yields control of the CPU to another process. Nonvoluntary context switches occur when the kernel preempts a process and gives control of the CPU to another process.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],en:{instance:{one:"user",other:"users"}}},"user.mem_usage":{info:"Resident Set Size (RSS) is the amount of physical memory that is currently being used by the processes. This includes the process's code, data, stack, and shared libraries.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["user"],chartLibrary:"bars",title:"Top Users by Memory",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:3,y:0,w:3,h:5}}],en:{instance:{one:"user",other:"users"}}},"user.mem_private_usage":{info:"The amount of used memory, excluding shared memory.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",en:{instance:{one:"user",other:"users"}}},"user.mem_page_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Minor" target="_blank">minor</a> and <a href="https://en.wikipedia.org/wiki/Page_fault#Major" target="_blank">major</a> page faults.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],en:{instance:{one:"user",other:"users"}}},"user.vmem_usage":{info:'The amount of allocated virtual memory. Check <a href="https://github.com/netdata/netdata/tree/master/daemon#virtual-memory" target="_blank">this article</a> for more details.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",en:{instance:{one:"user",other:"users"}}},"user.swap_usage":{info:"The amount of swapped-out virtual memory by anonymous private pages. This does not include shared swap memory.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",en:{instance:{one:"user",other:"users"}}},"user.disk_physical_io":{info:"The amount of data that has been transferred to/from the storage layer. Actual physical disk I/O was required.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["user"],selectedDimensions:["reads"],chartLibrary:"bars",title:"Top Users by Disk Reads",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["user"],selectedDimensions:["writes"],chartLibrary:"bars",title:"Top Users by Disk Writes",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:9,y:0,w:3,h:5}}],en:{instance:{one:"user",other:"users"}}},"user.disk_logical_io":{info:"The amount of data that has been transferred to/from the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required (the read/write operation might have been satisfied from pagecache).",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",en:{instance:{one:"user",other:"users"}}},"user.processes":{info:'The number of <a href="https://en.wikipedia.org/wiki/Process_(computing)" target="_blank">processes</a>.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",en:{instance:{one:"user",other:"users"}}},"user.threads":{info:'The number of <a href="https://en.wikipedia.org/wiki/Thread_(computing)" target="_blank">threads</a>.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],chartType:"stacked",en:{instance:{one:"user",other:"users"}}},"user.fds_open_limit":{info:"Percentage of available file descriptors used.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["user"],en:{instance:{one:"user",other:"users"}}},"user.fds_open":{info:"Number of file descriptors used.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["user"],en:{instance:{one:"user",other:"users"}}},"user.uptime":{info:"The period of time within which at least one process in the group has been running.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["user"],en:{instance:{one:"user",other:"users"}}},"user.uptime_summary":{info:"The shorted, average and longest uptime among processes in the group.",aggregationMethod:"avg",groupBy:["label"],groupByLabel:["user"],en:{instance:{one:"user",other:"users"}}},"apps.cpu":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Average CPU per Application",layout:{x:0,y:0,w:2.4,h:5}}],info:"Total CPU utilization per application.",en:{instance:{one:"system",other:"systems"}}},"groups.cpu":{mainheads:[{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Average CPU per Group",layout:{x:0,y:0,w:2.4,h:5}}],info:"Total CPU utilization (all cores). It includes user, system and guest time.",en:{instance:{one:"system",other:"systems"}}},"users.cpu":{mainheads:[{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Average CPU per User",layout:{x:0,y:0,w:2.4,h:5}}],info:"Total CPU utilization (all cores). It includes user, system and guest time.",en:{instance:{one:"system",other:"systems"}}},"apps.cpu_user":{aggregationMethod:"avg",info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user mode</a> (all cores).',en:{instance:{one:"system",other:"systems"}}},"groups.cpu_user":{aggregationMethod:"avg",info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user mode</a> (all cores).',en:{instance:{one:"system",other:"systems"}}},"users.cpu_user":{aggregationMethod:"avg",info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user mode</a> (all cores).',en:{instance:{one:"system",other:"systems"}}},"apps.cpu_system":{aggregationMethod:"avg",info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">kernel mode</a> (all cores).',en:{instance:{one:"system",other:"systems"}}},"groups.cpu_system":{aggregationMethod:"avg",info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">kernel mode</a> (all cores).',en:{instance:{one:"system",other:"systems"}}},"users.cpu_system":{aggregationMethod:"avg",info:'The amount of time the CPU was busy executing code in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">kernel mode</a> (all cores).',en:{instance:{one:"system",other:"systems"}}},"apps.cpu_guest":{aggregationMethod:"avg",info:"The amount of time spent running a virtual CPU for a guest operating system (all cores).",en:{instance:{one:"system",other:"systems"}}},"groups.cpu_guest":{aggregationMethod:"avg",info:"The amount of time spent running a virtual CPU for a guest operating system (all cores).",en:{instance:{one:"system",other:"systems"}}},"users.cpu_guest":{aggregationMethod:"avg",info:"The amount of time spent running a virtual CPU for a guest operating system (all cores).",en:{instance:{one:"system",other:"systems"}}},"apps.preads":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Disk reads per Application",layout:{x:4.8,y:0,w:2.4,h:5}}],info:"The amount of data that has been read from the storage layer. Actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"groups.preads":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Disk Reads per Group",layout:{x:4.8,y:0,w:2.4,h:5}}],info:"The amount of data that has been read from the storage layer. Actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"users.preads":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Disk Reads per User",layout:{x:4.8,y:0,w:2.4,h:5}}],info:"The amount of data that has been read from the storage layer. Actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"apps.pwrites":{mainheads:[{chartLibrary:"bars",title:"Total Disk Writes per Application",layout:{x:7.2,y:0,w:2.4,h:5}}],info:"The amount of data that has been written to the storage layer. Actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"groups.pwrites":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Disk Writes per Group",layout:{x:7.2,y:0,w:2.4,h:5}}],info:"The amount of data that has been written to the storage layer. Actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"users.pwrites":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Disk Writes per User",layout:{x:7.2,y:0,w:2.4,h:5}}],info:"The amount of data that has been written to the storage layer. Actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"apps.lreads":{info:"The amount of data that has been read from the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required (the read might have been satisfied from pagecache).",en:{instance:{one:"system",other:"systems"}}},"groups.lreads":{info:"The amount of data that has been read from the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required (the read might have been satisfied from pagecache).",en:{instance:{one:"system",other:"systems"}}},"users.lreads":{info:"The amount of data that has been read from the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required (the read might have been satisfied from pagecache).",en:{instance:{one:"system",other:"systems"}}},"apps.lwrites":{info:"The amount of data that has been written or shall be written to the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"groups.lwrites":{info:"The amount of data that has been written or shall be written to the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"users.lwrites":{info:"The amount of data that has been written or shall be written to the storage layer. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required.",en:{instance:{one:"system",other:"systems"}}},"apps.files":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Open Files per Application",layout:{x:9.6,y:0,w:2.4,h:5}}],info:"The number of open files and directories.",en:{instance:{one:"system",other:"systems"}}},"groups.files":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Open Files per Group",layout:{x:9.6,y:0,w:2.4,h:5}}],info:"The number of open files and directories.",en:{instance:{one:"system",other:"systems"}}},"users.files":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Open Files per User",layout:{x:9.6,y:0,w:2.4,h:5}}],info:"The number of open files and directories.",en:{instance:{one:"system",other:"systems"}}},"apps.mem":{info:"Real memory (RAM) used by applications. This does not include shared memory.",en:{instance:{one:"system",other:"systems"}}},"groups.mem":{info:"Real memory (RAM) used per user group. This does not include shared memory.",en:{instance:{one:"system",other:"systems"}}},"users.mem":{info:"Real memory (RAM) used per user. This does not include shared memory.",en:{instance:{one:"system",other:"systems"}}},"apps.rss":{info:"Applications Resident Set Size (RSS).",en:{instance:{one:"system",other:"systems"}},mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Memory per Application",layout:{x:2.4,y:0,w:2.4,h:5}}]},"groups.rss":{info:"Applications Resident Set Size (RSS) per user group.",en:{instance:{one:"system",other:"systems"}},mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Memory per Group",layout:{x:2.4,y:0,w:2.4,h:5}}]},"users.rss":{info:"Applications Resident Set Size (RSS) per user.",en:{instance:{one:"system",other:"systems"}},mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Memory per User",layout:{x:2.4,y:0,w:2.4,h:5}}]},"apps.vmem":{info:'Virtual memory allocated by applications. Check <a href="https://github.com/netdata/netdata/tree/master/daemon#virtual-memory" target="_blank">this article</a> for more information.',en:{instance:{one:"system",other:"systems"}}},"groups.vmem":{info:'Virtual memory allocated per user group since the Netdata restart. Please check <a href="https://github.com/netdata/netdata/tree/master/daemon#virtual-memory" target="_blank">this article</a> for more information.',en:{instance:{one:"system",other:"systems"}}},"users.vmem":{info:'Virtual memory allocated per user group since the Netdata restart. Please check <a href="https://github.com/netdata/netdata/tree/master/daemon#virtual-memory" target="_blank">this article</a> for more information.',en:{instance:{one:"system",other:"systems"}}},"apps.minor_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Minor" target="_blank">minor faults</a> which have not required loading a memory page from the disk. Minor page faults occur when a process needs data that is in memory and is assigned to another process. They share memory pages between multiple processes \u2013 no additional data needs to be read from disk to memory.',en:{instance:{one:"system",other:"systems"}}},"groups.minor_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Minor" target="_blank">minor faults</a> which have not required loading a memory page from the disk. Minor page faults occur when a process needs data that is in memory and is assigned to another process. They share memory pages between multiple processes \u2013 no additional data needs to be read from disk to memory.',en:{instance:{one:"system",other:"systems"}}},"users.minor_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Minor" target="_blank">minor faults</a> which have not required loading a memory page from the disk. Minor page faults occur when a process needs data that is in memory and is assigned to another process. They share memory pages between multiple processes \u2013 no additional data needs to be read from disk to memory.',en:{instance:{one:"system",other:"systems"}}},"apps.threads":{info:'The number of <a href="https://en.wikipedia.org/wiki/Thread_(computing)" target="_blank">threads</a>.',en:{instance:{one:"system",other:"systems"}}},"groups.threads":{info:'The number of <a href="https://en.wikipedia.org/wiki/Thread_(computing)" target="_blank">threads</a>.',en:{instance:{one:"system",other:"systems"}}},"users.threads":{info:'The number of <a href="https://en.wikipedia.org/wiki/Thread_(computing)" target="_blank">threads</a>.',en:{instance:{one:"system",other:"systems"}}},"apps.processes":{info:'The number of <a href="https://en.wikipedia.org/wiki/Process_(computing)" target="_blank">processes</a>.',en:{instance:{one:"system",other:"systems"}}},"groups.processes":{info:'The number of <a href="https://en.wikipedia.org/wiki/Process_(computing)" target="_blank">processes</a>.',en:{instance:{one:"system",other:"systems"}}},"users.processes":{info:'The number of <a href="https://en.wikipedia.org/wiki/Process_(computing)" target="_blank">processes</a>.',en:{instance:{one:"system",other:"systems"}}},"apps.uptime":{aggregationMethod:"min",info:"The period of time within which at least one process in the group has been running.",en:{instance:{one:"system",other:"systems"}}},"groups.uptime":{aggregationMethod:"min",info:"The period of time within which at least one process in the group has been running.",en:{instance:{one:"system",other:"systems"}}},"users.uptime":{aggregationMethod:"min",info:"The period of time within which at least one process in the group has been running.",en:{instance:{one:"system",other:"systems"}}},"apps.uptime_min":{info:"The shortest uptime among processes in the group.",en:{instance:{one:"system",other:"systems"}}},"groups.uptime_min":{info:"The shortest uptime among processes in the group.",en:{instance:{one:"system",other:"systems"}}},"users.uptime_min":{info:"The shortest uptime among processes in the group.",en:{instance:{one:"system",other:"systems"}}},"apps.uptime_avg":{info:"The average uptime of processes in the group.",en:{instance:{one:"system",other:"systems"}}},"groups.uptime_avg":{info:"The average uptime of processes in the group.",en:{instance:{one:"system",other:"systems"}}},"users.uptime_avg":{info:"The average uptime of processes in the group.",en:{instance:{one:"system",other:"systems"}}},"apps.uptime_max":{info:"The longest uptime among processes in the group.",en:{instance:{one:"system",other:"systems"}}},"groups.uptime_max":{info:"The longest uptime among processes in the group.",en:{instance:{one:"system",other:"systems"}}},"users.uptime_max":{info:"The longest uptime among processes in the group.",en:{instance:{one:"system",other:"systems"}}},"apps.pipes":{info:'The number of open <a href="https://en.wikipedia.org/wiki/Anonymous_pipe#Unix" target="_blank">pipes</a>. A pipe is a unidirectional data channel that can be used for interprocess communication.',en:{instance:{one:"system",other:"systems"}}},"groups.pipes":{info:'The number of open <a href="https://en.wikipedia.org/wiki/Anonymous_pipe#Unix" target="_blank">pipes</a>. A pipe is a unidirectional data channel that can be used for interprocess communication.',en:{instance:{one:"system",other:"systems"}}},"users.pipes":{info:'The number of open <a href="https://en.wikipedia.org/wiki/Anonymous_pipe#Unix" target="_blank">pipes</a>. A pipe is a unidirectional data channel that can be used for interprocess communication.',en:{instance:{one:"system",other:"systems"}}},"apps.swap":{info:"The amount of swapped-out virtual memory by anonymous private pages. This does not include shared swap memory.",en:{instance:{one:"system",other:"systems"}}},"groups.swap":{info:"The amount of swapped-out virtual memory by anonymous private pages. This does not include shared swap memory.",en:{instance:{one:"system",other:"systems"}}},"users.swap":{info:"The amount of swapped-out virtual memory by anonymous private pages. This does not include shared swap memory.",en:{instance:{one:"system",other:"systems"}}},"apps.major_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Major" target="_blank">major faults</a> which have required loading a memory page from the disk. Major page faults occur because of the absence of the required page from the RAM. They are expected when a process starts or needs to read in additional data and in these cases do not indicate a problem condition. However, a major page fault can also be the result of reading memory pages that have been written out to the swap file, which could indicate a memory shortage.',en:{instance:{one:"system",other:"systems"}}},"groups.major_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Major" target="_blank">major faults</a> which have required loading a memory page from the disk. Major page faults occur because of the absence of the required page from the RAM. They are expected when a process starts or needs to read in additional data and in these cases do not indicate a problem condition. However, a major page fault can also be the result of reading memory pages that have been written out to the swap file, which could indicate a memory shortage.',en:{instance:{one:"system",other:"systems"}}},"users.major_faults":{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Major" target="_blank">major faults</a> which have required loading a memory page from the disk. Major page faults occur because of the absence of the required page from the RAM. They are expected when a process starts or needs to read in additional data and in these cases do not indicate a problem condition. However, a major page fault can also be the result of reading memory pages that have been written out to the swap file, which could indicate a memory shortage.',en:{instance:{one:"system",other:"systems"}}},"apps.sockets":{info:"The number of open sockets. Sockets are a way to enable inter-process communication between programs running on a server, or between programs running on separate servers. This includes both network and UNIX sockets.",en:{instance:{one:"system",other:"systems"}}},"groups.sockets":{info:"The number of open sockets. Sockets are a way to enable inter-process communication between programs running on a server, or between programs running on separate servers. This includes both network and UNIX sockets.",en:{instance:{one:"system",other:"systems"}}},"users.sockets":{info:"The number of open sockets. Sockets are a way to enable inter-process communication between programs running on a server, or between programs running on separate servers. This includes both network and UNIX sockets.",en:{instance:{one:"system",other:"systems"}}},"apps.file_open":{info:'Number of calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to open files</a>. Netdata gives a summary for this chart in <a href="#menu_filesystem_submenu_file_access">file access</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_file_open">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_file_open"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.file_open_error":{info:'Number of failed calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to open files</a>. Netdata gives a summary for this chart in <a href="#menu_filesystem_submenu_file_access">file access</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_file_open_error">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_file_open_error"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.file_closed":{info:'Number of calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to close files</a>. Netdata gives a summary for this chart in <a href="#menu_filesystem_submenu_file_access">file access</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_file_closed">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_file_closed"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.file_close_error":{info:'Number of failed calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to close files</a>. Netdata gives a summary for this chart in <a href="#menu_filesystem_submenu_file_access">file access</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_file_close_error">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_file_close_error"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.file_deleted":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS unlinker function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_unlink">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_unlink">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_unlink"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_write_call":{info:'Number of successful calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS writer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_write">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_write"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_write_error":{info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS writer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_write_error">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_write_error"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_read_call":{info:'Number of successful calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS reader function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_read">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_read"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_read_error":{info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS reader function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_read_error">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_read_error"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_write_bytes":{info:'Total of bytes successfully written using the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS writer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io_bytes">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_write_bytes">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_write_bytes"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_read_bytes":{info:'Total of bytes successfully written using the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS reader function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_io_bytes">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_read_bytes">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_read_bytes"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_fsync":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS syncer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_sync">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_sync">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_sync"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_fsync_error":{info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS syncer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_sync_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_sync_error">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_sync_error"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_open":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS opener function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_open">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_open">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_open"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_open_error":{info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS opener function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_open_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_open_error">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_open_error"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_create":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS creator function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_create">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_create">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_create"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.vfs_create_error":{info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS creator function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_vfs_create_error">Virtual File System</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows virtual file system per <a href="#ebpf_services_vfs_create_error">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_vfs_create_error"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.process_create":{info:'Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#processes" target="_blank">a function</a> that starts a process is called. Netdata gives a summary for this chart in <a href="#ebpf_system_process_thread">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_services_process_create">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_process_create"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.thread_create":{info:'Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#processes" target="_blank">a function</a> that starts a thread is called. Netdata gives a summary for this chart in <a href="#ebpf_system_process_thread">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_services_thread_create">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_thread_create"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.task_exit":{info:'Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#process-exit" target="_blank">a function</a> responsible for closing tasks is called. Netdata gives a summary for this chart in <a href="#ebpf_system_process_exit">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_services_process_exit">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_process_exit"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.task_close":{info:'Number of times <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#process-exit" target="_blank">a function</a> responsible for releasing tasks is called. Netdata gives a summary for this chart in <a href="#ebpf_system_process_exit">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_services_task_releease">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_task_release"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.task_error":{info:'Number of errors to create a new <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#process-exit" target="_blank">task</a>. Netdata gives a summary for this chart in <a href="#ebpf_system_task_error">Process</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows process per <a href="#ebpf_services_task_error">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_task_error"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.outbound_conn_v4":{info:'Number of calls to IPV4 TCP function responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-outbound-connections" target="_blank">starting connections</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_outbound_conn">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows outbound connections per <a href="#ebpf_services_outbound_conn_ipv4">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_outbound_conn_ipv4"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.outbound_conn_v6":{info:'Number of calls to IPV6 TCP function responsible for <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-outbound-connections" target="_blank">starting connections</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_outbound_conn">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows outbound connections per <a href="#ebpf_services_outbound_conn_ipv6">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_outbound_conn_ipv6"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.total_bandwidth_sent":{info:'Total bytes sent with <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">UDP</a> internal functions. Netdata gives a summary for this chart in <a href="#ebpf_global_bandwidth_tcp_bytes">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows bandwidth per <a href="#ebpf_services_bandwidth_sent">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_bandwidth_sent"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.total_bandwidth_recv":{info:'Total bytes received with <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">UDP</a> internal functions. Netdata gives a summary for this chart in <a href="#ebpf_global_bandwidth_tcp_bytes">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows bandwidth per <a href="#ebpf_services_bandwidth_received">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_bandwidth_received"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.bandwidth_tcp_send":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP</a> functions responsible to send data. Netdata gives a summary for this chart in <a href="#ebpf_global_tcp_bandwidth_call">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows TCP calls per <a href="#ebpf_services_bandwidth_tcp_sent">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_bandwidth_tcp_sent"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.bandwidth_tcp_recv":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-bandwidth" target="_blank">TCP</a> functions responsible to receive data. Netdata gives a summary for this chart in <a href="#ebpf_global_tcp_bandwidth_call">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows TCP calls per <a href="#ebpf_services_bandwidth_tcp_received">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_bandwidth_tcp_received"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.bandwidth_tcp_retransmit":{info:'Number of times a <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#tcp-retransmit" target="_blank">TCP</a> packet was retransmitted. Netdata gives a summary for this chart in <a href="#ebpf_global_tcp_retransmit">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows TCP calls per <a href="#ebpf_services_tcp_retransmit">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_tcp_retransmit"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.bandwidth_udp_send":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">UDP</a> functions responsible to send data. Netdata gives a summary for this chart in <a href="#ebpf_global_udp_bandwidth_call">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows UDP calls per <a href="#ebpf_services_udp_sendmsg">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_udp_sendmsg"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.bandwidth_udp_recv":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#udp-functions" target="_blank">UDP</a> functions responsible to receive data. Netdata gives a summary for this chart in <a href="#ebpf_global_udp_bandwidth_call">Network Stack</a>. When the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows UDP calls per <a href="#ebpf_services_udp_recv">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_udp_recv"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.cachestat_ratio":{aggregationMethod:"avg",info:'The <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-ratio" target="_blank">ratio</a> shows the percentage of data accessed directly in memory. Netdata gives a summary for this chart in <a href="#menu_mem_submenu_page_cache">Memory</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows page cache hit per <a href="#ebpf_services_cachestat_ratio">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_cachestat_ratio"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.cachestat_dirties":{info:'Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#dirty-pages" target="_blank">modified pages</a> in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_cachestat_dirty">Memory</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows page cache hit per <a href="#ebpf_services_cachestat_dirties">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_cachestat_dirties"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.cachestat_hits":{info:'Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-hits" target="_blank">access</a> to data in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_cachestat_hits">Memory</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows page cache hit per <a href="#ebpf_services_cachestat_hits">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_cachestat_hits"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.cachestat_misses":{info:'Number of <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#page-cache-misses" target="_blank">access</a> to data was not present in <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_cachestat_misses">Memory</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows page cache misses per <a href="#ebpf_services_cachestat_misses">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_cachestat_misses"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.dc_hit_ratio":{aggregationMethod:"avg",info:'Percentage of file accesses that were present in the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#directory-cache" target="_blank">directory cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_dc_hit_ratio">directory cache</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows directory cache per <a href="#ebpf_services_dc_hit">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_dc_hit"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.dc_reference":{info:'Number of times a file is accessed inside <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#directory-cache" target="_blank">directory cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_dc_reference">directory cache</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows directory cache per <a href="#ebpf_services_dc_reference">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_dc_reference"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.dc_not_cache":{info:'Number of times a file is accessed in the file system, because it is not present inside the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#directory-cache" target="_blank">directory cache</a>. Netdata gives a summary for this chart in <a href="#ebpf_dc_reference">directory cache</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows directory cache per <a href="#ebpf_services_dc_not_cache">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_dc_not_cache"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.dc_not_found":{info:'Number of times a file was not found on the file system. Netdata gives a summary for this chart in <a href="#ebpf_dc_reference">directory cache</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows directory cache per <a href="#ebpf_services_dc_not_found">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_dc_not_found"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.swap_read_call":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#swap">swap reader function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_swap">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows swap metrics per <a href="#ebpf_services_swap_read">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_swap_read"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.swap_write_call":{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#swap">swap writer function</a>. Netdata gives a summary for this chart in <a href="#ebpf_global_swap">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows swap metrics per <a href="#ebpf_services_swap_write">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_swap_write"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.shmget_call":{info:'Number of calls to <b>shmget</b>. Netdata gives a summary for this chart in <a href="#ebpf_global_shm">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows shared memory metrics per <a href="#ebpf_services_shm_get">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_shm_get"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.shmat_call":{info:'Number of calls to <b>shmat</b>. Netdata gives a summary for this chart in <a href="#ebpf_global_shm">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows shared memory metrics per <a href="#ebpf_services_shm_at">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_shm_at"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.shmdt_call":{info:'Number of calls to <b>shmdt</b>. Netdata gives a summary for this chart in <a href="#ebpf_global_shm">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows shared memory metrics per <a href="#ebpf_services_shm_dt">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_shm_dt"></div>',en:{instance:{one:"system",other:"systems"}}},"apps.shmctl_call":{info:'Number of calls to <b>shmctl</b>. Netdata gives a summary for this chart in <a href="#ebpf_global_shm">System Overview</a>, and when the integration is <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">enabled</a>, Netdata shows shared memory metrics per <a href="#ebpf_services_shm_ctl">cgroup (systemd Services)</a>.'+y+'<div id="ebpf_apps_shm_ctl"></div>',en:{instance:{one:"system",other:"systems"}}},"tc.qos":{info:"Network Interface traffic per QoS class",family:"traffic",en:{instance:{one:"interface",other:"interfaces"}},aggregationMethod:"sum",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Traffic per QoS Class",layout:{x:0,y:0,w:6,h:5}}]},"tc.qos_packets":{family:"packets",info:"Network Interface packets per QoS class",en:{instance:{one:"interface",other:"interfaces"}},aggregationMethod:"sum"},"tc.qos_dropped":{family:"drops",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Packets dropped per QoS Class",layout:{x:6,y:0,w:6,h:5}}],info:"Network Interface packets dropped per QoS class",en:{instance:{one:"interface",other:"interfaces"}},aggregationMethod:"sum"},"tc.qos_tokens":{family:"tokens",info:"Class Tokens.",en:{instance:{one:"interface",other:"interfaces"}}},"tc.qos_ctokens":{family:"tokens",info:"Class cTokens.",en:{instance:{one:"interface",other:"interfaces"}}},"net.net":{family:"traffic",aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Inbound",selectedDimensions:["received"],colors:o.default[0],valueRange:[0,null],layout:{x:0,y:0,w:3,h:5}},{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Outbound",selectedDimensions:["sent"],colors:o.default[1],valueRange:[0,null],layout:{x:3,y:0,w:3,h:5}}],info:r,en:{instance:{one:"interface",other:"interfaces"}}},"net.packets":{family:"packets",aggregationMethod:"sum",info:i,en:{instance:{one:"interface",other:"interfaces"}}},"net.errors":{family:"errors",aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Errors",desiredUnits:"errors",colors:o.default[1],layout:{x:6,y:0,w:3,h:5}}],info:c,en:{instance:{one:"interface",other:"interfaces"}}},"net.fifo":{family:"errors",info:l,en:{instance:{one:"interface",other:"interfaces"}}},"net.drops":{family:"drops",aggregationMethod:"sum",mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Drops",desiredUnits:"drops",colors:o.default[2],layout:{x:9,y:0,w:3,h:5}}],info:h,en:{instance:{one:"interface",other:"interfaces"}}},"net.compressed":{family:"compression",info:d,en:{instance:{one:"interface",other:"interfaces"}}},"net.events":{family:"errors",info:u,en:{instance:{one:"interface",other:"interfaces"}}},"net.duplex":{family:"duplex",info:p,en:{instance:{one:"interface",other:"interfaces"}}},"net.operstate":{family:"state",info:m,en:{instance:{one:"interface",other:"interfaces"}}},"net.carrier":{family:"state",info:f,en:{instance:{one:"interface",other:"interfaces"}}},"net.speed":{family:"speed",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"gauge",title:"Maximum Network Speed",desiredUnits:"Mbps",colors:o.default[3],layout:{x:0,y:5,w:3,h:5}}],info:g,en:{instance:{one:"interface",other:"interfaces"}}},"net.mtu":{family:"mtu",aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"easypiechart",title:"Minimum Network MTU",desiredUnits:"bytes",colors:o.default[4],layout:{x:3,y:5,w:3,h:5}}],info:b,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_net":{mainheads:[{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"easypiechart",title:"Total Network Inbound",selectedDimensions:["received"],colors:o.default[0],layout:{x:4,y:10,w:2,h:5}},{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"easypiechart",title:"Total Network Outbound",selectedDimensions:["sent"],colors:o.default[1],layout:{x:6,y:10,w:2,h:5}}],info:r,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_packets":{info:i,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_errors":{heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Errors",desiredUnits:"errors",colors:o.default[1],layout:{x:15,y:0,w:3,h:5}}],info:c,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_fifo":{info:l,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_drops":{heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Drops",desiredUnits:"drops",colors:o.default[2],layout:{x:9,y:0,w:3,h:5}}],info:h,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_compressed":{info:d,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_events":{info:u,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_duplex":{info:p,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_operstate":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Interface Operational States",layout:{x:10,y:10,w:2,h:5}}],info:m,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_carrier":{info:f,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_speed":{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"gauge",title:"Maxinum Network Speed",desiredUnits:"Mbps",colors:o.default[3],layout:{x:0,y:5,w:3,h:5}}],info:g,en:{instance:{one:"interface",other:"interfaces"}}},"cgroup.net_mtu":{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",groupingMethod:"min",chartLibrary:"easypiechart",title:"Minimum Network MTU",desiredUnits:"bytes",colors:o.default[4],layout:{x:8,y:10,w:2,h:5}}],info:b,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_net":{heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Inbound",selectedDimensions:["received"],colors:o.default[0],layout:{x:0,y:0,w:2,h:5}},{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Outbound",selectedDimensions:["sent"],colors:o.default[1],layout:{x:2,y:0,w:3,h:5}}],info:r,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_packets":{info:i,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_errors":{heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Errors",desiredUnits:"errors",colors:o.default[1],layout:{x:6,y:0,w:2,h:5}}],info:c,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_fifo":{info:l,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_drops":{heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Drops",desiredUnits:"drops",colors:o.default[2],layout:{x:8,y:0,w:2,h:5}}],info:h,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_compressed":{info:d,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_events":{info:u,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_operstate":{info:m,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_duplex":{info:p,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_carrier":{info:f,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_speed":{heads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"gauge",title:"Maxinum Network Speed",desiredUnits:"Mbps",colors:o.default[3],layout:{x:10,y:5,w:2,h:5}}],info:g,en:{instance:{one:"interface",other:"interfaces"}}},"k8s.cgroup.net_mtu":{heads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"easypiechart",title:"Minimum Network MTU",desiredUnits:"bytes",colors:o.default[4],layout:{x:4,y:0,w:2,h:5}}],info:b,en:{instance:{one:"interface",other:"interfaces"}}},"docker.containers_state":{en:{instance:{one:"system",other:"systems"}}},"docker.container_state":{en:{instance:{one:"container",other:"containers"}},mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Docker Container States",desiredUnits:"containers",layout:{x:0,y:0,w:3,h:5}}]},"docker.container_health_status":{en:{instance:{one:"container",other:"containers"}},mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Docker Container Health Status",desiredUnits:"containers",layout:{x:3,y:0,w:3,h:5}}]},"docker.healthy_containers":{en:{instance:{one:"system",other:"systems"}}},"docker.unhealthy_containers":{en:{instance:{one:"system",other:"systems"}}},"docker.images":{en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,colors:o.default[6],title:"Total Docker Images",desiredUnits:"Images",layout:{x:6,y:0,w:3,h:5}}]},"docker.images_size":{en:{instance:{one:"system",other:"systems"}},mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"Total Images Size",layout:{x:9,y:0,w:3,h:5}}]},"wireless.link_quality":{family:"quality",aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Wireless Link Quality"}],info:"Overall quality of the link. May be based on the level of contention or interference, the bit or frame error rate, how good the received signal is, some timing synchronisation, or other hardware metric.",en:{instance:{one:"interface",other:"interfaces"}}},"wireless.signal_level":{family:"signal",aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Signal Level"}],info:'Received signal strength (<a href="https://en.wikipedia.org/wiki/Received_signal_strength_indication" target="_blank">RSSI</a>).',en:{instance:{one:"interface",other:"interfaces"}}},"wireless.noise_level":{family:"noise",aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Noise Level"}],info:"Background noise level (when no packet is transmitted).",en:{instance:{one:"interface",other:"interfaces"}}},"wireless.discarded_packets":{family:"errors",mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Discarded Packets"}],info:"<p>The number of discarded packets.</p></p><b>NWID</b> - received packets with a different NWID or ESSID. Used to detect configuration problems or adjacent network existence (on the same frequency). <b>Crypt</b> - received packets that the hardware was unable to code/encode. This can be used to detect invalid encryption settings. <b>Frag</b> - received packets for which the hardware was not able to properly re-assemble the link layer fragments (most likely one was missing). <b>Retry</b> - packets that the hardware failed to deliver. Most MAC protocols will retry the packet a number of times before giving up. <b>Misc</b> - other packets lost in relation with specific wireless operations.</p>",en:{instance:{one:"interface",other:"interfaces"}}},"wireless.missed_beacons":{family:"errors",info:'The number of periodic <a href="https://en.wikipedia.org/wiki/Beacon_frame" target="_blank">beacons</a> from the Cell or the Access Point have been missed. Beacons are sent at regular intervals to maintain the cell coordination, failure to receive them usually indicates that the card is out of range.',en:{instance:{one:"interface",other:"interfaces"}}},"ib.bytes":{info:"The amount of traffic transferred by the port."},"ib.packets":{info:"The number of packets transferred by the port."},"ib.errors":{info:"The number of errors encountered by the port."},"ib.hwerrors":{info:"The number of hardware errors encountered by the port."},"ib.hwpackets":{info:"The number of hardware packets transferred by the port."},"netfilter.sockets":{en:{instance:{one:"firewall",other:"firewalls"}},colors:o.default[7],heads:[]},"netfilter.new":{en:{instance:{one:"firewall",other:"firewalls"}},heads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"New Connections",selectedDimensions:["new"],colors:o.default[19]}]},"ipvs.sockets":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Created Connections",layout:{x:6,y:0,w:4,h:5},colors:o.default[12]}],info:"Total created connections for all services and their servers. To see the IPVS connection table, run <b>ipvsadm -Lnc</b>.",en:{instance:{one:"IPVS server",other:"IPVS servers"}}},"ipvs.packets":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total Received Packets",layout:{x:9,y:0,w:2,h:5},colors:o.default[2]},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total Sent Packets",layout:{x:12,y:0,w:2,h:5},colors:o.default[1]}],info:"Total transferred packets for all services and their servers.",en:{instance:{one:"IPVS server",other:"IPVS servers"}}},"ipvs.net":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total Received Bandwidth",layout:{x:0,y:0,w:2,h:5},colors:o.default[2]},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total Sent Bandwidth",layout:{x:3,y:0,w:2,h:5},colors:o.default[1]}],info:"Total network traffic for all services and their servers.",en:{instance:{one:"IPVS server",other:"IPVS servers"}}},"disk.util":{family:"utilization",aggregationMethod:"avg",colors:o.default[5],mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",chartLibrary:"gauge",title:"Utilization",colors:o.default[0],valueRange:[0,100],layout:{x:0,y:5,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",title:"Top Disks by Utilization",layout:{x:3,y:5,w:3,h:5}}],info:"Disk Utilization measures the amount of time the disk was busy with something. This is not related to its performance. 100% means that the system always had an outstanding operation on the disk. Keep in mind that depending on the underlying technology of the disk, 100% here may or may not be an indication of congestion.",en:{instance:{one:"disk",other:"disks"}}},"disk.busy":{family:"utilization",aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Utilization",colors:o.default[0],valueRange:[0,100],layout:{x:6,y:10,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",title:"Top Disks by Busy Time",layout:{x:9,y:10,w:3,h:5}}],colors:o.default[4],info:"Disk Busy Time measures the amount of time the disk was busy with something.",en:{instance:{one:"disk",other:"disks"}}},"disk.backlog":{family:"utilization",aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Average Disk Backlog",colors:o.default[12],layout:{x:6,y:5,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",title:"Top Disks by Backlog",layout:{x:9,y:5,w:3,h:5}}],colors:o.default[8],info:"Backlog is an indication of the duration of pending disk operations. On every I/O event the system is multiplying the time spent doing I/O since the last update of this field with the number of pending operations. While not accurate, this metric can provide an indication of the expected completion time of the operations in progress.",en:{instance:{one:"disk",other:"disks"}}},"disk.io":{family:"io",info:"The amount of data transferred to and from disk.",en:{instance:{one:"disk",other:"disks"}}},"disk_ext.io":{family:"io",info:"The amount of discarded data that are no longer in use by a mounted file system.",en:{instance:{one:"disk",other:"disks"}}},"disk.ops":{family:"iops",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Read IOPS",selectedDimensions:["reads"],colors:o.default[2],layout:{x:0,y:0,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",selectedDimensions:["reads"],title:"Top Disks by Read IOPS",layout:{x:3,y:0,w:3,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Write IOPS",selectedDimensions:["writes"],colors:o.default[1],layout:{x:6,y:0,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",selectedDimensions:["writes"],title:"Top Disks by Write IOPS",layout:{x:9,y:0,w:3,h:5}}],info:"Completed disk I/O operations. Keep in mind the number of operations requested might be higher, since the system is able to merge adjacent to each other (see merged operations chart).",en:{instance:{one:"disk",other:"disks"}},dimensionsOnNonDimensionGrouping:["reads"]},"disk_ext.ops":{family:"iops",info:"<p>The number (after merges) of completed discard/flush requests.</p><p><b>Discard</b> commands inform disks which blocks of data are no longer considered to be in use and therefore can be erased internally. They are useful for solid-state drivers (SSDs) and thinly-provisioned storage. Discarding/trimming enables the SSD to handle garbage collection more efficiently, which would otherwise slow future write operations to the involved blocks down.</p><p><b>Flush</b> operations transfer all modified in-core data (i.e., modified buffer cache pages) to the disk device so that all changed information can be retrieved even if the system crashes or is rebooted. Flush requests are executed by disks. Flush requests are not tracked for partitions. Before being merged, flush operations are counted as writes.</p>",en:{instance:{one:"disk",other:"disks"}}},"disk.qops":{family:"utilization",mainheads:[{"group_by[0]":["selected"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Average Disk Current I/O Operations",colors:o.default[12],layout:{x:0,y:10,w:3,h:5}},{"group_by[0]":["instance"],chartLibrary:"bars",title:"Top Disks by Current I/O Operations",layout:{x:3,y:10,w:3,h:5}}],info:"I/O operations currently in progress. This metric is a snapshot - it is not an average over the last interval.",en:{instance:{one:"disk",other:"disks"}}},"disk.iotime":{family:"iotime",aggregationMethod:"avg",info:"The sum of the duration of all completed I/O operations. This number can exceed the interval if the disk is able to execute I/O operations in parallel.",en:{instance:{one:"disk",other:"disks"}},dimensionsOnNonDimensionGrouping:["reads"]},"disk_ext.iotime":{family:"iotime",aggregationMethod:"avg",info:"The sum of the duration of all completed discard/flush operations. This number can exceed the interval if the disk is able to execute discard/flush operations in parallel.",en:{instance:{one:"disk",other:"disks"}},dimensionsOnNonDimensionGrouping:["reads"]},"disk.mops":{family:"iops",info:"The number of merged disk operations. The system is able to merge adjacent I/O operations, for example two 4KB reads can become one 8KB read before given to disk.",en:{instance:{one:"disk",other:"disks"}},dimensionsOnNonDimensionGrouping:["reads"]},"disk_ext.mops":{family:"iops",info:"The number of merged discard disk operations. Discard operations which are adjacent to each other may be merged for efficiency.",en:{instance:{one:"disk",other:"disks"}},dimensionsOnNonDimensionGrouping:["reads"]},"disk.svctm":{family:"iotime",aggregationMethod:"avg",info:"The average service time for completed I/O operations. This metric is calculated using the total busy time of the disk and the number of completed operations. If the disk is able to execute multiple parallel operations the reporting average service time will be misleading.",en:{instance:{one:"disk",other:"disks"}},dimensionsOnNonDimensionGrouping:["svctm"]},"disk.latency_io":{family:"latency",aggregationMethod:"avg",info:'Disk I/O <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#disk-latency" target="_blank">latency</a> is the time it takes for an I/O request to be completed. Disk chart has a relationship with <a href="#filesystem">Filesystem</a> charts. This chart is based on the <a href="https://github.com/cloudflare/ebpf_exporter/blob/master/examples/bio-tracepoints.yaml" target="_blank">bio_tracepoints</a> tool of the ebpf_exporter.'+y,en:{instance:{one:"disk",other:"disks"}}},"disk.avgsz":{family:"size",info:"The average I/O operation size.",en:{instance:{one:"disk",other:"disks"}}},"disk_ext.avgsz":{family:"size",info:"The average discard operation size.",en:{instance:{one:"disk",other:"disks"}}},"disk.await":{family:"iotime",aggregationMethod:"avg",info:"The average time for I/O requests issued to the device to be served. This includes the time spent by the requests in queue and the time spent servicing them.",en:{instance:{one:"disk",other:"disks"}}},"disk_ext.await":{family:"iowait",aggregationMethod:"avg",info:"The average time for discard/flush requests issued to the device to be served. This includes the time spent by the requests in queue and the time spent servicing them.",en:{instance:{one:"disk",other:"disks"}}},"disk.space":{family:"utilization",mainheads:[{chartLibrary:"d3pie",title:"Disk Space Usage",layout:{x:0,y:0,w:3,h:5}}],info:"Disk space utilization. reserved for root is automatically reserved by the system to prevent the root user from getting out of space.",en:{instance:{one:"mount",other:"mounts"}}},"disk.inodes":{family:"inodes",mainheads:[{chartLibrary:"d3pie",title:"Disk Files Usage",layout:{x:3,y:0,w:3,h:5}}],info:"Inodes (or index nodes) are filesystem objects (e.g. files and directories). On many types of file system implementations, the maximum number of inodes is fixed at filesystem creation, limiting the maximum number of files the filesystem can hold. It is possible for a device to run out of inodes. When this happens, new files cannot be created on the device, even though there may be free space available.",en:{instance:{one:"mount",other:"mounts"}}},"disk.bcache_hit_ratio":{family:"cache",aggregationMethod:"avg",info:"<p><b>Bcache (block cache)</b> is a cache in the block layer of Linux kernel, which is used for accessing secondary storage devices. It allows one or more fast storage devices, such as flash-based solid-state drives (SSDs), to act as a cache for one or more slower storage devices, such as hard disk drives (HDDs).</p><p>Percentage of data requests that were fulfilled right from the block cache. Hits and misses are counted per individual IO as bcache sees them. A partial hit is counted as a miss.</p>",en:{instance:{one:"disk",other:"disks"}}},"disk.bcache_rates":{family:"cache",aggregationMethod:"avg",info:"Throttling rates. To avoid congestions bcache tracks latency to the cache device, and gradually throttles traffic if the latency exceeds a threshold. If the writeback percentage is nonzero, bcache tries to keep around this percentage of the cache dirty by throttling background writeback and using a PD controller to smoothly adjust the rate.",en:{instance:{one:"disk",other:"disks"}}},"disk.bcache_size":{family:"cache",info:"The amount of dirty data for this backing device in the cache.",en:{instance:{one:"disk",other:"disks"}}},"disk.bcache_usage":{family:"cache",aggregationMethod:"avg",info:"The percentage of cache device which does not contain dirty data, and could potentially be used for writeback.",en:{instance:{one:"disk",other:"disks"}}},"disk.bcache_cache_read_races":{family:"cache",info:"<b>Read races</b> happen when a bucket was reused and invalidated while data was being read from the cache. When this occurs the data is reread from the backing device. <b>IO errors</b> are decayed by the half life. If the decaying count reaches the limit, dirty data is written out and the cache is disabled.",en:{instance:{one:"disk",other:"disks"}}},"disk.bcache":{family:"cache",info:"Hits and misses are counted per individual IO as bcache sees them; a partial hit is counted as a miss. Collisions happen when data was going to be inserted into the cache from a cache miss, but raced with a write and data was already present. Cache miss reads are rounded up to the readahead size, but without overlapping existing cache entries.",en:{instance:{one:"disk",other:"disks"}}},"disk.bcache_bypass":{family:"cache",info:"Hits and misses for IO that is intended to skip the cache.",en:{instance:{one:"disk",other:"disks"}}},"disk.bcache_cache_alloc":{family:"cache",aggregationMethod:"avg",info:"<p>Working set size.</p><p><b>Unused</b> is the percentage of the cache that does not contain any data. <b>Dirty</b> is the data that is modified in the cache but not yet written to the permanent storage. <b>Clean</b> data matches the data stored on the permanent storage. <b>Metadata</b> is bcache's metadata overhead.</p>",en:{instance:{one:"disk",other:"disks"}}},"nfs.net":{info:"The number of received UDP and TCP packets.",mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total received packets"}],en:{instance:{one:"NFS client",other:"NFS clients"}}},"nfs.rpc":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"RPC Statistics"}],info:"<p>Remote Procedure Call (RPC) statistics.</p></p><b>Calls</b> - all RPC calls. <b>Retransmits</b> - retransmitted calls. <b>AuthRefresh</b> - authentication refresh calls (validating credentials with the server).</p>",en:{instance:{one:"NFS client",other:"NFS clients"}}},"nfs.proc2":{info:'NFSv2 RPC calls. The individual metrics are described in <a href="https://datatracker.ietf.org/doc/html/rfc1094#section-2.2" target="_blank">RFC1094</a>.',en:{instance:{one:"NFS client",other:"NFS clients"}}},"nfs.proc3":{info:'NFSv3 RPC calls. The individual metrics are described in <a href="https://datatracker.ietf.org/doc/html/rfc1813#section-3" target="_blank">RFC1813</a>.',en:{instance:{one:"NFS client",other:"NFS clients"}}},"nfs.proc4":{info:'NFSv4 RPC calls. The individual metrics are described in <a href="https://datatracker.ietf.org/doc/html/rfc8881#section-18" target="_blank">RFC8881</a>.',en:{instance:{one:"NFS client",other:"NFS clients"}}},"nfsd.readcache":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"NFS Reply Cache Statistics"}],info:"<p>Reply cache statistics. The reply cache keeps track of responses to recently performed non-idempotent transactions, and in case of a replay, the cached response is sent instead of attempting to perform the operation again.</p><b>Hits</b> - client did not receive a reply and re-transmitted its request. This event is undesirable. <b>Misses</b> - an operation that requires caching (idempotent). <b>Nocache</b> - an operation that does not require caching (non-idempotent).",en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.filehandles":{info:"<p>File handle statistics. File handles are small pieces of memory that keep track of what file is opened.</p><p><b>Stale</b> - happen when a file handle references a location that has been recycled. This also occurs when the server loses connection and applications are still using files that are no longer accessible.",en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.io":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"NFS IO Statistics"}],info:"The amount of data transferred to and from disk.",en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.threads":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"NFS Daemon Threads"}],info:"The number of threads used by the NFS daemon.",en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.readahead":{info:"<p>Read-ahead cache statistics. NFS read-ahead predictively requests blocks from a file in advance of I/O requests by the application. It is designed to improve client sequential read throughput.</p><p><b>10%</b>-<b>100%</b> - histogram of depth the block was found. This means how far the cached block is from the original block that was first requested. <b>Misses</b> - not found in the read-ahead cache.</p>",en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.net":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Network Packets received"}],info:"The number of received UDP and TCP packets.",en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.rpc":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"RPC Statistics"}],info:"<p>Remote Procedure Call (RPC) statistics.</p></p><b>Calls</b> - all RPC calls. <b>BadAuth</b> - bad authentication. It does not count if you try to mount from a machine that it's not in your exports file. <b>BadFormat</b> - other errors.</p>",en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.proc2":{info:'NFSv2 RPC calls. The individual metrics are described in <a href="https://datatracker.ietf.org/doc/html/rfc1094#section-2.2" target="_blank">RFC1094</a>.',en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.proc3":{info:'NFSv3 RPC calls. The individual metrics are described in <a href="https://datatracker.ietf.org/doc/html/rfc1813#section-3" target="_blank">RFC1813</a>.',en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.proc4":{info:'NFSv4 RPC calls. The individual metrics are described in <a href="https://datatracker.ietf.org/doc/html/rfc8881#section-18" target="_blank">RFC8881</a>.',en:{instance:{one:"NFS server",other:"NFS servers"}}},"nfsd.proc4ops":{info:'NFSv4 RPC operations. The individual metrics are described in <a href="https://datatracker.ietf.org/doc/html/rfc8881#section-18" target="_blank">RFC8881</a>.',en:{instance:{one:"NFS server",other:"NFS servers"}}},"zfs.arc_size":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Average ZFS ARC Size"}],info:"<p>The size of the ARC.</p><p><b>Arcsz</b> - actual size. <b>Target</b> - target size that the ARC is attempting to maintain (adaptive). <b>Min</b> - minimum size limit. When the ARC is asked to shrink, it will stop shrinking at this value. <b>Max</b> - maximum size limit.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.l2_size":{info:"<p>The size of the L2ARC.</p><p><b>Actual</b> - size of compressed data. <b>Size</b> - size of uncompressed data.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.reads":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Read Requests"}],info:"<p>The number of read requests.</p><p><b>ARC</b> - all prefetch and demand requests. <b>Demand</b> - triggered by an application request. <b>Prefetch</b> - triggered by the prefetch mechanism, not directly from an application request. <b>Metadata</b> - metadata read requests. <b>L2</b> - L2ARC read requests.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.bytes":{info:"The amount of data transferred to and from the L2ARC cache devices.",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.hits":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Hit Rate of ARC Read Requests"}],info:"<p>Hit rate of the ARC read requests.</p><p><b>Hits</b> - a data block was in the ARC DRAM cache and returned. <b>Misses</b> - a data block was not in the ARC DRAM cache. It will be read from the L2ARC cache devices (if available and the data is cached on them) or the pool disks.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.dhits":{aggregationMethod:"avg",info:"<p>Hit rate of the ARC data and metadata demand read requests. Demand requests are triggered by an application request.</p><p><b>Hits</b> - a data block was in the ARC DRAM cache and returned. <b>Misses</b> - a data block was not in the ARC DRAM cache. It will be read from the L2ARC cache devices (if available and the data is cached on them) or the pool disks.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.phits":{aggregationMethod:"avg",info:"<p>Hit rate of the ARC data and metadata prefetch read requests. Prefetch requests are triggered by the prefetch mechanism, not directly from an application request.</p><p><b>Hits</b> - a data block was in the ARC DRAM cache and returned. <b>Misses</b> - a data block was not in the ARC DRAM cache. It will be read from the L2ARC cache devices (if available and the data is cached on them) or the pool disks.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.mhits":{aggregationMethod:"avg",info:"<p>Hit rate of the ARC metadata read requests.</p><p><b>Hits</b> - a data block was in the ARC DRAM cache and returned. <b>Misses</b> - a data block was not in the ARC DRAM cache. It will be read from the L2ARC cache devices (if available and the data is cached on them) or the pool disks.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.l2hits":{aggregationMethod:"avg",info:"<p>Hit rate of the L2ARC lookups.</p></p><b>Hits</b> - a data block was in the L2ARC cache and returned. <b>Misses</b> - a data block was not in the L2ARC cache. It will be read from the pool disks.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.demand_data_hits":{aggregationMethod:"avg",info:"<p>Hit rate of the ARC data demand read requests. Demand requests are triggered by an application request.</p><b>Hits</b> - a data block was in the ARC DRAM cache and returned. <b>Misses</b> - a data block was not in the ARC DRAM cache. It will be read from the L2ARC cache devices (if available and the data is cached on them) or the pool disks.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.prefetch_data_hits":{aggregationMethod:"avg",info:"<p>Hit rate of the ARC data prefetch read requests. Prefetch requests are triggered by the prefetch mechanism, not directly from an application request.</p><p><b>Hits</b> - a data block was in the ARC DRAM cache and returned. <b>Misses</b> - a data block was not in the ARC DRAM cache. It will be read from the L2ARC cache devices (if available and the data is cached on them) or the pool disks.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.list_hits":{info:"MRU (most recently used) and MFU (most frequently used) cache list hits. MRU and MFU lists contain metadata for requested blocks which are cached. Ghost lists contain metadata of the evicted pages on disk.",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.arc_size_breakdown":{aggregationMethod:"avg",info:"The size of MRU (most recently used) and MFU (most frequently used) cache.",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.memory_ops":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Memory Operation Statistics"}],info:"<p>Memory operation statistics.</p><p><b>Direct</b> - synchronous memory reclaim. Data is evicted from the ARC and free slabs reaped. <b>Throttled</b> - number of times that ZFS had to limit the ARC growth. A constant increasing of the this value can indicate excessive pressure to evict data from the ARC. <b>Indirect</b> - asynchronous memory reclaim. It reaps free slabs from the ARC cache.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.important_ops":{info:"<p>Eviction and insertion operation statistics.</p><p><b>EvictSkip</b> - skipped data eviction operations. <b>Deleted</b> - old data is evicted (deleted) from the cache. <b>MutexMiss</b> - an attempt to get hash or data block mutex when it is locked during eviction. <b>HashCollisions</b> - occurs when two distinct data block numbers have the same hash value.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.actual_hits":{aggregationMethod:"avg",info:"<p>MRU and MFU cache hit rate.</p><p><b>Hits</b> - a data block was in the ARC DRAM cache and returned. <b>Misses</b> - a data block was not in the ARC DRAM cache. It will be read from the L2ARC cache devices (if available and the data is cached on them) or the pool disks.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.hash_elements":{info:"<p>Data Virtual Address (DVA) hash table element statistics.</p><p><b>Current</b> - current number of elements. <b>Max</b> - maximum number of elements seen.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfs.hash_chains":{info:"<p>Data Virtual Address (DVA) hash table chain statistics. A chain is formed when two or more distinct data block numbers have the same hash value.</p><p><b>Current</b> - current number of chains. <b>Max</b> - longest length seen for a chain. If the value is high, performance may degrade as the hash locks are held longer while the chains are walked.</p>",en:{instance:{one:"ZFS system",other:"ZFS systems"}}},"zfspool.state":{info:'ZFS pool state. The overall health of a pool, as reported by <b>zpool status</b>, is determined by the aggregate state of all devices within the pool. For states description, see <a href="https://openzfs.github.io/openzfs-docs/man/7/zpoolconcepts.7.html#Device_Failure_and_Recovery" target="_blank"> ZFS documentation</a>.',en:{instance:{one:"ZFS pool",other:"ZFS pools"}}},"mysql.net":{info:"The amount of data sent to mysql clients (<strong>out</strong>) and received from mysql clients (<strong>in</strong>).",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.queries":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"No. of Slow Queries",selectedDimensions:["slow_queries"],desiredUnits:"queries",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}}],info:'The number of statements executed by the server.<ul><li><strong>queries</strong> counts the statements executed within stored SQL programs.</li><li><strong>questions</strong> counts the statements sent to the mysql server by mysql clients.</li><li><strong>slow queries</strong> counts the number of statements that took more than <a href="http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_long_query_time" target="_blank">long_query_time</a> seconds to be executed. For more information about slow queries check the mysql <a href="http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html" target="_blank">slow query log</a>.</li></ul>',en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.handlers":{info:'Usage of the internal handlers of mysql. This chart provides very good insights of what the mysql server is actually doing. (if the chart is not showing all these dimensions it is because they are zero - set <strong>Which dimensions to show?</strong> to <strong>All</strong> from the dashboard settings, to render even the zero values)<ul><li><strong>commit</strong>, the number of internal <a href="http://dev.mysql.com/doc/refman/5.7/en/commit.html" target="_blank">COMMIT</a> statements.</li><li><strong>delete</strong>, the number of times that rows have been deleted from tables.</li><li><strong>prepare</strong>, a counter for the prepare phase of two-phase commit operations.</li><li><strong>read first</strong>, the number of times the first entry in an index was read. A high value suggests that the server is doing a lot of full index scans; e.g. <strong>SELECT col1 FROM foo</strong>, with col1 indexed.</li><li><strong>read key</strong>, the number of requests to read a row based on a key. If this value is high, it is a good indication that your tables are properly indexed for your queries.</li><li><strong>read next</strong>, the number of requests to read the next row in key order. This value is incremented if you are querying an index column with a range constraint or if you are doing an index scan.</li><li><strong>read prev</strong>, the number of requests to read the previous row in key order. This read method is mainly used to optimize <strong>ORDER BY ... DESC</strong>.</li><li><strong>read rnd</strong>, the number of requests to read a row based on a fixed position. A high value indicates you are doing a lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL to scan entire tables or you have joins that do not use keys properly.</li><li><strong>read rnd next</strong>, the number of requests to read the next row in the data file. This value is high if you are doing a lot of table scans. Generally this suggests that your tables are not properly indexed or that your queries are not written to take advantage of the indexes you have.</li><li><strong>rollback</strong>, the number of requests for a storage engine to perform a rollback operation.</li><li><strong>savepoint</strong>, the number of requests for a storage engine to place a savepoint.</li><li><strong>savepoint rollback</strong>, the number of requests for a storage engine to roll back to a savepoint.</li><li><strong>update</strong>, the number of requests to update a row in a table.</li><li><strong>write</strong>, the number of requests to insert a row in a table.</li></ul>',en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.table_locks":{info:"MySQL table locks counters: <ul><li><strong>immediate</strong>, the number of times that a request for a table lock could be granted immediately.</li><li><strong>waited</strong>, the number of times that a request for a table lock could not be granted immediately and a wait was needed. If this is high and you have performance problems, you should first optimize your queries, and then either split your table or tables or use replication.</li></ul>",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_deadlocks":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"Total No. of Deadlocks",desiredUnits:"deadlocks",colors:o.default[1],layout:{x:3,y:0,w:3,h:5}}],info:'A deadlock happens when two or more transactions mutually hold and request for locks, creating a cycle of dependencies. For more information about <a href="https://dev.mysql.com/doc/refman/5.7/en/innodb-deadlocks-handling.html" target="_blank">how to minimize and handle deadlocks</a>.',en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_cluster_status":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Galera Cluster Status",desiredUnits:"%",colors:o.default[2],layout:{x:6,y:0,w:3,h:5}}],info:"<p>Status of this cluster component.</p><p><b>Primary</b> - primary group configuration, quorum present. <b>Non-Primary</b> - non-primary group configuration, quorum lost. <b>Disconnected</b> - not connected to group, retrying.</p>",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_cluster_state":{info:"<p>Membership state of this cluster component.</p><p><b>Undefined</b> - undefined state. <b>Joining</b> - the node is attempting to join the cluster. <b>Donor</b> - the node has blocked itself while it sends a State Snapshot Transfer (SST) to bring a new node up to date with the cluster. <b>Joined</b> - the node has successfully joined the cluster. <b>Synced</b> - the node has established a connection with the cluster and synchronized its local databases with those of the cluster. <b>Error</b> - the node is not part of the cluster and does not replicate transactions. This state is provider-specific, check <i>wsrep_local_state_comment</i> variable for a description.</p>",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_cluster_weight":{info:"The value is counted as a sum of <b>pc.weight</b> of the nodes in the current Primary Component.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_connected":{info:"<b>0</b> means that the node has not yet connected to any of the cluster components. This may be due to misconfiguration.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.open_transactions":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Open Transactions",desiredUnits:"transactions",colors:o.default[3],layout:{x:9,y:0,w:3,h:5}}],info:"The number of locally running transactions which have been registered inside the wsrep provider. This means transactions which have made operations which have caused write set population to happen. Transactions which are read only are not counted.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.table_open_cache_overflows":{info:"The number of overflows in the table open cache on the MySQL server. Monitoring this metric can help identify potential performance issues related to the table open cache.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.join_issues":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"MySQL Join Operation Issues",desiredUnits:"issues",layout:{x:0,y:5,w:3,h:5}}],info:"The number of issues with joins on the MySQL server. Monitoring this metric can help identify potential performance issues related to joins.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.sort_issues":{info:"The number of issues with sorts on the MySQL server. Monitoring this metric can help identify potential performance issues related to sorting.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.tmp":{info:"The usage of temporary files on the MySQL server. Monitoring this metric can help identify potential performance issues related to temporary files.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.threads_created":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"Number of MySQL threads",desiredUnits:"threads",colors:o.default[4],layout:{x:0,y:5,w:3,h:5}}],info:"The number of threads that have been created on the MySQL server. Monitoring this metric can help identify potential performance issues related to thread creation.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.thread_cache_misses":{info:"The number of thread cache misses on the MySQL server. Monitoring this metric can help identify potential performance issues related to the thread cache.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_io":{info:"The I/O operations on the InnoDB storage engine on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB storage engine.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_io_ops":{info:"The number of I/O operations on the InnoDB storage engine on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB storage engine.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_io_pending_ops":{info:"The number of pending I/O operations on the InnoDB storage engine on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB storage engine.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_log":{info:"The usage of the InnoDB log on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB log.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_cur_row_lock":{info:"The number of current row locks on the InnoDB storage engine on the MySQL server. Monitoring this metric can help identify potential performance issues related to row locking on the InnoDB storage engine.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_rows":{info:"The number of rows on the InnoDB storage engine on the MySQL server. Monitoring this metric can help identify the usage patterns of the InnoDB storage engine and potential performance issues.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_buffer_pool_pages":{info:"The number of pages in the InnoDB buffer pool on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB buffer pool.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_buffer_pool_pages_flushed":{info:"The number of pages flushed from the InnoDB buffer pool on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB buffer pool.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_buffer_pool_bytes":{info:"The amount of memory used by the InnoDB buffer pool on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB buffer pool.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_buffer_pool_read_ahead":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"InnoDB Buffer Pool Read Ahead",desiredUnits:"pages/s",colors:o.default[6],layout:{x:6,y:5,w:3,h:5}}],info:"The amount of read ahead performed by the InnoDB buffer pool on the MySQL server. Monitoring this metric can help identify potential performance issues related to read ahead on the InnoDB buffer.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_buffer_pool_read_ahead_rnd":{info:"The amount of random read ahead performed by the InnoDB buffer pool on the MySQL server. Monitoring this metric can help identify potential performance issues related to random read ahead on the InnoDB buffer pool.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_buffer_pool_ops":{info:"The number of operations on the InnoDB buffer pool on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB buffer pool.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.innodb_os_log":{info:"The usage of the InnoDB OS log on the MySQL server. Monitoring this metric can help identify potential performance issues related to the InnoDB OS log.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.files":{info:"The number of files opened by the MySQL server. Monitoring this metric can help identify potential performance issues related to file opening.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.files_rate":{info:"The rate of file opening by the MySQL server. Monitoring this metric can help identify potential performance issues related to file opening.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.opened_tables":{info:"The number of tables opened by the MySQL server. Monitoring this metric can help identify potential performance issues related to table opening.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.process_list_fetch_query_duration":{info:"The duration of queries in the process list on the MySQL server. Monitoring this metric can help identify potential performance issues related to queries in the process list.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.process_list_longest_query_duration":{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"number",title:"Longest Query Duration",colors:o.default[7],layout:{x:9,y:5,w:3,h:5}}],info:"The duration of the longest query in the process list on the MySQL server. Monitoring this metric can help identify potential performance issues related to long running queries in the process list.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.qcache_ops":{info:"The number of operations on the query cache on the MySQL server. Monitoring this metric can help identify potential performance issues related to the query cache.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.qcache":{info:"The usage of the query cache on the MySQL server. Monitoring this metric can help identify potential performance issues related to the query cache.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.qcache_freemem":{info:"The amount of free memory in the query cache on the MySQL server. Monitoring this metric can help identify potential performance issues related to the query cache memory usage.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.qcache_memblocks":{info:"The number of memory blocks in the query cache on the MySQL server. Monitoring this metric can help identify potential performance issues related to the query cache memory usage.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_bytes":{info:"The number of bytes in the Galera cluster on the MySQL server. Monitoring this metric can help identify potential performance issues related to the Galera cluster.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_queue":{info:"The length of the Galera queue on the MySQL server. Monitoring this metric can help identify potential performance issues related to the Galera cluster.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_flow_control":{info:"The status of the flow control in the Galera cluster on the MySQL server. Monitoring this metric can help identify potential performance issues related to the Galera cluster.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_cluster_size":{info:"The size of the Galera cluster on the MySQL server. Monitoring this metric can help identify potential performance issues related to the Galera cluster.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_ready":{info:"The status of the Galera cluster on the MySQL server, indicating whether it is ready for write sets. Monitoring this metric can help identify potential performance issues related to the Galera cluster.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.galera_open_transactions":{info:"The number of open transactions in the Galera cluster on the MySQL server. Monitoring this metric can help identify potential performance issues related to the Galera cluster.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.key_blocks":{info:"The number of blocks in the key cache on the MySQL server. Monitoring this metric can help identify potential performance issues related to the key cache.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.binlog_cache":{info:"The usage of the binary log cache on the MySQL server. Monitoring this metric can help identify potential performance issues related to the binary log cache.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.binlog_stmt_cache":{info:"The usage of the binary log statement cache on the MySQL server. Monitoring this metric can help identify potential performance issues related to the binary log statement cache.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.slave_behind":{info:"The lag of the slave in the replication on the MySQL server. Monitoring this metric can help identify potential performance issues related to the replication process.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.userstats_cpu":{aggregationMethod:"avg",info:"The amount of CPU time used by each user on the MySQL server. Monitoring this metric can help identify potential performance issues related to CPU usage by users.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.userstats_rows":{info:"The number of rows accessed by each user on the MySQL server. Monitoring this metric can help identify potential performance issues related to user access to rows.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.userstats_commands":{info:"The number of commands executed by each user on the MySQL server. Monitoring this metric can help identify potential performance issues related to user commands.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.userstats_denied_commands":{info:"The number of denied commands for each user on the MySQL server. Monitoring this metric can help identify potential security issues related to user commands.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.userstats_binlog_written":{info:"The amount of data written to the binary log by each user on the MySQL server. Monitoring this metric can help identify potential performance issues related to the binary log.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.userstats_connections":{info:"The number of connections for each user on the MySQL server. Monitoring this metric can help identify potential performance issues related to user connections.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.userstats_lost_connections":{info:"The number of lost connections for each user on the MySQL server. Monitoring this metric can help identify potential performance issues related to user connections.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"mysql.userstats_denied_connections":{info:"The number of denied connections for each user on the MySQL server. Monitoring this metric can help identify potential security issues related to user connections.",en:{instance:{one:"MySQL server",other:"MySQL servers"}}},"ping.host_rtt":{aggregationMethod:"avg",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Host Latency",layout:{x:6,y:0,w:3,h:5}}],info:"Round-trip time (RTT) is the time it takes for a data packet to reach its destination and return back to its original source.",en:{instance:{one:"ping host",other:"ping hosts"}}},"ping.host_std_dev_rtt":{aggregationMethod:"avg",info:"Round-trip time (RTT) standard deviation. The average value of how far each RTT of a ping differs from the average RTT.",en:{instance:{one:"ping host",other:"ping hosts"}}},"ping.host_packet_loss":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"gauge",title:"Maximum Host Packet Loss",desiredUnits:"percentage",colors:o.default[1],valueRange:[0,100],layout:{x:9,y:0,w:3,h:5}}],info:"Packet loss occurs when one or more transmitted data packets do not reach their destination. Usually caused by data transfer errors, network congestion or firewall blocking. ICMP echo packets are often treated as lower priority by routers and target hosts, so ping test packet loss may not always translate to application packet loss.",en:{instance:{one:"ping host",other:"ping hosts"}}},"ping.host_packets":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Ping Packets Received",colors:o.default[2],valueRange:[0,null],layout:{x:0,y:0,w:3,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Ping Packets Sent",colors:o.default[1],valueRange:[0,null],layout:{x:3,y:0,w:3,h:5}}],info:"Number of ICMP messages sent and received. These counters should be equal if there is no packet loss.",en:{instance:{one:"ping host",other:"ping hosts"}}},"nvme.device_estimated_endurance_perc":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"gauge",title:"Lowest Endurance on device",desiredUnits:"percentage",valueRange:[0,100],colors:o.default[7],layout:{x:0,y:0,w:3,h:5}}],info:"NVM subsystem lifetime used based on the actual usage and the manufacturer's prediction of NVM life. A value of 100 indicates that the estimated endurance of the device has been consumed, but may not indicate a device failure. The value can be greater than 100 if you use the storage beyond its planned lifetime.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_available_spare_perc":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Available Spare Capacity",desiredUnits:"percentage",valueRange:[0,100],colors:o.default[7],layout:{x:3,y:0,w:3,h:5}}],info:"Remaining spare capacity that is available. SSDs provide a set of internal spare capacity, called spare blocks, that can be used to replace blocks that have reached their write operation limit. After all of the spare blocks have been used, the next block that reaches its limit causes the disk to fail.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_composite_temperature":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"number",title:"Maximum device Temperature",desiredUnits:"celcius",colors:o.default[7],layout:{x:6,y:0,w:3,h:5}}],info:"The current composite temperature of the controller and namespace(s) associated with that controller. The manner in which this value is computed is implementation specific and may not represent the actual temperature of any physical point in the NVM subsystem.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_io_transferred_count":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total IO Transfer per device",desiredUnits:"seconds",colors:o.default[7],layout:{x:9,y:0,w:3,h:5}}],info:"The total amount of data read and written by the host.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_power_cycles_count":{info:"Power cycles reflect the number of times this host has been rebooted or the device has been woken up after sleep. A high number of power cycles does not affect the device's life expectancy.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_power_on_time":{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"number",title:"Maximum Power On Time",desiredUnits:"seconds",colors:o.default[7],layout:{x:0,y:5,w:3,h:5}}],info:"<a href='https://en.wikipedia.org/wiki/Power-on_hours' target='_blank'>Power-on time</a> is the length of time the device is supplied with power.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_unsafe_shutdowns_count":{info:"The number of times a power outage occurred without a shutdown notification being sent. Depending on the NVMe device you are using, an unsafe shutdown can corrupt user data.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_critical_warnings_state":{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"number",title:"Maximum No. of Critical / Warnings",desiredUnits:"seconds",colors:o.default[7],layout:{x:3,y:5,w:3,h:5}}],info:"<p>Critical warnings for the status of the controller. Status active if set to 1.</p><p><b>AvailableSpare</b> - the available spare capacity is below the threshold. <b>TempThreshold</b> - the composite temperature is greater than or equal to an over temperature threshold or less than or equal to an under temperature threshold. <b>NvmSubsystemReliability</b> - the NVM subsystem reliability is degraded due to excessive media or internal errors. <b>ReadOnly</b> - media is placed in read-only mode. <b>VolatileMemBackupFailed</b> - the volatile memory backup device has failed. <b>PersistentMemoryReadOnly</b> - the Persistent Memory Region has become read-only or unreliable.</p>",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_media_errors_rate":{info:"The number of occurrences where the controller detected an unrecovered data integrity error. Errors such as uncorrectable ECC, CRC checksum failure, or LBA tag mismatch are included in this counter.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_error_log_entries_rate":{info:"The number of entries in the Error Information Log. By itself, an increase in the number of records is not an indicator of any failure condition.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_warning_composite_temperature_time":{info:"The time the device has been operating above the Warning Composite Temperature Threshold (WCTEMP) and below Critical Composite Temperature Threshold (CCTEMP).",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_critical_composite_temperature_time":{info:"The time the device has been operating above the Critical Composite Temperature Threshold (CCTEMP).",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_thermal_mgmt_temp1_transitions_rate":{info:"The number of times the controller has entered lower active power states or performed vendor-specific thermal management actions, <b>minimizing performance impact</b>, to attempt to lower the Composite Temperature due to the host-managed thermal management feature.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_thermal_mgmt_temp2_transitions_rate":{info:"The number of times the controller has entered lower active power states or performed vendor-specific thermal management actions, <b>regardless of the impact on performance (e.g., heavy throttling)</b>, to attempt to lower the Combined Temperature due to the host-managed thermal management feature.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_thermal_mgmt_temp1_time":{info:"The amount of time the controller has entered lower active power states or performed vendor-specific thermal management actions, <b>minimizing performance impact</b>, to attempt to lower the Composite Temperature due to the host-managed thermal management feature.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"nvme.device_thermal_mgmt_temp2_time":{info:"The amount of time the controller has entered lower active power states or performed vendor-specific thermal management actions, <b>regardless of the impact on performance (e.g., heavy throttling)</b>, to attempt to lower the Combined Temperature due to the host-managed thermal management feature.",en:{instance:{one:"NVMe disk",other:"NVMe disks"}},groupBy:["label"],groupByLabel:["device"]},"postfix.qemails":{info:"The <b>qemails</b> metric represents the number of emails currently in the queue in Postfix. This metric should be monitored to ensure that the queue is not growing too large, which can lead to delays in email delivery.",en:{instance:{one:"mail server",other:"mail servers"}}},"postfix.qsize":{info:"The <b>qsize</b> metric represents the total size of emails currently in the queue in Postfix. This metric should be monitored to ensure that the queue is not growing too large, which can lead to delays in email delivery.",en:{instance:{one:"mail server",other:"mail servers"}}},"postgres.connections_utilization":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",valueRange:[0,100],chartLibrary:"gauge",title:"Average Connections Utilization",desiredUnits:"percentage",colors:o.default[14],layout:{x:0,y:0,w:2.5,h:5}}],info:"<p>A connection is an established line of communication between a client and the PostgreSQL server. Each connection adds to the load on the PostgreSQL server. To guard against running out of memory or overloading the database the <i>max_connections</i> parameter (default = 100) defines the maximum number of concurrent connections to the database server. A separate parameter, <i>superuser_reserved_connections</i> (default = 3), defines the quota for superuser connections (so that superusers can connect even if all other connection slots are blocked).</p><p><br></p><p><b>Total connection utilization</b> across all databases. Utilization is measured as a percentage of (<i>max_connections</i> - <i>superuser_reserved_connections</i>). If the utilization is 100% no more new connections will be accepted (superuser connections will still be accepted if superuser quota is available).</p>",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.connections_usage":{info:"<p><b>Connections usage</b> across all databases. The maximum number of concurrent connections to the database server is (<i>max_connections</i> - <i>superuser_reserved_connections</i>). As a general rule, if you need more than 200 connections it is advisable to use connection pooling.</p><p><b>Available</b> - new connections allowed. <b>Used</b> - connections currently in use.</p>",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.connections_state_count":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Connection State Count",layout:{x:9,y:0,w:2.5,h:5}}],en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.transactions_duration":{aggregationMethod:"avg",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.queries_duration":{aggregationMethod:"avg",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top Queries by Duration",layout:{x:0,y:10,w:4.5,h:5}}],info:"Active queries duration histogram. The bins are specified as consecutive, non-overlapping intervals. The value is the number of observed active queries that fall into each interval.",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.checkpoints_rate":{info:'<p>Number of checkpoints that have been performed. Checkpoints are periodic maintenance operations the database performs to make sure that everything it\'s been caching in memory has been synchronized with the disk. Ideally checkpoints should be time-driven (scheduled) as opposed to load-driven (requested).</p><p><b>Scheduled</b> - checkpoints triggered as per schedule when time elapsed from the previous checkpoint is greater than <a href="https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-CHECKPOINT-TIMEOUT" target="_blank"><i>checkpoint_timeout</i></a>. <b>Requested</b> - checkpoints triggered due to WAL updates reaching the <a href="https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-MAX-WAL-SIZE" target="_blank"><i>max_wal_size</i></a> before the <i>checkpoint_timeout</i> is reached.</p>',en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.checkpoints_time":{info:"<p>Checkpoint timing information. An important indicator of how well checkpoint I/O is performing is the amount of time taken to sync files to disk.</p><p><b>Write</b> - amount of time spent writing files to disk during checkpoint processing. <b>Sync</b> - amount of time spent synchronizing files to disk during checkpoint processing.</p>",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.buffers_allocated_rate":{info:"Allocated and re-allocated buffers. If a backend process requests data it is either found in a block in shared buffer cache or the block has to be allocated (read from disk). The latter is counted as <b>Allocated</b>.",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.buffers_io_rate":{info:"<p>Amount of data flushed from memory to disk.</p><p><b>Checkpoint</b> - buffers written during checkpoints. <b>Backend</b> - buffers written directly by a backend. It may happen that a dirty page is requested by a backend process. In this case the page is synced to disk before the page is returned to the client. <b>BgWriter</b> - buffers written by the background writer. PostgreSQL may clear pages with a low usage count in advance. The process scans for dirty pages with a low usage count so that they could be cleared if necessary. Buffers written by this process increment the counter.</p>",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.bgwriter_halts_rate":{info:'Number of times the background writer stopped a cleaning scan because it had written too many buffers (exceeding the value of <a href="https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-BACKGROUND-WRITER" target="_blank"><i>bgwriter_lru_maxpages</i></a>).',en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.buffers_backend_fsync_rate":{info:"Number of times a backend had to execute its own fsync call (normally the background writer handles those even when the backend does its own write). Any values above zero can indicate problems with storage when fsync queue is completely filled.",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.wal_io_rate":{info:"Write-Ahead Logging (WAL) ensures data integrity by ensuring that changes to data files (where tables and indexes reside) are written only after log records describing the changes have been flushed to permanent storage.",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.wal_files_count":{info:"<p>Number of WAL logs stored in the directory <i>pg_wal</i> under the data directory.</p><p><b>Written</b> - generated log segments files. <b>Recycled</b> - old log segment files that are no longer needed. Renamed to become future segments in the numbered sequence to avoid the need to create new ones.</p>",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.wal_archiving_files_count":{info:'<p>WAL archiving.</p><p><b>Ready</b> - WAL files waiting to be archived. A non-zero value can indicate <i>archive_command</i> is in error, see <a href="https://www.postgresql.org/docs/current/static/continuous-archiving.html" target="_blank">Continuous Archiving and Point-in-Time Recovery</a>. <b>Done</b> - WAL files successfully archived.',en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.autovacuum_workers_count":{info:'PostgreSQL databases require periodic maintenance known as vacuuming. For many installations, it is sufficient to let vacuuming be performed by the autovacuum daemon. For more information see <a href="https://www.postgresql.org/docs/current/static/routine-vacuuming.html#AUTOVACUUM" target="_blank">The Autovacuum Daemon</a>.',en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.txid_exhaustion_towards_autovacuum_perc":{aggregationMethod:"avg",info:'Percentage towards emergency autovacuum for one or more tables. A forced autovacuum will run once this value reaches 100%. For more information see <a href="https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND" target="_blank">Preventing Transaction ID Wraparound Failures</a>.',en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.txid_exhaustion_perc":{aggregationMethod:"avg",info:'Percentage towards transaction wraparound. A transaction wraparound may occur when this value reaches 100%. For more information see <a href="https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND" target="_blank">Preventing Transaction ID Wraparound Failures</a>.',en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.txid_exhaustion_oldest_txid_num":{info:'The oldest current transaction ID (XID). If for some reason autovacuum fails to clear old XIDs from a table, the system will begin to emit warning messages when the database\'s oldest XIDs reach eleven million transactions from the wraparound point. For more information see <a href="https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND" target="_blank">Preventing Transaction ID Wraparound Failures</a>.',en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.uptime":{aggregationMethod:"min",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Uptime",desiredUnits:"dHH:MM:ss",layout:{x:12,y:0,w:2.5,h:1.66}}],info:"The time elapsed since the Postgres process was started.",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.replication_app_wal_lag_size":{info:"<p>Replication WAL lag size.</p><p><b>SentLag</b> - sent over the network. <b>WriteLag</b> - written to disk. <b>FlushLag</b> - flushed to disk. <b>ReplayLag</b> - replayed into the database.</p>",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.replication_app_wal_lag_time":{info:"<p>Replication WAL lag time.</p><p><b>WriteLag</b> - time elapsed between flushing recent WAL locally and receiving notification that the standby server has written it, but not yet flushed it or applied it. <b>FlushLag</b> - time elapsed between flushing recent WAL locally and receiving notification that the standby server has written and flushed it, but not yet applied it. <b>ReplayLag</b> - time elapsed between flushing recent WAL locally and receiving notification that the standby server has written, flushed and applied it.</p>",en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.replication_slot_files_count":{info:'<p>Replication slot files. For more information see <a href="https://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION-SLOTS" target="_blank">Replication Slots</a>.</p><p><b>WalKeep</b> - WAL files retained by the replication slot. <b>PgReplslotFiles</b> - files present in pg_replslot.</p>',en:{instance:{one:"postgres server",other:"postgres servers"}}},"postgres.db_transactions_ratio":{aggregationMethod:"avg",info:"Percentage of committed/rollback transactions.",en:{instance:{one:"database",other:"databases"}}},"postgres.db_transactions_rate":{info:"<p>Number of transactions that have been performed</p><p><b>Committed</b> - transactions that have been committed. All changes made by the committed transaction become visible to others and are guaranteed to be durable if a crash occurs. <b>Rollback</b> - transactions that have been rolled back. Rollback aborts the current transaction and causes all the updates made by the transaction to be discarded. Single queries that have failed outside the transactions are also accounted as rollbacks.</p>",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_connections_utilization":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["database"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Connections Utilization per Database",layout:{x:0,y:5,w:2.5,h:5}}],info:"Connection utilization per database. Utilization is measured as a percentage of <i>CONNECTION LIMIT</i> per database (if set) or <i>max_connections</i> (if <i>CONNECTION LIMIT</i> is not set).",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_connections_count":{info:"Number of current connections per database.",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_cache_io_ratio":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",valueRange:[0,100],chartLibrary:"gauge",desiredUnits:"percentage",title:"Average Cache Miss Ratio",colors:o.default[1],layout:{x:6,y:0,w:2.5,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["database"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Cache Miss Ratio per DB",layout:{x:6,y:5,w:2.5,h:5}}],info:'PostgreSQL uses a <b>shared buffer cache</b> to store frequently accessed data in memory, and avoid slower disk reads. If you are seeing performance issues, consider increasing the <a href="https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-SHARED-BUFFERS" target="_blank"><i>shared_buffers</i></a> size or tuning <a href="https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE" target="_blank"><i>effective_cache_size</i></a>.',en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_io_rate":{info:"<p>Amount of data read from shared buffer cache or from disk.</p><p><b>Disk</b> - data read from disk. <b>Memory</b> - data read from buffer cache (this only includes hits in the PostgreSQL buffer cache, not the operating system's file system cache).</p>",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_ops_fetched_rows_ratio":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,desiredUnits:"percentage",title:"Avg Fetched Row Ratio",colors:o.default[10],layout:{x:3,y:0,w:2,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["database"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Fetched Row Ratio per DB",layout:{x:3,y:5,w:2,h:5}}],info:"The percentage of rows that contain data needed to execute the query, out of the total number of rows scanned. A high value indicates that the database is executing queries efficiently, while a low value indicates that the database is performing extra work by scanning a large number of rows that aren't required to process the query. Low values may be caused by missing indexes or inefficient queries.",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_ops_read_rows_rate":{info:"<p>Read queries throughput.</p><p><b>Returned</b> - Total number of rows scanned by queries. This value indicates rows returned by the storage layer to be scanned, not rows returned to the client. <b>Fetched</b> - Subset of scanned rows (<b>Returned</b>) that contained data needed to execute the query.</p>",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_ops_write_rows_rate":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Rows Written per Database",layout:{x:9,y:5,w:2.5,h:5}}],info:"<p>Write queries throughput.</p><p><b>Inserted</b> - number of rows inserted by queries. <b>Deleted</b> - number of rows deleted by queries. <b>Updated</b> - number of rows updated by queries.</p>",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_conflicts_rate":{info:'Number of queries canceled due to conflict with recovery on standby servers. To minimize query cancels caused by cleanup records consider configuring <a href="https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-HOT-STANDBY-FEEDBACK" target="_blank"><i>hot_standby_feedback</i></a>.',en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_conflicts_reason_rate":{info:"<p>Statistics about queries canceled due to various types of conflicts on standby servers.</p><p><b>Tablespace</b> - queries that have been canceled due to dropped tablespaces. <b>Lock</b> - queries that have been canceled due to lock timeouts. <b>Snapshot</b> - queries that have been canceled due to old snapshots. <b>Bufferpin</b> - queries that have been canceled due to pinned buffers. <b>Deadlock</b> - queries that have been canceled due to deadlocks.</p>",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_deadlocks_rate":{info:"Number of detected deadlocks. When a transaction cannot acquire the requested lock within a certain amount of time (configured by <b>deadlock_timeout</b>), it begins deadlock detection.",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_locks_held_count":{info:'Number of held locks. Some of these lock modes are acquired by PostgreSQL automatically before statement execution, while others are provided to be used by applications. All lock modes acquired in a transaction are held for the duration of the transaction. For lock modes details, see <a href="https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-TABLES" target="_blank">table-level locks</a>.',en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_locks_awaited_count":{info:'Number of awaited locks. It indicates that some transaction is currently waiting to acquire a lock, which implies that some other transaction is holding a conflicting lock mode on the same lockable object. For lock modes details, see <a href="https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-TABLES" target="_blank">table-level locks</a>.',en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_temp_files_created_rate":{info:"Number of temporary files created by queries. Complex queries may require more memory than is available (specified by <b>work_mem</b>). When this happens, Postgres reverts to using temporary files - they are actually stored on disk, but only exist for the duration of the request. After the request returns, the temporary files are deleted.",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_temp_files_io_rate":{info:"Amount of data written temporarily to disk to execute queries.",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.db_size":{mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["database"],chartLibrary:"bars",title:"Database Sizes",dimensionsSort:"valueDesc",layout:{x:12,y:5,w:2.5,h:5}},{chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Total Database Size",layout:{x:12,y:3.33,w:2.5,h:1.66}}],info:"Actual on-disk usage of the database's data directory and any associated tablespaces.",en:{instance:{one:"database",other:"databases"}},groupBy:["label"],groupByLabel:["database"]},"postgres.databases_count":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"Total Database count",layout:{x:12,y:1.66,w:2.5,h:1.66}}],info:"Count of databases per PostgreSQL server.",en:{instance:{one:"postgres server",other:"postgres servers"}}},"pgbouncer.client_connections_utilization":{aggregationMethod:"avg",info:"Client connections in use as percentage of <i>max_client_conn</i> (default 100)."},"pgbouncer.db_client_connections":{info:"<p>Client connections in different states.</p><p><b>Active</b> - linked to server connection and can process queries. <b>Waiting</b> - have sent queries but have not yet got a server connection. <b>CancelReq</b> - have not forwarded query cancellations to the server yet.</p>"},"pgbouncer.db_server_connections":{info:"<p>Server connections in different states.</p><p><b>Active</b> - linked to a client. <b>Idle</b> - unused and immediately usable for client queries. <b>Used</b> - have been idle for more than <i>server_check_delay</i>, so they need <i>server_check_query</i> to run on them before they can be used again. <b>Tested</b> - currently running either <i>server_reset_query</i> or <i>server_check_query</i>. <b>Login</b> - currently in the process of logging in.</p>"},"pgbouncer.db_server_connections_utilization":{aggregationMethod:"avg",info:"Server connections in use as percentage of <i>max_db_connections</i> (default 0 - unlimited). This considers the PgBouncer database that the client has connected to, not the PostgreSQL database of the outgoing connection."},"pgbouncer.db_clients_wait_time":{info:"Time spent by clients waiting for a server connection. This shows if the decrease in database performance from the client's point of view was due to exhaustion of the corresponding PgBouncer pool."},"pgbouncer.db_client_max_wait_time":{info:"Waiting time for the first (oldest) client in the queue. If this starts increasing, then the current pool of servers does not handle requests quickly enough."},"pgbouncer.db_transactions":{info:"SQL transactions pooled (proxied) by pgbouncer."},"pgbouncer.db_transactions_time":{info:"Time spent by pgbouncer when connected to PostgreSQL in a transaction, either idle in transaction or executing queries."},"pgbouncer.db_transaction_avg_time":{info:"Average transaction duration."},"pgbouncer.db_queries":{info:"SQL queries pooled (proxied) by pgbouncer."},"pgbouncer.db_queries_time":{info:"Time spent by pgbouncer when actively connected to PostgreSQL, executing queries."},"pgbouncer.db_query_avg_time":{info:"Average query duration."},"pgbouncer.db_network_io":{info:"<p>Network traffic received and sent by pgbouncer.</p><p><b>Received</b> - received from clients. <b>Sent</b> - sent to servers.</p>"},"postgres.table_rows_dead_ratio":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",valueRange:[0,100],chartLibrary:"gauge",desiredUnits:"percentage",title:"Average Dead Row Ratio",colors:o.default[10],layout:{x:12,y:10,w:2.5,h:5}}],info:"Percentage of dead rows. An increase in dead rows indicates a problem with VACUUM processes, which can slow down your queries.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_rows_count":{info:"<p>Number of rows. When you do an UPDATE or DELETE, the row is not actually physically deleted. For a DELETE, the database simply marks the row as unavailable for future transactions, and for UPDATE, under the hood it is a combined INSERT then DELETE, where the previous version of the row is marked unavailable.</p><p><b>Live</b> - rows that currently in use and can be queried. <b>Dead</b> - deleted rows that will later be reused for new rows from INSERT or UPDATE.</p>",en:{instance:{one:"table",other:"tables"}}},"postgres.table_ops_rows_rate":{info:"Write queries throughput. If you see a large number of updated and deleted rows, keep an eye on the number of dead rows, as a high percentage of dead rows can slow down your queries.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_ops_rows_hot_ratio":{aggregationMethod:"avg",info:"Percentage of HOT (Heap Only Tuple) updated rows. HOT updates are much more efficient than ordinary updates: less write operations, less WAL writes, vacuum operation has less work to do, increased read efficiency (help to limit table and index bloat).",en:{instance:{one:"table",other:"tables"}}},"postgres.table_ops_rows_hot_rate":{info:"Number of HOT (Heap Only Tuple) updated rows.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_cache_io_ratio":{aggregationMethod:"avg",info:"Table cache inefficiency. Percentage of data read from disk. Lower is better.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_io_rate":{info:"<p>Amount of data read from shared buffer cache or from disk.</p><p><b>Disk</b> - data read from disk. <b>Memory</b> - data read from buffer cache (this only includes hits in the PostgreSQL buffer cache, not the operating system's file system cache).</p>",en:{instance:{one:"table",other:"tables"}}},"postgres.table_index_cache_io_ratio":{aggregationMethod:"avg",info:"Table indexes cache inefficiency. Percentage of data read from disk. Lower is better.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_index_io_rate":{info:"<p>Amount of data read from all indexes from shared buffer cache or from disk.</p><p><b>Disk</b> - data read from disk. <b>Memory</b> - data read from buffer cache (this only includes hits in the PostgreSQL buffer cache, not the operating system's file system cache).</p>",en:{instance:{one:"table",other:"tables"}}},"postgres.table_toast_cache_io_ratio":{aggregationMethod:"avg",info:"Table TOAST cache inefficiency. Percentage of data read from disk. Lower is better.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_toast_io_rate":{info:"<p>Amount of data read from TOAST table from shared buffer cache or from disk.</p><p><b>Disk</b> - data read from disk. <b>Memory</b> - data read from buffer cache (this only includes hits in the PostgreSQL buffer cache, not the operating system's file system cache).</p>",en:{instance:{one:"table",other:"tables"}}},"postgres.table_toast_index_cache_io_ratio":{aggregationMethod:"avg",info:"Table TOAST indexes cache inefficiency. Percentage of data read from disk. Lower is better.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_toast_index_io_rate":{info:"<p>Amount of data read from this table's TOAST table indexes from shared buffer cache or from disk.</p><p><b>Disk</b> - data read from disk. <b>Memory</b> - data read from buffer cache (this only includes hits in the PostgreSQL buffer cache, not the operating system's file system cache).</p>",en:{instance:{one:"table",other:"tables"}}},"postgres.table_scans_rate":{info:"<p>Number of scans initiated on this table. If you see that your database regularly performs more sequential scans over time, you can improve its performance by creating an index on data that is frequently accessed.</p><p><b>Index</b> - relying on an index to point to the location of specific rows. <b>Sequential</b> - have to scan through each row of a table sequentially. Typically, take longer than index scans.</p>",en:{instance:{one:"table",other:"tables"}}},"postgres.table_scans_rows_rate":{info:"Number of live rows fetched by scans.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_autovacuum_since_time":{aggregationMethod:"min",info:"Time elapsed since this table was vacuumed by the autovacuum daemon.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_vacuum_since_time":{aggregationMethod:"min",info:"Time elapsed since this table was manually vacuumed (not counting VACUUM FULL).",en:{instance:{one:"table",other:"tables"}}},"postgres.table_autoanalyze_since_time":{aggregationMethod:"min",info:"Time elapsed this table was analyzed by the autovacuum daemon.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_analyze_since_time":{aggregationMethod:"min",info:"Time elapsed since this table was manually analyzed.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_null_columns":{info:"Number of table columns that contain only NULLs.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_total_size":{info:"Actual on-disk size of the table.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_bloat_size_perc":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",valueRange:[0,100],chartLibrary:"gauge",desiredUnits:"percentage",title:"Average Table Bloat %",colors:o.default[1],layout:{x:9,y:10,w:2.5,h:5}}],info:"Estimated percentage of bloat in the table. It is normal for tables that are updated frequently to have a small to moderate amount of bloat.",en:{instance:{one:"table",other:"tables"}}},"postgres.table_bloat_size":{info:'Disk space that was used by the table and is available for reuse by the database but has not been reclaimed. Bloated tables require more disk storage and additional I/O that can slow down query execution. Running <a href="https://www.postgresql.org/docs/current/sql-vacuum.html" target="_blank">VACUUM</a> regularly on a table that is updated frequently results in fast reuse of space occupied by expired rows, which prevents the table from growing too large.',en:{instance:{one:"table",other:"tables"}}},"postgres.index_size":{info:"Actual on-disk size of the index.",en:{instance:{one:"index",other:"indexes"}}},"postgres.index_bloat_size_perc":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",valueRange:[0,100],chartLibrary:"gauge",desiredUnits:"percentage",title:"Average Index Bloat %",colors:o.default[1],layout:{x:9,y:10,w:2.5,h:5}}],info:"Estimated percentage of bloat in the index.",en:{instance:{one:"index",other:"indexes"}}},"postgres.index_bloat_size":{info:'Disk space that was used by the index and is available for reuse by the database but has not been reclaimed. Bloat slows down your database and eats up more storage than needed. To recover the space from indexes, recreate them using the <a href="https://www.postgresql.org/docs/current/sql-reindex.html" target="_blank">REINDEX</a> command.',en:{instance:{one:"index",other:"indexes"}}},"postgres.index_usage_status":{info:"An index is considered unused if no scans have been initiated on that index.",en:{instance:{one:"index",other:"indexes"}}},"puppet.jvm_heap":{info:"The <b>jvm_heap</b> metric represents the size of the Java Virtual Machine's heap memory in Puppet. This metric should be monitored to ensure that sufficient memory is allocated for Puppet to operate correctly."},"puppet.jvm_nonheap":{info:"The <b>jvm_nonheap</b> metric represents the size of the Java Virtual Machine's non-heap memory in Puppet. This metric should be monitored to ensure that sufficient memory is allocated for Puppet to operate correctly."},"puppet.cpu":{aggregationMethod:"avg",info:"The <b>cpu</b> metric represents the amount of CPU resources being used by Puppet. This metric should be monitored to ensure that the CPU is not being overutilized and to detect any potential performance issues."},"puppet.fd_open":{info:"The <b>fd_open</b> metric represents the number of open file descriptors in Puppet. This metric should be monitored to ensure that the system is not running out of available file descriptors, which can lead to performance issues."},"redis.ping_latency":{aggregationMethod:"avg",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Ping Latency",layout:{x:3,y:0,w:2,h:5}}],info:"The average time it takes from a client request to the server response. High latency could be caused slow commands, over utilized network links or a high backlog in the command queue.",en:{instance:{one:"redis server",other:"redis servers"}}},"redis.commands":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Commands",desiredUnits:"Commands",layout:{x:0,y:0,w:2,h:5}}],info:"The Total number of commands processed per second. A significant or unexpected shift in this metric could indicate a problem worth investigating.",en:{instance:{one:"redis server",other:"redis servers"}}},"redis.keyspace_lookup_hit_rate":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",valueRange:[0,100],chartLibrary:"gauge",title:"Average Lookup Hit Rate",desiredUnits:"percentage",colors:o.default[0],layout:{x:6,y:0,w:2,h:5}}],info:"Lookup Hitrate = (Keyspace hits / (Keyspace hits + Keyspace misses)) <br> Lower hitrates lead to higher latency, in normal conditions this value should be greater than 80%.",en:{instance:{one:"redis server",other:"redis servers"}}},"redis.mem_fragmentation_ratio":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",valueRange:[0,100],chartLibrary:"gauge",title:"Max Memory Fragmentation Ratio",desiredUnits:"percentage",colors:o.default[1],layout:{x:9,y:0,w:2,h:5}}],info:"The ratio of memory allocated by the operating system to memory requested by Redis (used_memory_rss/used_memory).",en:{instance:{one:"redis server",other:"redis servers"}}},"redis.uptime":{aggregationMethod:"min",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Uptime",layout:{x:12,y:0,w:2,h:2.5}}],en:{instance:{one:"redis server",other:"redis servers"}}},"redis.clients":{mainheads:[{chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Total Connected Clients",layout:{x:12,y:2.5,w:2,h:2.5}}],info:"The current state of clients connecting to or attempting to connect to Redis.",en:{instance:{one:"redis server",other:"redis servers"}}},"redis.commands_calls":{info:"Total commands processed per second, by command type. Use this chart to identify most common commands being processed.",en:{instance:{one:"redis server",other:"redis servers"}}},"redis.master_last_io_since_time":{aggregationMethod:"min",info:"Time in seconds since the last interaction between replica and primary. A long time interval without communication could indicate a problem on the primary Redis server or on the replica or in the link between them.",en:{instance:{one:"redis server",other:"redis servers"}}},"redis.master_link_down_since_time":{aggregationMethod:"min",info:"Time in seconds since the link between replica and primary went down. This metric is only available when the connection between a primary and its replica has been lost. Any non zero value for this metric is cause for alert.",en:{instance:{one:"redis server",other:"redis servers"}}},"cassandra.client_requests_rate":{info:"Client requests received per second. Consider whether your workload is read-heavy or write-heavy while choosing a compaction strategy."},"cassandra.client_request_read_latency_histogram":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Read latency (99th percentile)",selectedDimensions:["p99"],colors:o.default[12],layout:{x:7.5,y:0,w:2.25,h:5}}],info:"Histogram for read latency, with bins for 50th, 75th, 90th, 95th, 98th, 99th and 99.9th percentile latency values.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.client_request_write_latency_histogram":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Write latency (99th percentile)",selectedDimensions:["p99"],layout:{x:9.75,y:0,w:2.25,h:5}}],info:"Histogram for write latency, with bins for 50th, 75th, 90th, 95th, 98th, 99th and 99.9th percentile latency values.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.client_requests_latency":{aggregationMethod:"avg",info:"Total response latency summed over all requests received per second. Latency could be impacted by disk access, network latency or replication configuration.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.key_cache_hit_ratio":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Key Cache Hit Ratio",desiredUnits:"percentage",valueRange:[0,100],colors:o.default[2],layout:{x:4.5,y:0,w:3,h:5}}],info:"Key cache hit ratio indicates the efficiency of the key cache. If ratio is consistently < 80% consider increasing cache size.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.key_cache_hit_rate":{aggregationMethod:"avg",info:"Key cache hit rate measures the cache hits and misses per second.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.storage_live_disk_space_used":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"Total Live Disk Space Used",layout:{x:2.25,y:0,w:2.25,h:5}}],info:"Amount of live disk space used. This does not include obsolete data waiting to be garbage collected.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.compaction_completed_tasks_rate":{info:"Compaction tasks completed per second.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.compaction_pending_tasks_count":{info:"Total compaction tasks in queue.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.thread_pool_active_tasks_count":{info:"Total tasks currently being processed.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.thread_pool_pending_tasks_count":{info:"Total tasks in queue awaiting a thread for processing.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.thread_pool_blocked_tasks_rate":{info:"Tasks that cannot be queued for processing yet.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.thread_pool_blocked_tasks_count":{info:"Total tasks that cannot yet be queued for processing.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.jvm_gc_rate":{info:"Rate of garbage collections.</p><p><b>ParNew</b> - young-generation. <b>cms (ConcurrentMarkSweep)</b> - old-generation.</p>",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.jvm_gc_time":{aggregationMethod:"min",info:"Elapsed time of garbage collection.</p><p><b>ParNew</b> - young-generation. <b>cms (ConcurrentMarkSweep)</b> - old-generation.</p>",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.client_requests_timeouts_rate":{info:"Requests which were not acknowledged within the configurable timeout window.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.client_requests_unavailables_rate":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Unavailable exceptions",desiredUnits:"requests/s",colors:o.default[1],layout:{x:0,y:0,w:2.25,h:5}}],info:"Requests for which the required number of nodes was unavailable.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.row_cache_hit_ratio":{aggregationMethod:"avg",info:"Row cache hit ratio indicates the efficiency of the row cache. If ratio is consistently < 80% consider increasing cache size.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.row_cache_hit_rate":{aggregationMethod:"avg",info:"Row cache hit rate measures the cache hits and misses per second.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.row_cache_utilization":{aggregationMethod:"avg",info:"The percentage of row cache memory currently in use. High utilization may indicate the need to increase cache size.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.row_cache_size":{info:"The size of the row cache in bytes. Adjusting this value can impact system performance.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.key_cache_utilization":{aggregationMethod:"avg",info:"The percentage of key cache memory currently in use. High utilization may indicate the need to increase cache size.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.key_cache_size":{info:"The size of the key cache in bytes. Adjusting this value can impact system performance.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.compaction_compacted_rate":{info:"The rate at which compactions are occurring in the system. If this rate is consistently high, it may indicate a need for more resources or a different compaction strategy.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.jvm_memory_used":{info:"The amount of memory used by the Cassandra JVM. High memory usage may indicate the need for additional resources or optimization.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.dropped_messages_rate":{info:"The rate at which messages are being dropped by the system. High rates may indicate a need for additional resources or a problem with the system.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"cassandra.client_requests_failures_rate":{info:"The rate at which client requests are failing. High rates may indicate a problem with the system or the need for additional resources.",en:{instance:{one:"cassandra server",other:"cassandra servers"}}},"coredns.dns_request_count_total":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total DNS Requests",colors:o.default[12],layout:{x:0,y:0,w:2.5,h:5}}],info:"The total number of DNS requests handled by CoreDNS. This can be useful for understanding overall system load and potential bottlenecks.",en:{instance:{one:"coredns server",other:"coredns servers"}}},"coredns.dns_responses_count_total":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total DNS Responses",colors:o.default[2],layout:{x:6,y:0,w:2.5,h:5}}],info:"The total number of DNS responses sent by CoreDNS. This can be useful for understanding overall system load and potential bottlenecks.",en:{instance:{one:"coredns server",other:"coredns servers"}}},"coredns.dns_no_matching_zone_dropped_total":{info:"The total number of DNS requests dropped by CoreDNS because no matching zone was found. This can be useful for identifying potential configuration issues.",en:{instance:{one:"coredns server",other:"coredns servers"}}},"coredns.dns_panic_count_total":{info:"The total number of panics that occurred in CoreDNS. This can be useful for identifying potential issues or bugs in the system.",en:{instance:{one:"coredns server",other:"coredns servers"}}},"activemq.messages":{info:"The total number of messages in the broker. This can be useful for understanding overall system throughput.",en:{instance:{one:"broker",other:"brokers"}}},"activemq.unprocessed_messages":{info:"The total number of messages that have not been processed. If this number consistently increases, it may indicate a problem with consumer performance or a bottleneck in the system.",en:{instance:{one:"broker",other:"brokers"}}},"activemq.consumers":{info:"The number of active consumers connected to the broker. This can be useful for understanding overall system load and potential bottlenecks.",en:{instance:{one:"broker",other:"brokers"}}},"apache.connections":{colors:o.default[4],mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",valueRange:[0,null],title:"Total Apache Connections",colors:o.default[4]}],info:"The total number of connections to the Apache web server. This can be useful for understanding overall system load and potential bottlenecks.",en:{instance:{one:"web server",other:"web servers"}}},"apache.requests":{colors:o.default[0],mainheads:[{"group_by[1]":["selected"],chartLibrary:"easypiechart",valueRange:[0,null],title:"Total Apache Requests",colors:o.default[0]}],info:"The number of requests processed by the Apache web server. This can be useful for understanding overall system throughput and potential performance issues.",en:{instance:{one:"web server",other:"web servers"}}},"apache.net":{colors:o.default[3],mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Apache Bandwidth",valueRange:[0,null],colors:o.default[3]}],info:"The number of bytes transferred over the network by the Apache web server. This can be useful for understanding overall network usage and potential performance issues.",en:{instance:{one:"web server",other:"web servers"}}},"apache.workers":{mainheads:[{"group_by[0]":["percentage-of-instance"],"group_by[1]":["selected"],"aggregation[1]":"max",selectedDimensions:["busy"],chartLibrary:"gauge",title:"Maximum Apache Workers Utilization",valueRange:[0,100],colors:o.default[5]}],info:"The number of worker processes used by the Apache web server. This can be useful for understanding overall system performance and potential bottlenecks.",en:{instance:{one:"web server",other:"web servers"}}},"apache.bytesperreq":{colors:o.default[3],info:"The number of bytes transferred per second over the network by the Apache web server. This can be useful for understanding overall network performance and potential bottlenecks.",en:{instance:{one:"web server",other:"web servers"}}},"apache.reqpersec":{colors:o.default[4],info:"The number of requests processed per second by the Apache web server. This can be useful for understanding overall system performance and potential bottlenecks.",en:{instance:{one:"web server",other:"web servers"}}},"apache.bytespersec":{colors:o.default[6],info:"The number of bytes transferred per request by the Apache web server. This can be useful for understanding the efficiency of the server and identifying potential performance issues.",en:{instance:{one:"web server",other:"web servers"}}},"apache.uptime":{aggregationMethod:"min",info:"The amount of time that the Apache web server has been running. This can be useful for understanding the overall health and stability of the server.",en:{instance:{one:"web server",other:"web servers"}}},"lighttpd.connections":{colors:o.default[4],mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",desiredUnits:"percentage",title:"Total Lighttpd Connections",colors:o.default[4]}],en:{instance:{one:"web server",other:"web servers"}}},"lighttpd.requests":{colors:o.default[0],mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Lighttpd Requests",colors:o.default[0]}],en:{instance:{one:"web server",other:"web servers"}}},"lighttpd.net":{colors:o.default[3],mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Lighttpd Bandwidth",colors:o.default[3]}],en:{instance:{one:"web server",other:"web servers"}}},"lighttpd.workers":{mainheads:[{"group_by[0]":["percentage-of-instance"],"group_by[1]":["selected"],"aggregation[1]":"max",selectedDimensions:["busy"],chartLibrary:"gauge",title:"Maximum Lighttpd Workers Utilization",colors:o.default[5],desiredUnits:"percentage"}],en:{instance:{one:"web server",other:"web servers"}}},"lighttpd.bytesperreq":{colors:o.default[3],en:{instance:{one:"web server",other:"web servers"}}},"lighttpd.reqpersec":{colors:o.default[4],en:{instance:{one:"web server",other:"web servers"}}},"lighttpd.bytespersec":{colors:o.default[6],en:{instance:{one:"web server",other:"web servers"}}},"lighttpd.uptime":{aggregationMethod:"min",info:"The uptime of the lighttpd server. Monitoring this metric can help identify if the server has been restarted or is experiencing issues with uptime.",en:{instance:{one:"web server",other:"web servers"}}},"lighttpd2.requests":{info:"The total number of requests received by the lighttpd server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"web server",other:"web servers"}}},"lighttpd2.status_codes":{info:"The distribution of HTTP response codes returned by the lighttpd server. Monitoring this metric can help identify if there are issues with the server or the components interacting with it.",en:{instance:{one:"web server",other:"web servers"}}},"lighttpd2.traffic":{info:"The amount of traffic handled by the lighttpd server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"web server",other:"web servers"}}},"lighttpd2.connections":{info:"The number of active connections to the lighttpd server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"web server",other:"web servers"}}},"lighttpd2.connection_states":{info:"The distribution of connection states for the lighttpd server. Monitoring this metric can help identify if there are issues with the server or the components interacting with it.",en:{instance:{one:"web server",other:"web servers"}}},"lighttpd2.memory_usage":{info:"The memory usage of the lighttpd server. Monitoring this metric can help identify if the server is experiencing memory usage issues that may affect its performance.",en:{instance:{one:"web server",other:"web servers"}}},"lighttpd2.uptime":{info:"The uptime of the lighttpd server. Monitoring this metric can help identify if the server has been restarted or is experiencing issues with uptime.",en:{instance:{one:"web server",other:"web servers"}}},"logstash.jvm_threads":{info:"The number of threads currently being used by the Logstash JVM. Monitoring this metric can help identify if the JVM is experiencing threading issues that may affect its performance."},"logstash.jvm_mem_heap_used":{aggregationMethod:"avg",info:"The amount of memory currently being used by the Logstash JVM's heap. Monitoring this metric can help identify if the JVM is experiencing memory usage issues that may affect its performance."},"logstash.jvm_mem_pools_eden":{info:"The amount of memory currently being used by the Logstash JVM's Eden memory pool. Monitoring this metric can help identify if the JVM is experiencing memory usage issues that may affect its performance."},"logstash.jvm_mem_pools_survivor":{info:"The amount of memory currently being used by the Logstash JVM's Survivor memory pool. Monitoring this metric can help identify if the JVM is experiencing memory usage issues that may affect its performance."},"logstash.jvm_mem_pools_old":{info:"The amount of memory currently being used by the Logstash JVM's Old memory pool. Monitoring this metric can help identify if the JVM is experiencing memory usage issues that may affect its performance."},"logstash.jvm_gc_collector_count":{info:"The number of garbage collection operations performed by the Logstash JVM. Monitoring this metric can help identify if the JVM is experiencing performance issues related to garbage collection."},"logstash.jvm_gc_collector_time":{aggregationMethod:"min",info:"The total time spent on garbage collection operations by the Logstash JVM. Monitoring this metric can help identify if the JVM is experiencing performance issues related to garbage collection."},"logstash.open_file_descriptors":{info:"The number of open file descriptors used by Logstash. Monitoring this metric can help identify if Logstash is experiencing file descriptor usage issues that may affect its performance."},"logstash.event":{info:"The number of events processed by Logstash. Monitoring this metric can help identify the usage patterns of Logstash and potential performance issues."},"logstash.event_duration":{info:"The latencies of events processed by Logstash. High latencies may indicate performance issues with Logstash or the components interacting with it."},"logstash.uptime":{aggregationMethod:"min",info:"The uptime of the Logstash server. Monitoring this metric can help identify if the server has been restarted or is experiencing issues with uptime."},"logstash.pipeline_event":{info:"The number of events processed by the specified Logstash pipeline. Monitoring this metric can help identify the usage patterns of the pipeline and potential performance issues."},"mongodb.operations":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Operations",desiredUnits:"operations",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}}],info:"The total number of operations performed by the MongoDB server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.operations_latency":{aggregationMethod:"avg",info:"The latencies of operations performed by the MongoDB server. High latencies may indicate performance issues with the server or the components interacting with it.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.connections":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Connections",desiredUnits:"connections",colors:o.default[0],layout:{x:3,y:0,w:3,h:5}}],info:"The total number of connections to the MongoDB server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.connections_rate":{info:"The rate of connections to the MongoDB server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.connections_state":{info:"The distribution of connection states for the MongoDB server. Monitoring this metric can help identify if there are issues with the server or the components interacting with it.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.network_io":{info:"The amount of network IO performed by the MongoDB server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.network_requests":{info:"The number of requests to the MongoDB server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.page_faults":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Page Faults",desiredUnits:"faults",colors:o.default[0],layout:{x:9,y:0,w:3,h:5}}],info:"The number of page faults encountered by the MongoDB server. Monitoring this metric can help identify if the server is experiencing memory usage issues that may affect its performance.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.tcmalloc_generic":{info:"The usage of the TCMalloc generic allocator by the MongoDB server. Monitoring this metric can help identify if the server is experiencing memory usage issues that may affect its performance.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.tcmalloc":{info:"The usage of the TCMalloc allocator by the MongoDB server. Monitoring this metric can help identify if the server is experiencing memory usage issues that may affect its performance.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.asserts":{info:"The number of asserts encountered by the MongoDB server. Monitoring this metric can help identify if the server is encountering issues that may affect its performance.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.current_transactions":{info:"The number of current transactions on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to transactions.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.shard_commit_types":{info:"The distribution of commit types for sharded collections on the MongoDB server. Monitoring this metric can help identify if there are issues with sharding on the server.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.active_clients":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"Total Active Clients",desiredUnits:"clients",colors:o.default[0],layout:{x:0,y:5,w:3,h:5}}],info:"The number of active clients connected to the MongoDB server. Monitoring this metric can help identify the usage patterns of the server and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.queued_operations":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Queued Operations",desiredUnits:"operations",colors:o.default[0],layout:{x:3,y:5,w:3,h:5}}],info:"The number of operations that are currently queued on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to queued operations.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.locks":{info:"The distribution of locks held by the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to locking.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.flow_control_timings":{info:"The timings of flow control events on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to flow control.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_blocks":{info:"The number of blocks currently held in the WiredTiger cache on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to the WiredTiger cache.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_cache":{info:"The usage of the WiredTiger cache on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to the WiredTiger cache.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_capacity":{info:"The capacity of the WiredTiger cache on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to the WiredTiger cache.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_connection":{info:"The number of connections currently open in the WiredTiger storage engine on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to connections.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_cursor":{info:"The number of cursors currently open in the WiredTiger storage engine on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to cursors.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_lock":{info:"The number of locks currently held in the WiredTiger storage engine on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to locking.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_lock_duration":{info:"The duration of locks held in the WiredTiger storage engine on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to locking.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_log_ops":{info:"The number of operations written to the WiredTiger log on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to logging.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.wiredtiger_transactions":{info:"The number of transactions currently open in the WiredTiger storage engine on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to transactions.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.database_collections":{info:"The number of collections in the specified database on the MongoDB server. Monitoring this metric can help identify the usage patterns of the database and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.database_indexes":{info:"The number of indexes in the specified database on the MongoDB server. Monitoring this metric can help identify the usage patterns of the database and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.database_views":{info:"The number of views in the specified database on the MongoDB server. Monitoring this metric can help identify the usage patterns of the database and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.database_documents":{info:"The number of documents in the specified database on the MongoDB server. Monitoring this metric can help identify the usage patterns of the database and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.database_storage_size":{info:"The storage size of the specified database on the MongoDB server. Monitoring this metric can help identify if the database is using an appropriate amount of storage.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.replication_lag":{info:"The amount of lag in replication on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to replication.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.replication_heartbeat_latency":{aggregationMethod:"avg",info:"The latencies of replication heartbeats on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to replication.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.replication_node_ping":{aggregationMethod:"avg",info:"The latencies of pings to replication nodes on the MongoDB server. Monitoring this metric can help identify if the server is experiencing performance issues related to replication.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.shard_nodes_count":{info:"The number of nodes in the specified shard on the MongoDB server. Monitoring this metric can help identify the usage patterns of the shard and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.shard_databases_status":{info:"The status of the databases in the specified shard on the MongoDB server. Monitoring this metric can help identify if there are issues with the databases in the shard.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"mongodb.chunks":{info:"The number of chunks in the specified shard on the MongoDB server. Monitoring this metric can help identify the usage patterns of the shard and potential performance issues.",en:{instance:{one:"mongodb server",other:"mongodb servers"}}},"nginx.connections":{colors:o.default[4],mainheads:[{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"gauge",title:"Total Connections",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],en:{instance:{one:"web server",other:"web servers"}}},"nginx.requests":{colors:o.default[0],mainheads:[{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"gauge",title:"Total Requests",colors:o.default[0],layout:{x:3,y:0,w:3,h:5}}],en:{instance:{one:"web server",other:"web servers"}}},"nginx.connections_status":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Connection Status",layout:{x:6,y:0,w:3,h:5}}],info:"The current status of connections on the nginx server. Monitoring this metric can help identify potential performance issues related to connections.",en:{instance:{one:"web server",other:"web servers"}}},"nginx.connections_accepted_handled":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Connections Handled",layout:{x:9,y:0,w:3,h:5}}],info:"The number of accepted and handled connections on the nginx server. Monitoring this metric can help identify potential performance issues related to connections.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.client_connections_rate":{mainheads:[{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"gauge",desiredUnits:"connections/s",title:"Total Client Connections Rate",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],info:"Accepted and dropped (not handled) connections. A connection is considered <b>dropped</b> if the worker process is unable to get a connection for the request by establishing a new connection or reusing an open one.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.client_connections_count":{mainheads:[{valueRange:[0,null],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Client Connections per State",layout:{x:3,y:0,w:3,h:2.5}}],info:"The current number of client connections. A connection is considered <b>idle</b> if there are currently no active requests.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.ssl_handshakes_rate":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",desiredUnits:"handshakes/s",title:"Total SSL Handshake Rate",colors:o.default[4],layout:{x:3,y:2.5,w:3,h:2.5}}],info:"Successful and failed SSL handshakes.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.ssl_session_reuses_rate":{info:"The number of session reuses during SSL handshake.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.ssl_handshakes_failures_rate":{mainheads:[{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"easypiechart",desiredUnits:"failures/s",title:"SSL Handshake Failures",colors:o.default[4],layout:{x:6,y:0,w:3,h:5}}],info:"<p>SSL handshake failures.</p><p><b>NoCommonProtocol</b> - failed because of no common protocol. <b>NoCommonCipher</b> - failed because of no shared cipher. <b>Timeout</b> - failed because of a timeout. <b>PeerRejectedCert</b> - failed because a client rejected the certificate.</p>",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.ssl_verification_errors_rate":{info:'<p>SSL verification errors.</p><p><b>NoCert</b> - a client did not provide the required certificate. <b>ExpiredCert</b> - an expired or not yet valid certificate was presented by a client. <b>RevokedCert</b> - a revoked certificate was presented by a client. <b>HostnameMismatch</b> - server"s certificate does not match the hostname. <b>Other</b> - other SSL certificate verification errors.</p>',en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_requests_rate":{mainheads:[{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"gauge",desiredUnits:"req/s",title:"Total HTTP Requests Rate",colors:o.default[4],layout:{x:9,y:0,w:3,h:5}}],info:"The number of HTTP requests received from clients.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_requests_count":{mainheads:[{chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Total Requests",layout:{x:0,y:5,w:3,h:2.5}}],info:"The current number of client requests.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.uptime":{aggregationMethod:"min",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Uptime",desiredUnits:"dHH:MM:ss",layout:{x:0,y:7.5,w:3,h:2.5}}],info:"The time elapsed since the NGINX process was started.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_server_zone_requests_rate":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total HTTP Server Zone Requests Rate",desiredUnits:"requests/s",layout:{x:3,y:5,w:3,h:5}}],info:"The number of requests to the HTTP Server Zone.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_server_zone_responses_per_code_class_rate":{info:"The number of responses from the HTTP Server Zone. Responses are grouped by HTTP status code class.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_server_zone_traffic_rate":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total HTTP Server Zone Traffic Rate",desiredUnits:"b/s",layout:{x:6,y:5,w:3,h:5}}],info:"The amount of data transferred to and from the HTTP Server Zone.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_server_zone_requests_processing_count":{info:"The number of client requests that are currently being processed by the HTTP Server Zone.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_server_zone_requests_discarded_rate":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total HTTP Server Zone Discarded Requests Rate",desiredUnits:"requests/s",layout:{x:9,y:5,w:3,h:5}}],info:"The number of requests to the HTTP Server Zone completed without sending a response.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_location_zone_requests_rate":{info:"The number of requests to the HTTP Location Zone.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_location_zone_responses_per_code_class_rate":{info:"The number of responses from the HTTP Location Zone. Responses are grouped by HTTP status code class.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_location_zone_traffic_rate":{info:"The amount of data transferred to and from the HTTP Location Zone.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_location_zone_requests_discarded_rate":{info:"The number of requests to the HTTP Location Zone completed without sending a response.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_peers_count":{info:"The number of HTTP Upstream servers.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_zombies_count":{info:"The current number of HTTP Upstream servers removed from the group but still processing active client requests.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_keepalive_count":{info:"The current number of idle keepalive connections to the HTTP Upstream.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_server_requests_rate":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total HTTP Upstream Request Rate",desiredUnits:"requests/s",layout:{x:0,y:10,w:3,h:5}}],info:"The number of client requests forwarded to the HTTP Upstream Server.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_server_responses_per_code_class_rate":{info:"The number of responses received from the HTTP Upstream Server. Responses are grouped by HTTP status code class.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_server_response_time":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average HTTP Upstream Response Time",desiredUnits:"milliseconds",layout:{x:3,y:10,w:3,h:5}}],info:"The average time to get a complete response from the HTTP Upstream Server.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_server_response_header_time":{aggregationMethod:"avg",info:"The average time to get a response header from the HTTP Upstream Server.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_server_traffic_rate":{info:"The amount of traffic transferred to and from the HTTP Upstream Server.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_server_state":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"HTTP Upstream Server State",layout:{x:6,y:10,w:3,h:5}}],info:"The current state of the HTTP Upstream Server. Status is active if set to 1.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_server_connections_count":{info:"The current number of active connections to the HTTP Upstream Server.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_upstream_server_downtime":{info:"The time the HTTP Upstream Server has spent in the <b>unavail</b>, <b>checking</b>, and <b>unhealthy</b> states.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_cache_state":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total HTTP Cache State",desiredUnits:"responses/s",layout:{x:9,y:10,w:3,h:5}}],info:"HTTP cache current state. <b>Cold</b> means that the cache loader process is still loading data from disk into the cache.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_cache_iops":{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total HTTP Cache IOPS",desiredUnits:"responses/s",layout:{x:9,y:15,w:3,h:5}}],info:"<p>HTTP cache IOPS.</p><p><b>Served</b> - valid, expired, and revalidated responses read from the cache. <b>Written</b> - miss, expired, and bypassed responses written to the cache. <b>Bypassed</b> - miss, expired, and bypass responses.</p>",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_cache_io":{info:"<p>HTTP cache IO.</p><p><b>Served</b> - valid, expired, and revalidated responses read from the cache. <b>Written</b> - miss, expired, and bypassed responses written to the cache. <b>Bypassed</b> - miss, expired, and bypass responses.</p>",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.http_cache_size":{info:"The current size of the cache.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_server_zone_connections_rate":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Stream Server Zone Connections Rate",desiredUnits:"connections/s",layout:{x:0,y:15,w:3,h:5}}],info:"The number of accepted connections to the Stream Server Zone.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_server_zone_sessions_per_code_class_rate":{info:"The number of completed sessions for the Stream Server Zone. Sessions grouped by status code class.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_server_zone_traffic_rate":{info:"The amount of data transferred to and from the Stream Server Zone.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_server_zone_connections_processing_count":{info:"The number of client connections to the Stream Server Zone that are currently being processed.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_server_zone_connections_discarded_rate":{info:"The number of connections to the Stream Server Zone completed without creating a session.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_upstream_peers_count":{info:"The number of Stream Upstream servers.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_upstream_zombies_count":{info:"The current number of HTTP Upstream servers removed from the group but still processing active client connections.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_upstream_server_connections_rate":{info:"The number of connections forwarded to the Stream Upstream Server.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_upstream_server_traffic_rate":{info:"The amount of traffic transferred to and from the Stream Upstream Server.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_upstream_server_state":{info:"The current state of the Stream Upstream Server. Status is active if set to 1.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_upstream_server_downtime":{info:"The time the Stream Upstream Server has spent in the <b>unavail</b>, <b>checking</b>, and <b>unhealthy</b> states.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.stream_upstream_server_connections_count":{info:"The current number of connections to the Stream Upstream Server.",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.resolver_zone_requests_rate":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",desiredUnits:"requests/s",title:"Total Resolver Zone Request Rate",colors:o.default[4],layout:{x:3,y:15,w:3,h:5}}],info:"<p>Resolver zone DNS requests.</p><p><b>Name</b> - requests to resolve names to addresses. <b>Srv</b> - requests to resolve SRV records. <b>Addr</b> - requests to resolve addresses to names.</p>",en:{instance:{one:"web server",other:"web servers"}}},"nginxplus.resolver_zone_responses_rate":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",desiredUnits:"responses/s",title:"Total Resolver Zone Responses Rate",colors:o.default[4],layout:{x:6,y:15,w:3,h:5}}],info:"<p>Resolver zone DNS responses.</p><p><b>NoError</b> - successful responses. <b>FormErr</b> - format error responses. <b>ServFail</b> - server failure responses. <b>NXDomain</b> - host not found responses. <b>NotImp</b> - unimplemented responses. <b>Refused</b> - operation refused responses. <b>TimedOut</b> - timed out requests. <b>Unknown</b> - requests completed with an unknown error.</p>",en:{instance:{one:"web server",other:"web servers"}}},"nginxvts.requests_total":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Requests",layout:{x:0,y:0,w:3,h:5}}],info:"The total number of requests on the nginx server. Monitoring this metric can help identify potential performance issues related to requests.",en:{instance:{one:"web server",other:"web servers"}}},"nginxvts.active_connections":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Active Connections",layout:{x:6,y:0,w:3,h:5}}],info:"The number of active connections on the nginx server. Monitoring this metric can help identify potential performance issues related to connections.",en:{instance:{one:"web server",other:"web servers"}}},"nginxvts.uptime":{aggregationMethod:"min",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Uptime",layout:{x:9,y:0,w:3,h:5}}],info:"The uptime of the nginx server. Monitoring this metric can help identify potential performance issues related to server uptime.",en:{instance:{one:"web server",other:"web servers"}}},"nginxvts.shm_usage":{info:"The usage of the shared memory on the nginx server. Monitoring this metric can help identify potential performance issues related to shared memory usage.",en:{instance:{one:"web server",other:"web servers"}}},"nginxvts.server_requests_total":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Server Requests",layout:{x:3,y:0,w:3,h:5}}],info:"The total number of requests on the nginx server. Monitoring this metric can help identify potential performance issues related to server requests.",en:{instance:{one:"web server",other:"web servers"}}},"httpcheck.response_time":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Response Time",layout:{x:0,y:0,w:3,h:5}}],info:"The <b>response time</b> describes the time passed between request and response. Currently, the accuracy of the response time is low and should be used as reference only.",groupBy:["label"],groupByLabel:["_collect_job"]},"httpcheck.response_length":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Response Length",layout:{x:3,y:0,w:3,h:5}}],info:"The <b>response length</b> counts the number of characters in the response body. For static pages, this should be mostly constant.",groupBy:["label"],groupByLabel:["_collect_job"]},"httpcheck.status":{mainheads:[{"group_by[0]":["dimension"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"HTTP Server Check Status",layout:{x:6,y:0,w:3,h:5}}],info:"This chart verifies the response of the webserver. Each status dimension will have a value of <b>1</b> if triggered. Dimension <b>success</b> is <b>1</b> only if all constraints are satisfied. This chart is most useful for alerts or third-party apps.",groupBy:["label"],groupByLabel:["_collect_job"],dimensionsOnNonDimensionGrouping:["success"]},"netdata.response_time":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average API Response Time",layout:{x:6,y:0,w:3,h:5}}],info:"The netdata API response time measures the time netdata needed to serve requests. This time includes everything, from the reception of the first byte of a request, to the dispatch of the last byte of its reply, therefore it includes all network latencies involved (i.e. a client over a slow network will influence these metrics).",en:{instance:{one:"agent",other:"agents"}}},"netdata.server_cpu":{mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",chartLibrary:"easypiechart",title:"Average CPU usage per Agent",colors:o.default[12]}],info:"The CPU time consumed by Netdata process in user and system space.",en:{instance:{one:"agent",other:"agents"}}},"netdata.memory":{mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",chartLibrary:"easypiechart",title:"Average memory usage per Agent",colors:o.default[1]}],info:"The memory consumed by the Netdata agent.",en:{instance:{one:"agent",other:"agents"}}},"netdata.net":{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total network traffic across all agents",layout:{x:9,y:0,w:3,h:5}}],info:"The network traffic generated by Netdata agent.",en:{instance:{one:"agent",other:"agents"}}},"netdata.ebpf_threads":{info:'Show total number of threads and number of active threads. For more details about the threads, see the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#ebpf-programs-configuration-options" target="_blank">official documentation</a>.',en:{instance:{one:"agent",other:"agents"}}},"netdata.ebpf_load_methods":{info:"Show number of threads loaded using legacy code (independent binary) or <b>CO-RE (Compile Once Run Everywhere)</b>.",en:{instance:{one:"agent",other:"agents"}}},"retroshare.bandwidth":{info:"RetroShare inbound and outbound traffic.",mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Inbound",selectedDimensions:["bandwidth_down_kb"],colors:o.default[0]},{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Outbound",selectedDimensions:["bandwidth_up_kb"],colors:o.default[1]}]},"retroshare.peers":{info:"Number of (connected) RetroShare friends.",mainheads:[{"group_by[0]":["selected"],urlOptions:["friends"],selectedDimensions:["peers_connected"],chartLibrary:"easypiechart",title:"Total Connected Friends",desiredUnits:""}]},"retroshare.dht":{info:"Statistics about RetroShare's DHT. These values are estimated!"},"fping.quality":{family:"quality",colors:o.default[10]},"fping.packets":{family:"packets"},"cgroup.cpu_limit":{aggregationMethod:"avg",valueRange:[0,null],mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",groupingMethod:"max",valueRange:[0,100],selectedDimensions:["used"],chartLibrary:"gauge",title:"Maximum CPU Utilization (within limit)",units:"percentage",layout:{x:0,y:0,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["cgroup_name"],"aggregation[0]":"max",groupingMethod:"max",valueRange:[0,null],selectedDimensions:["used"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Maximum CPU Utilization (within limit) per cgroup",units:"percentage",layout:{x:0,y:5,w:4,h:5}}],info:he,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cpu":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"max",groupingMethod:"max",valueRange:[0,100],chartLibrary:"gauge",title:"Maximum CPU Utilization",units:"percentage",layout:{x:3,y:0,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["cgroup_name"],"aggregation[0]":"max",groupingMethod:"max",valueRange:[0,null],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Maximum CPU Utilization per cgroup",units:"percentage",layout:{x:4,y:5,w:4,h:5}}],info:de,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.throttled":{aggregationMethod:"avg",info:ue,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.throttled_duration":{aggregationMethod:"avg",info:pe,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cpu_shares":{info:me,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cpu_per_core":{aggregationMethod:"avg",info:fe,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cpu_some_pressure":{aggregationMethod:"avg",info:ge,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cpu_some_pressure_stall_time":{info:be,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cpu_full_pressure":{aggregationMethod:"avg",info:ye,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cpu_full_pressure_stall_time":{info:_e,en:{instance:{one:"cgroup",other:"cgroups"}}},"k8s.cgroup.cpu_limit":{aggregationMethod:"avg",valueRange:[0,null],mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",selectedDimensions:["used"],chartLibrary:"gauge",title:"Maximum CPU Utilization (within limit)",units:"percentage"}],info:he,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.cpu":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"max",chartLibrary:"gauge",title:"Maximum CPU Utilization",units:"percentage"}],info:de,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.throttled":{aggregationMethod:"avg",info:ue,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.throttled_duration":{aggregationMethod:"avg",info:pe,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.cpu_shares":{info:me,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.cpu_per_core":{aggregationMethod:"avg",info:fe,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.cpu_some_pressure":{aggregationMethod:"avg",info:ge,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.cpu_some_pressure_stall_time":{info:be,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.cpu_full_pressure":{aggregationMethod:"avg",info:ye,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.cpu_full_pressure_stall_time":{info:_e,en:{instance:{one:"container",other:"containers"}}},"cgroup.mem_utilization":{aggregationMethod:"avg",info:ve,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.mem_usage_limit":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["percentage-of-instance"],"group_by[1]":["selected"],"aggregation[1]":"max",groupingMethod:"max",valueRange:[0,100],selectedDimensions:["used"],chartLibrary:"gauge",title:"Maximum Memory Utilization (within limit)",layout:{x:6,y:0,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["cgroup_name"],"aggregation[0]":"max",groupingMethod:"max",selectedDimensions:["used"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Maximum Memory Utilization (within limit) per cgroup",layout:{x:8,y:5,w:4,h:5}}],info:we,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.mem_usage":{mainheads:[{"group_by[0]":["dimension"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,selectedDimensions:["ram"],title:"Total RAM Used",colors:o.default[11],layout:{x:9,y:0,w:3,h:5}}],info:ke,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.mem":{info:Te,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.mem_failcnt":{info:Se,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.writeback":{info:Ze,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.mem_activity":{info:xe,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.pgfaults":{info:Pe,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.memory_some_pressure":{aggregationMethod:"avg",info:Me,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.memory_some_pressure_stall_time":{info:qe,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.memory_full_pressure":{aggregationMethod:"avg",info:Ce,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.memory_full_pressure_stall_time":{info:Le,en:{instance:{one:"cgroup",other:"cgroups"}}},"k8s.cgroup.mem_utilization":{aggregationMethod:"avg",info:ve,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.mem_usage_limit":{aggregationMethod:"avg",mainheads:[{"group_by[0]":["percentage-of-instance"],"group_by[1]":["selected"],"aggregation[1]":"max",valueRange:[0,null],selectedDimensions:["used"],chartLibrary:"gauge",title:"Maximum Memory Used (within limit)",units:"percentage"}],info:we,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.mem_usage":{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["ram"],chartLibrary:"gauge",title:"Total RAM Used",units:"MB"}],info:ke,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.mem":{info:Te,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.mem_failcnt":{info:Se,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.writeback":{info:Ze,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.mem_activity":{info:xe,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.pgfaults":{info:Pe,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.memory_some_pressure":{aggregationMethod:"avg",info:Me,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.memory_some_pressure_stall_time":{info:qe,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.memory_full_pressure":{aggregationMethod:"avg",info:Ce,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.memory_full_pressure_stall_time":{info:Le,en:{instance:{one:"container",other:"containers"}}},"cgroup.io":{mainheads:[{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"easypiechart",title:"Total Disk Read",selectedDimensions:["read"],colors:o.default[0],priority:5,layout:{x:0,y:10,w:2,h:5}},{"group_by[0]":["selected"],valueRange:[0,null],chartLibrary:"easypiechart",title:"Total Disk Write",selectedDimensions:["write"],colors:o.default[1],priority:6,layout:{x:2,y:10,w:2,h:5}}],info:De,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.serviced_ops":{info:Ie,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.queued_ops":{info:Ne,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.merged_ops":{info:Re,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.throttle_io":{info:Ue,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.throttle_serviced_ops":{info:Be,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.pids_current":{info:Ae,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.io_some_pressure":{aggregationMethod:"avg",info:Fe,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.io_some_pressure_stall_time":{info:Oe,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.io_full_pressure":{aggregationMethod:"avg",info:ze,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.io_full_pressure_stall_time":{info:Ee,en:{instance:{one:"cgroup",other:"cgroups"}}},"k8s.cgroup.io":{info:De,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.serviced_ops":{info:Ie,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.queued_ops":{info:Ne,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.merged_ops":{info:Re,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.throttle_io":{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["read"],chartLibrary:"gauge",title:"Total Read Disk I/O",desiredUnits:"KB/s"},{"group_by[0]":["selected"],selectedDimensions:["write"],chartLibrary:"gauge",title:"Total Write Disk I/O",desiredUnits:"KB/s"}],info:Ue,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.throttle_serviced_ops":{info:Be,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.pids_current":{info:Ae,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.io_some_pressure":{aggregationMethod:"avg",info:Fe,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.io_some_pressure_stall_time":{info:Oe,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.io_full_pressure":{aggregationMethod:"avg",info:ze,en:{instance:{one:"container",other:"containers"}}},"k8s.cgroup.io_full_pressure_stall_time":{info:Ee,en:{instance:{one:"container",other:"containers"}}},"cgroup.swap_read":{info:V,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.swap_write":{info:j,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.fd_open":{info:S,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.fd_open_error":{info:Z,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.fd_close":{info:x,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.fd_close_error":{info:P,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_unlink":{info:B,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_write":{info:D,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_write_error":{info:N,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_read":{info:I,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_read_error":{info:R,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_write_bytes":{info:U,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_read_bytes":{info:A,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_fsync":{info:F,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_fsync_error":{info:O,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_open":{info:z,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_open_error":{info:E,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_create":{info:H,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.vfs_create_error":{info:Q,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.process_create":{info:_,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.thread_create":{info:v,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.task_exit":{info:w,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.task_close":{info:k,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.task_error":{info:T,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.dc_ratio":{aggregationMethod:"avg",info:'Percentage of file accesses that were present in the directory cache. 100% means that every file that was accessed was present in the directory cache. If files are not present in the directory cache 1) they are not present in the file system, 2) the files were not accessed before. Read more about <a href="https://www.kernel.org/doc/htmldocs/filesystems/the_directory_cache.html" target="_blank">directory cache</a>. Netdata also gives a summary for these charts in <a href="#menu_filesystem_submenu_directory_cache__eBPF_">Filesystem submenu</a>.',en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.shmget":{info:J,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.shmat":{info:X,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.shmdt":{info:ee,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.shmctl":{info:$,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.outbound_conn_v4":{info:te,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.outbound_conn_v6":{info:se,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.net_bytes_send":{info:ne,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.net_bytes_recv":{info:ae,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.net_tcp_send":{info:oe,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.net_tcp_recv":{info:re,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.net_retransmit":{info:ie,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.net_udp_send":{info:ce,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.net_udp_recv":{info:le,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.dc_hit_ratio":{aggregationMethod:"avg",info:M,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.dc_reference":{info:q,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.dc_not_cache":{info:C,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.dc_not_found":{info:L,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cachestat_ratio":{aggregationMethod:"avg",info:G,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cachestat_dirties":{info:W,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cachestat_hits":{info:K,en:{instance:{one:"cgroup",other:"cgroups"}}},"cgroup.cachestat_misses":{info:Y,en:{instance:{one:"cgroup",other:"cgroups"}}},"systemd.service.cpu.utilization":{info:'Total CPU utilization within the system-wide CPU resources (all cores). The amount of time spent by tasks of the cgroup in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user and kernel</a> modes.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["service_name"],chartLibrary:"bars",title:"Top by CPU",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:0,y:0,w:4,h:5}}],en:{instance:{one:"service",other:"services"}}},"systemd.service.memory.usage":{info:"The amount of used RAM and swap memory.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["service_name"],selectedDimensions:["ram"],chartLibrary:"bars",title:"Top by RAM",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:4,y:0,w:4,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["service_name"],selectedDimensions:["swap"],chartLibrary:"bars",title:"Top by Swap",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:8,y:0,w:4,h:5}}],en:{instance:{one:"service",other:"services"}}},"systemd.service.memory.failcnt":{info:"The number of memory usage hits limits.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}},"systemd.service.memory.ram.usage":{info:'Memory usage statistics. The individual metrics are described in the memory.stat section for <a href="https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/memory.html#per-memory-cgroup-local-status" target="_blank">cgroup-v1</a> and <a href="https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#memory-interface-files" target="_blank">cgroup-v2</a>.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],en:{instance:{one:"service",other:"services"}}},"systemd.service.memory.writeback":{info:"Dirty is the amount of memory waiting to be written to disk. Writeback is how much memory is actively being written to disk.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],en:{instance:{one:"service",other:"services"}}},"systemd.service.memory.paging.faults":{info:'Memory <a href="https://en.wikipedia.org/wiki/Page_fault" target="_blank">page fault</a> statistics.',aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],en:{instance:{one:"service",other:"services"}}},"systemd.service.memory.paging.io":{info:"Memory accounting statistics. In - a page is accounted as either mapped anon page (RSS) or cache page (Page Cache) to the cgroup. Out - a page is unaccounted from the cgroup.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}},"systemd.service.disk.io":{info:"The amount of data transferred to and from specific devices as seen by the CFQ scheduler. It is not updated when the CFQ scheduler is operating on a request queue.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}},"systemd.service.disk.iops":{info:"The number of I/O operations performed on specific devices as seen by the CFQ scheduler.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}},"systemd.service.disk.throttle.io":{info:"The amount of data transferred to and from specific devices as seen by the throttling policy.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}},"systemd.service.disk.throttle.iops":{info:"The number of I/O operations performed on specific devices as seen by the throttling policy.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}},"systemd.service.disk.queued_iops":{info:"The number of requests queued for I/O operations.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}}},(0,a.Z)(n,"systemd.service.disk.queued_iops",{info:"The number of BIOS requests merged into requests for I/O operations.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"systemd.service.pids.current",{info:"The number of processes currently in the cgroup.",aggregationMethod:"sum",groupBy:["label"],groupByLabel:["service_name"],chartType:"stacked",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"services.cpu",{aggregationMethod:"avg",info:'Total CPU utilization within the system-wide CPU resources (all cores). The amount of time spent by tasks of the cgroup in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user and kernel</a> modes.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_usage",{aggregationMethod:"avg",info:"The amount of used RAM.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_rss",{info:'The amount of used <a href="https://en.wikipedia.org/wiki/Resident_set_size" target="_blank">RSS</a> memory. It includes transparent hugepages.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_mapped",{info:'The size of <a href="https://en.wikipedia.org/wiki/Memory-mapped_file" target="_blank">memory-mapped</a> files.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_cache",{info:'The amount of used <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">page cache</a> memory.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_writeback",{info:'The amount of file/anon cache that is <a href="https://en.wikipedia.org/wiki/Cache_(computing)#Writing_policies" target="_blank">queued for syncing</a> to disk.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_pgfault",{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Types" target="_blank">page faults</a>. It includes both minor and major page faults.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_pgmajfault",{info:'The number of <a href="https://en.wikipedia.org/wiki/Page_fault#Major" target="_blank">major</a> page faults.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_pgpgin",{info:"The amount of memory charged to the cgroup. The charging event happens each time a page is accounted as either mapped anon page(RSS) or cache page(Page Cache) to the cgroup.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_pgpgout",{info:"The amount of memory uncharged from the cgroup. The uncharging event happens each time a page is unaccounted from the cgroup.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.mem_failcnt",{info:"The number of memory usage hits limits.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.swap_usage",{info:'The amount of used <a href="https://en.wikipedia.org/wiki/Memory_paging#Unix_and_Unix-like_systems" target="_blank">swap</a> memory.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.io_read",{info:"The amount of data transferred from specific devices as seen by the CFQ scheduler. It is not updated when the CFQ scheduler is operating on a request queue.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.io_write",{info:"The amount of data transferred to specific devices as seen by the CFQ scheduler. It is not updated when the CFQ scheduler is operating on a request queue.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.io_ops_read",{info:"The number of read operations performed on specific devices as seen by the CFQ scheduler.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.io_ops_write",{info:"The number write operations performed on specific devices as seen by the CFQ scheduler.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.throttle_io_read",{info:"The amount of data transferred from specific devices as seen by the throttling policy.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.throttle_io_write",{info:"The amount of data transferred to specific devices as seen by the throttling policy.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.throttle_io_ops_read",{info:"The number of read operations performed on specific devices as seen by the throttling policy.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.throttle_io_ops_write",{info:"The number of write operations performed on specific devices as seen by the throttling policy.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.queued_io_ops_read",{info:"The number of queued read requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.queued_io_ops_write",{info:"The number of queued write requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.merged_io_ops_read",{info:"The number of read requests merged.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.merged_io_ops_write",{info:"The number of write requests merged.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.swap_read",{info:V+'<div id="ebpf_services_swap_read"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.swap_write",{info:j+'<div id="ebpf_services_swap_write"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.fd_open",{info:S+'<div id="ebpf_services_file_open"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.fd_open_error",{info:Z+'<div id="ebpf_services_file_open_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.fd_close",{info:x+'<div id="ebpf_services_file_closed"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.fd_close_error",{info:P+'<div id="ebpf_services_file_close_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_unlink",{info:B+'<div id="ebpf_services_vfs_unlink"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_write",{info:D+'<div id="ebpf_services_vfs_write"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_write_error",{info:N+'<div id="ebpf_services_vfs_write_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_read",{info:I+'<div id="ebpf_services_vfs_read"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_read_error",{info:R+'<div id="ebpf_services_vfs_read_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_write_bytes",{info:U+'<div id="ebpf_services_vfs_write_bytes"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_read_bytes",{info:A+'<div id="ebpf_services_vfs_read_bytes"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_fsync",{info:F+'<div id="ebpf_services_vfs_sync"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_fsync_error",{info:O+'<div id="ebpf_services_vfs_sync_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_open",{info:z+'<div id="ebpf_services_vfs_open"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_open_error",{info:E+'<div id="ebpf_services_vfs_open_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_create",{info:H+'<div id="ebpf_services_vfs_create"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.vfs_create_error",{info:Q+'<div id="ebpf_services_vfs_create_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.process_create",{info:_+'<div id="ebpf_services_process_create"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.thread_create",{info:v+'<div id="ebpf_services_thread_create"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.task_exit",{info:w+'<div id="ebpf_services_process_exit"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.task_close",{info:k+'<div id="ebpf_services_task_release"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.task_error",{info:T+'<div id="ebpf_services_task_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.dc_hit_ratio",{aggregationMethod:"avg",info:M+'<div id="ebpf_services_dc_hit"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.dc_reference",{info:q+'<div id="ebpf_services_dc_reference"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.dc_not_cache",{info:C+'<div id="ebpf_services_dc_not_cache"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.dc_not_found",{info:L+'<div id="ebpf_services_dc_not_found"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.cachestat_ratio",{aggregationMethod:"avg",info:G+'<div id="ebpf_services_cachestat_ratio"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.cachestat_dirties",{info:W+'<div id="ebpf_services_cachestat_dirties"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.cachestat_hits",{info:K+'<div id="ebpf_services_cachestat_hits"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.cachestat_misses",{info:Y+'<div id="ebpf_services_cachestat_misses"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.shmget",{info:J+'<div id="ebpf_services_shm_get"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.shmat",{info:X+'<div id="ebpf_services_shm_at"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.shmdt",{info:ee+'<div id="ebpf_services_shm_dt"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.shmctl",{info:$+'<div id="ebpf_services_shm_ctl"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.outbound_conn_v4",{info:te+'<div id="ebpf_services_outbound_conn_ipv4"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.outbound_conn_v6",{info:se+'<div id="ebpf_services_outbound_conn_ipv6"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.net_bytes_send",{info:ne+'<div id="ebpf_services_bandwidth_sent"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.net_bytes_recv",{info:ae+'<div id="ebpf_services_bandwidth_received"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.net_tcp_send",{info:oe+'<div id="ebpf_services_bandwidth_tcp_sent"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.net_tcp_recv",{info:re+'<div id="ebpf_services_bandwidth_tcp_received"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.net_retransmit",{info:ie+'<div id="ebpf_services_tcp_retransmit"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.net_udp_send",{info:ce+'<div id="ebpf_services_udp_sendmsg"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"services.net_udp_recv",{info:le+'<div id="ebpf_services_udp_recv"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"beanstalk.cpu_usage",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total CPU time consumed",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],info:"Amount of CPU Time for user and system used by beanstalkd."}),(0,a.Z)(n,"beanstalk.jobs_rate",{info:"The rate of jobs processed by the beanstalkd served."}),(0,a.Z)(n,"beanstalk.connections_rate",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Connections Rate",colors:o.default[12],layout:{x:3,y:0,w:3,h:5}}],info:"The rate of connections opened to beanstalkd."}),(0,a.Z)(n,"beanstalk.commands_rate",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Commands Received Rate",colors:o.default[7],layout:{x:6,y:0,w:3,h:5}}],info:"The rate of commands received by beanstalkd."}),(0,a.Z)(n,"beanstalk.current_tubes",{info:"Total number of current tubes on the server including the default tube (which always exists)."}),(0,a.Z)(n,"beanstalk.current_jobs",{info:"Current number of jobs in all tubes grouped by status: urgent, ready, reserved, delayed and buried."}),(0,a.Z)(n,"beanstalk.current_connections",{info:"Current number of connections group by connection type: written, producers, workers, waiting."}),(0,a.Z)(n,"beanstalk.binlog",{info:"The rate of records <b>written</b> to binlog and <b>migrated</b> as part of compaction."}),(0,a.Z)(n,"beanstalk.uptime",{aggregationMethod:"min",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Uptime",layout:{x:9,y:0,w:3,h:5}}],info:"Total time beanstalkd server has been up for."}),(0,a.Z)(n,"beanstalk.jobs",{info:"Number of jobs currently in the tube grouped by status: urgent, ready, reserved, delayed and buried."}),(0,a.Z)(n,"beanstalk.connections",{info:"The current number of connections to this tube grouped by connection type; using, waiting and watching."}),(0,a.Z)(n,"beanstalk.commands",{info:"The rate of <b>delete</b> and <b>pause</b> commands executed by beanstalkd."}),(0,a.Z)(n,"beanstalk.pause",{info:"Shows info on how long the tube has been paused for, and how long is left remaining on the pause."}),(0,a.Z)(n,"ceph.general_usage",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Usage",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],info:"The usage and available space in all ceph cluster."}),(0,a.Z)(n,"ceph.general_objects",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"number",title:"Total Objects",colors:o.default[12],layout:{x:3,y:0,w:3,h:5}}],info:"Total number of objects storage on ceph cluster."}),(0,a.Z)(n,"ceph.general_bytes",{info:"Cluster read and write data per second."}),(0,a.Z)(n,"ceph.general_operations",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Operations",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],info:"Number of read and write operations per second."}),(0,a.Z)(n,"ceph.general_latency",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Latency",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],info:"Total of apply and commit latency in all OSDs. The apply latency is the total time taken to flush an update to disk. The commit latency is the total time taken to commit an operation to the journal."}),(0,a.Z)(n,"ceph.pool_usage",{info:"The usage space in each pool."}),(0,a.Z)(n,"ceph.pool_objects",{info:"Number of objects presents in each pool."}),(0,a.Z)(n,"ceph.pool_read_bytes",{info:"The rate of read data per second in each pool."}),(0,a.Z)(n,"ceph.pool_write_bytes",{info:"The rate of write data per second in each pool."}),(0,a.Z)(n,"ceph.pool_read_objects",{info:"Number of read objects per second in each pool."}),(0,a.Z)(n,"ceph.pool_write_objects",{info:"Number of write objects per second in each pool."}),(0,a.Z)(n,"ceph.osd_usage",{info:"The usage space in each OSD."}),(0,a.Z)(n,"ceph.osd_size",{info:"Each OSD's size"}),(0,a.Z)(n,"ceph.apply_latency",{aggregationMethod:"avg",info:"Time taken to flush an update in each OSD."}),(0,a.Z)(n,"ceph.commit_latency",{aggregationMethod:"avg",info:"Time taken to commit an operation to the journal in each OSD."}),(0,a.Z)(n,"web_log.squid_response_statuses",{info:"Squid responses by type. <b>success</b> includes <b>1xx</b>, <b>2xx</b>, <b>000</b>, <b>304</b>, <b>error</b> includes <b>5xx</b> and <b>6xx</b>, <b>redirect</b> includes <b>3xx</b> except <b>304</b>, <b>bad</b> includes <b>4xx</b>, <b>other</b> are all the other responses.",mainheads:[{"group_by[0]":["selected"],selectedDimensions:["success"],chartLibrary:"gauge",title:"Total Successful Responses",desiredUnits:"requests/s"},{"group_by[0]":["selected"],selectedDimensions:["redirect"],chartLibrary:"gauge",title:"Total Redirects",desiredUnits:"requests/s"},{"group_by[0]":["selected"],selectedDimensions:["bad"],chartLibrary:"gauge",title:"Total Bad Requests",desiredUnits:"requests/s"},{"group_by[0]":["selected"],selectedDimensions:["error"],chartLibrary:"gauge",title:"Total Server Errors",desiredUnits:"requests/s"}],en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_response_codes",{info:'Web server responses by code family. According to HTTP standards <b>1xx</b> are informational responses, <b>2xx</b> are successful responses, <b>3xx</b> are redirects (although they include <b>304</b> which is used as "<b>not modified</b>"), <b>4xx</b> are bad requests, <b>5xx</b> are internal server errors. Squid also defines <b>000</b> mostly for UDP requests, and <b>6xx</b> for broken upstream servers sending wrong headers. Finally, <b>other</b> are non-standard responses, and <b>unmatched</b> counts the lines in the log file that are not matched by the plugin (<a href="https://github.com/netdata/netdata/issues/new?title=web_log%20reports%20unmatched%20lines&body=web_log%20plugin%20reports%20unmatched%20lines.%0A%0AThis%20is%20my%20log:%0A%0A%60%60%60txt%0A%0Aplease%20paste%20your%20web%20server%20log%20here%0A%0A%60%60%60" target="_blank">let us know</a> if you have any unmatched).',en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_duration",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",selectedDimensions:["avg"],chartLibrary:"gauge",title:"Average Response Time",desiredUnits:"milliseconds"}],en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_detailed_response_codes",{info:"Number of responses for each response code individually.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_clients",{info:"Unique client IPs accessing squid, within each data collection iteration. If data collection is <b>per second</b>, this chart shows <b>unique client IPs per second</b>.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_clients_all",{info:'Unique client IPs accessing squid since the last restart of netdata. This plugin keeps in memory all the unique IPs that have accessed the server. On very busy squid servers (several millions of unique IPs) you may want to disable this chart (check <a href="https://github.com/netdata/go.d.plugin/blob/master/config/go.d/web_log.conf" target="_blank"><b>/etc/netdata/go.d/web_log.conf</b></a>).',en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_transport_methods",{info:"Break down per delivery method: <b>TCP</b> are requests on the HTTP port (usually 3128), <b>UDP</b> are requests on the ICP port (usually 3130), or HTCP port (usually 4128). If ICP logging was disabled using the log_icp_queries option, no ICP replies will be logged. <b>NONE</b> are used to state that squid delivered an unusual response or no response at all. Seen with cachemgr requests and errors, usually when the transaction fails before being classified into one of the above outcomes. Also seen with responses to <b>CONNECT</b> requests.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_code",{info:'These are combined squid result status codes. A break down per component is given in the following charts. Check the <a href="http://wiki.squid-cache.org/SquidFaq/SquidLogs" target="_blank">squid documentation about them</a>.',en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_handling_opts",{info:"These tags are optional and describe why the particular handling was performed or where the request came from. <b>CLIENT</b> means that the client request placed limits affecting the response. Usually seen with client issued a <b>no-cache</b>, or analogous cache control command along with the request. Thus, the cache has to validate the object.<b>IMS</b> states that the client sent a revalidation (conditional) request. <b>ASYNC</b>, is used when the request was generated internally by Squid. Usually this is background fetches for cache information exchanges, background revalidation from stale-while-revalidate cache controls, or ESI sub-objects being loaded. <b>SWAPFAIL</b> is assigned when the object was believed to be in the cache, but could not be accessed. A new copy was requested from the server. <b>REFRESH</b> when a revalidation (conditional) request was sent to the server. <b>SHARED</b> when this request was combined with an existing transaction by collapsed forwarding. NOTE: the existing request is not marked as SHARED. <b>REPLY</b> when particular handling was requested in the HTTP reply from server or peer. Usually seen on DENIED due to http_reply_access ACLs preventing delivery of servers response object to the client.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_object_types",{info:"These tags are optional and describe what type of object was produced. <b>NEGATIVE</b> is only seen on HIT responses, indicating the response was a cached error response. e.g. <b>404 not found</b>. <b>STALE</b> means the object was cached and served stale. This is usually caused by stale-while-revalidate or stale-if-error cache controls. <b>OFFLINE</b> when the requested object was retrieved from the cache during offline_mode. The offline mode never validates any object. <b>INVALID</b> when an invalid request was received. An error response was delivered indicating what the problem was. <b>FAIL</b> is only seen on <b>REFRESH</b> to indicate the revalidation request failed. The response object may be the server provided network error or the stale object which was being revalidated depending on stale-if-error cache control. <b>MODIFIED</b> is only seen on <b>REFRESH</b> responses to indicate revalidation produced a new modified object. <b>UNMODIFIED</b> is only seen on <b>REFRESH</b> responses to indicate revalidation produced a <b>304</b> (Not Modified) status, which was relayed to the client. <b>REDIRECT</b> when squid generated an HTTP redirect response to this request.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_cache_events",{info:'These tags are optional and describe whether the response was loaded from cache, network, or otherwise. <b>HIT</b> when the response object delivered was the local cache object. <b>MEM</b> when the response object came from memory cache, avoiding disk accesses. Only seen on HIT responses. <b>MISS</b> when the response object delivered was the network response object. <b>DENIED</b> when the request was denied by access controls. <b>NOFETCH</b> an ICP specific type, indicating service is alive, but not to be used for this request (sent during "-Y" startup, or during frequent failures, a cache in hit only mode will return either UDP_HIT or UDP_MISS_NOFETCH. Neighbours will thus only fetch hits). <b>TUNNEL</b> when a binary tunnel was established for this transaction.',en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.squid_transport_errors",{info:"These tags are optional and describe some error conditions which occurred during response delivery (if any). <b>ABORTED</b> when the response was not completed due to the connection being aborted (usually by the client). <b>TIMEOUT</b>, when the response was not completed due to a connection timeout.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.type_requests",{info:"Web server responses by type. <b>success</b> includes <b>1xx</b>, <b>2xx</b>, <b>304</b> and <b>401</b>, <b>error</b> includes <b>5xx</b>, <b>redirect</b> includes <b>3xx</b> except <b>304</b>, <b>bad</b> includes <b>4xx</b> except <b>401</b>, <b>other</b> are all the other responses.",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Requests by Type",layout:{x:3,y:0,w:3,h:5}}],en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.request_processing_time",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",selectedDimensions:["avg"],chartLibrary:"gauge",title:"Average Response Time",desiredUnits:"milliseconds"}],en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"portcheck.latency",{aggregationMethod:"avg",info:"The <b>latency</b> describes the time spent connecting to a TCP port. No data is sent or received. Currently, the accuracy of the latency is low and should be used as reference only.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"portcheck.status",{info:"The <b>status</b> chart verifies the availability of the service. Each status dimension will have a value of <b>1</b> if triggered. Dimension <b>success</b> is <b>1</b> only if connection could be established. This chart is most useful for alerts and third-party apps.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"chrony.stratum",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",valueRange:[0,null],title:"Maximum Stratum",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"The stratum indicates the distance (hops) to the computer with the reference clock. The higher the stratum number, the more the timing accuracy and stability degrades.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.current_correction",{info:"Any error in the system clock is corrected by slightly speeding up or slowing down the system clock until the error has been removed, and then returning to the system clock\u2019s normal speed. A consequence of this is that there will be a period when the system clock (as read by other programs) will be different from chronyd's estimate of the current true time (which it reports to NTP clients when it is operating as a server). The reported value is the difference due to this effect.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.root_delay",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Root Delay",valueRange:[0,null],colors:o.default[12],layout:{x:3,y:0,w:3,h:5}}],info:"The total of the network path delays to the stratum-1 computer from which the computer is ultimately synchronised.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.root_dispersion",{aggregationMethod:"avg",info:"The total dispersion accumulated through all the computers back to the stratum-1 computer from which the computer is ultimately synchronised. Dispersion is due to system clock resolution, statistical measurement variations, etc.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.last_offset",{aggregationMethod:"avg",info:"The estimated local offset on the last clock update. A positive value indicates the local time (as previously estimated true time) was ahead of the time sources.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.frequency",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Max Frequency",colors:o.default[7],layout:{x:6,y:0,w:3,h:5}}],info:"The <b>frequency</b> is the rate by which the system\u2019s clock would be wrong if chronyd was not correcting it. It is expressed in ppm (parts per million). For example, a value of 1 ppm would mean that when the system\u2019s clock thinks it has advanced 1 second, it has actually advanced by 1.000001 seconds relative to true time.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.residual_frequency",{aggregationMethod:"avg",info:"The <b>residual frequency</b> for the currently selected reference source. This reflects any difference between what the measurements from the reference source indicate the frequency should be and the frequency currently being used. The reason this is not always zero is that a smoothing procedure is applied to the frequency.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.skew",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Skew",layout:{x:9,y:0,w:3,h:5}}],info:"The estimated error bound on the frequency.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.ref_measurement_time",{aggregationMethod:"min",info:"The time elapsed since the last measurement from the reference source was processed.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.leap_status",{info:"<p>The current leap status of the source.</p><p><b>Normal</b> - indicates the normal status (no leap second). <b>InsertSecond</b> - indicates that a leap second will be inserted at the end of the month. <b>DeleteSecond</b> - indicates that a leap second will be deleted at the end of the month. <b>Unsynchronised</b> - the server has not synchronized properly with the NTP server.</p>",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.activity",{info:"<p>The number of servers and peers that are online and offline.</p><p><b>Online</b> - the server or peer is currently online (i.e. assumed by chronyd to be reachable). <b>Offline</b> - the server or peer is currently offline (i.e. assumed by chronyd to be unreachable, and no measurements from it will be attempted). <b>BurstOnline</b> - a burst command has been initiated for the server or peer and is being performed. After the burst is complete, the server or peer will be returned to the online state. <b>BurstOffline</b> - a burst command has been initiated for the server or peer and is being performed. After the burst is complete, the server or peer will be returned to the offline state. <b>Unresolved</b> - the name of the server or peer was not resolved to an address yet.</p>",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.rms_offset",{aggregationMethod:"avg",info:"The root mean square (RMS) offset of the system clock from true time. Large offsets may indicate a problem with the clock or network synchronization.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"chrony.update_interval",{aggregationMethod:"avg",info:"The interval between clock updates. Shorter intervals may improve accuracy but may also increase network load.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"couchdb.active_tasks",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Active Tasks",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"Active tasks running on this CouchDB <b>cluster</b>. Four types of tasks currently exist: indexer (view building), replication, database compaction and view compaction.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.replicator_jobs",{info:'Detailed breakdown of any replication jobs in progress on this node. For more information, see the <a href="http://docs.couchdb.org/en/latest/replication/replicator.html" target="_blank">replicator documentation</a>.',en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.open_files",{info:'Count of all files held open by CouchDB. If this value seems pegged at 1024 or 4096, your server process is probably hitting the open file handle limit and <a href="http://docs.couchdb.org/en/latest/maintenance/performance.html#pam-and-ulimit" target="_blank">needs to be increased.</a>',en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.activity",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Activity",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:"The activity of CouchDB nodes in the cluster. The number of requests being handled by the nodes per second. High values may indicate a high workload on the nodes and potential performance issues.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.request_methods",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Request Methods",layout:{x:6,y:0,w:3,h:5}}],info:"The distribution of request methods being used on CouchDB nodes in the cluster. This can be useful for identifying the most common operations being performed on the nodes and potential performance bottlenecks.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.response_codes",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Response Codes",layout:{x:9,y:0,w:3,h:5}}],info:"The distribution of response codes returned by CouchDB nodes in the cluster. This can be useful for identifying common error codes and potential issues with the nodes.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.response_code_classes",{info:"The distribution of response code classes returned by CouchDB nodes in the cluster. This can be useful for identifying the general class of responses being returned by the nodes (e.g. success, error) and potential issues with the nodes.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.erlang_vm_memory",{info:"The amount of memory used by the Erlang virtual machine (VM) running on CouchDB nodes in the cluster. This can be useful for monitoring the overall memory usage of the nodes and potential capacity issues.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.proccounts",{info:"The number of Erlang processes running on CouchDB nodes in the cluster. This can be useful for monitoring the overall workload of the nodes and potential performance issues.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.peakmsgqueue",{info:"The maximum size of the message queue on CouchDB nodes in the cluster. This can be useful for monitoring the overall workload of the nodes and potential performance issues.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.reductions",{info:"The number of reductions performed by the Erlang VM on CouchDB nodes in the cluster. Reductions are a measure of the computational work done by the VM and high values may indicate a high workload on the nodes and potential performance issues.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.db_sizes_file",{info:"The size of CouchDB databases on disk, including data and metadata. This can be useful for monitoring the overall size of the databases and potential capacity issues.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.db_sizes_external",{info:"The total size of CouchDB databases in external storage in bytes.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.db_sizes_active",{info:"The total size of CouchDB databases in active memory in bytes.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.db_doc_count",{info:"The total number of documents stored in CouchDB databases.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"couchdb.db_doc_del_count",{info:"The total number of deleted documents stored in CouchDB databases.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"freeradius.authentication",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Authentication Requests",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}}],info:"The number of authentication requests that have been processed by the FreeRADIUS server. FreeRADIUS is a RADIUS server, and authentication requests are requests from clients to authenticate themselves with the server. Monitoring this metric can provide insight into the usage of the FreeRADIUS server and can help identify any issues with authentication requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"freeradius.authentication_access_responses",{info:"The number of access responses that have been sent by the FreeRADIUS server in response to authentication requests. Access responses are messages sent by the server to either grant or deny access to a client based on the authentication request. Monitoring this metric can provide insight into the usage of the FreeRADIUS server and can help identify any issues with authentication requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"freeradius.bad_authentication",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Bad Authentication Requests",colors:o.default[1],layout:{x:3,y:0,w:3,h:5}}],info:"The number of bad authentication requests that have been received by the FreeRADIUS server. Bad authentication requests are requests that are improperly formatted or contain invalid data. Monitoring this metric can provide insight into the usage of the FreeRADIUS server and can help identify any issues with authentication requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"freeradius.proxy_authentication",{info:"The number of proxy authentication requests that have been processed by the FreeRADIUS server. Proxy authentication requests are requests from other RADIUS servers to authenticate a client on their behalf. Monitoring this metric can provide insight into the usage of the FreeRADIUS server as a proxy and can help identify any issues with proxy authentication requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"freeradius.proxy_authentication_access_responses",{info:"The number of access responses that have been sent by the FreeRADIUS server in response to proxy authentication requests. Access responses are messages sent by the server to either grant or deny access to a client based on the authentication request. Monitoring this metric can provide insight into the usage of the FreeRADIUS server as a proxy and can help identify any issues with proxy authentication requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.goroutines",{info:"The number of goroutines in the Geth process.",en:{instance:{one:"process",other:"processes"}}}),(0,a.Z)(n,"geth.chaindata_db_size",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total chain data size",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],info:"The size of the chain data database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"geth.chainhead",{info:"The current head of the blockchain."}),(0,a.Z)(n,"geth.p2p_bandwidth",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Bandwidth",colors:o.default[12],layout:{x:3,y:0,w:3,h:5}}],info:"The amount of bandwidth used by the P2P network.",en:{instance:{one:"network",other:"networks"}}}),(0,a.Z)(n,"geth.reorgs",{info:"The number of blockchain reorgs that have occurred."}),(0,a.Z)(n,"geth.reorgs_blocks",{info:"The number of blocks that have been reorganized in a blockchain reorg."}),(0,a.Z)(n,"geth.p2p_peers_calls",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total P2P peers calls",colors:o.default[7],layout:{x:6,y:0,w:3,h:5}}],info:"The number of P2P peer calls made by the node."}),(0,a.Z)(n,"haproxy.backend_current_sessions",{info:"The number of current sessions in the backend of the HAProxy server. A session is a connection between a client and the server. Monitoring this metric can provide insight into the usage of the HAProxy server and can help identify any issues with session management.",en:{instance:{one:"HAproxy server",other:"HAproxy servers"}}}),(0,a.Z)(n,"haproxy.backend_sessions",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"No. of Backend Sessions per proxy",layout:{x:0,y:0,w:3,h:5}}],info:"The total number of sessions in the backend of the HAProxy server. A session is a connection between a client and the server. Monitoring this metric can provide insight into the usage of the HAProxy server and can help identify any issues with session management.",en:{instance:{one:"HAproxy server",other:"HAproxy servers"}}}),(0,a.Z)(n,"haproxy.backend_response_time_average",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Average Response Time per proxy",layout:{x:3,y:0,w:3,h:5}}],info:"The average response time of the backend of the HAProxy server. The response time is the time it takes for the server to respond to a client's request. Monitoring this metric can provide insight into the performance of the HAProxy server and can help identify any issues with slow response times.",en:{instance:{one:"HAproxy server",other:"HAproxy servers"}}}),(0,a.Z)(n,"haproxy.backend_queue_time_average",{aggregationMethod:"avg",mainheads:[{chartLibrary:"bars",title:"Average Queue Time per proxy",layout:{x:9,y:0,w:3,h:5}}],info:"The average queue time of the backend of the HAProxy server. The queue time is the time a client's request spends in the server's queue before being processed. Monitoring this metric can provide insight into the performance of the HAProxy server and can help identify any issues with long queue times.",en:{instance:{one:"HAproxy server",other:"HAproxy servers"}}}),(0,a.Z)(n,"haproxy.backend_current_queue",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Queue Size per proxy",layout:{x:6,y:0,w:3,h:5}}],info:"The current number of requests in the queue of the backend of the HAProxy server. Monitoring this metric can provide insight into the performance of the HAProxy server and can help identify any issues with the server's ability to handle incoming requests.",en:{instance:{one:"HAproxy server",other:"HAproxy servers"}}}),(0,a.Z)(n,"haproxy.backend_http_responses",{info:"The number of HTTP responses sent by the backend of the HAProxy server. HTTP responses are messages sent by the server in response to client requests. Monitoring this metric can provide insight into the usage of the HAProxy server and can help identify any issues with HTTP responses.",en:{instance:{one:"HAproxy server",other:"HAproxy servers"}}}),(0,a.Z)(n,"haproxy.backend_network_io",{info:"The network IO of the backend of the HAProxy server. Network IO is the amount of data transferred over the network by the server. Monitoring this metric can provide insight into the performance of the HAProxy server and can help identify any issues with network performance.",en:{instance:{one:"HAproxy server",other:"HAproxy servers"}}}),(0,a.Z)(n,"hdfs.heap_memory",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Heap Memory",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],info:"The amount of heap memory used by the HDFS service. Heap memory is the memory allocated to the Java virtual machine for storing objects. Monitoring this metric can provide insight into the memory usage of the HDFS service and can help identify any issues with memory allocation.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.gc_count_total",{info:"The total number of garbage collection (GC) events that have occurred in the HDFS service. GC events are processes that reclaim memory by removing unused objects. Monitoring this metric can provide insight into the performance of the HDFS service and can help identify any issues with GC performance.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.gc_time_total",{info:"The total amount of time spent on garbage collection (GC) in the HDFS service. GC is a process that reclaims memory by removing unused objects. Monitoring this metric can provide insight into the performance of the HDFS service and can help identify any issues with GC performance.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.gc_threshold",{info:"The GC threshold of the HDFS service. The GC threshold is the point at which the HDFS service triggers a GC event. Monitoring this metric can provide insight into the performance of the HDFS service and can help identify any issues with GC performance.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.rpc_bandwidth",{info:"The amount of bandwidth being used by HDFS Remote Procedure Calls (RPCs).",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.rpc_calls",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total RPC Calls",colors:o.default[7],layout:{x:3,y:0,w:3,h:5}}],info:"The number of HDFS Remote Procedure Calls (RPCs) being made.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.avg_queue_time",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Queue Time",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}}],info:"The average time spent in the queue for HDFS calls.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.avg_processing_time",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Processing Time",colors:o.default[0],layout:{x:9,y:0,w:3,h:5}}],info:"The average time spent processing HDFS calls.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.datanode_capacity",{info:"The capacity of the HDFS DataNode.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"hdfs.datanode_bandwidth",{info:"The bandwidth used by the HDFS DataNode.",en:{instance:{one:"HDFS service",other:"HDFS services"}}}),(0,a.Z)(n,"isc_dhcps.active_leases_total",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Active Leases",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}}],info:"The total number of active leases in the ISC DHCP server. A lease is a contract that allows a client to use a particular IP address for a specified period of time. Monitoring this metric can provide insight into the usage of the ISC DHCP server and can help identify any issues with lease management.",en:{instance:{one:"DHCP server",other:"DHCP servers"}}}),(0,a.Z)(n,"isc_dhcps.pool_active_leases",{info:"The number of active leases in a DHCP pool of the ISC DHCP server. A DHCP pool is a range of IP addresses that are available for allocation to clients. Monitoring this metric can provide insight into the usage of the ISC DHCP server and can help identify any issues with DHCP pool management.",en:{instance:{one:"DHCP server",other:"DHCP servers"}}}),(0,a.Z)(n,"isc_dhcps.pool_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Pool Utilization",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}}],info:"The utilization of a DHCP pool in the ISC DHCP server. The utilization is the percentage of IP addresses in the pool that are currently leased to clients. Monitoring this metric can provide insight into the usage of the ISC DHCP server and can help identify any issues with DHCP pool utilization.",en:{instance:{one:"DHCP server",other:"DHCP servers"}}}),(0,a.Z)(n,"btrfs.disk",{family:"utilization",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",selectedDimensions:["unallocated"],title:"Maximum Unallocated Physical Disk Space",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"Physical disk usage of BTRFS. The disk space reported here is the raw physical disk space assigned to the BTRFS volume (i.e. <b>before any RAID levels</b>). BTRFS uses a two-stage allocator, first allocating large regions of disk space for one type of block (data, metadata, or system), and then using a regular block allocator inside those regions. <b>unallocated</b> is the physical disk space that is not allocated yet and is available to become data, metadata or system on demand. When <b>unallocated</b> is zero, all available disk space has been allocated to a specific function. Healthy volumes should ideally have at least five percent of their total space <b>unallocated</b>. You can keep your volume healthy by running the <b>btrfs balance</b> command on it regularly (check <b>man btrfs-balance</b> for more info). Note that some of the space listed as <b>unallocated</b> may not actually be usable if the volume uses devices of different sizes.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"btrfs.data",{family:"utilization",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Logical Disk Usage (data)",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:"Logical disk usage for BTRFS data. Data chunks are used to store the actual file data (file contents). The disk space reported here is the usable allocation (i.e. after any striping or replication). Healthy volumes should ideally have no more than a few GB of free space reported here persistently. Running <b>btrfs balance</b> can help here.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"btrfs.metadata",{family:"utilization",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Logical Disk Usage (metadata)",colors:o.default[7],layout:{x:6,y:0,w:3,h:5}}],info:"Logical disk usage for BTRFS metadata. Metadata chunks store most of the filesystem internal structures, as well as information like directory structure and file names. The disk space reported here is the usable allocation (i.e. after any striping or replication). Healthy volumes should ideally have no more than a few GB of free space reported here persistently. Running <b>btrfs balance</b> can help here.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"btrfs.system",{family:"utilization",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Logical Disk Usage (system)",colors:o.default[12],layout:{x:9,y:0,w:3,h:5}}],info:"Logical disk usage for BTRFS system. System chunks store information about the allocation of other chunks. The disk space reported here is the usable allocation (i.e. after any striping or replication). The values reported here should be relatively small compared to Data and Metadata, and will scale with the volume size and overall space usage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"rabbitmq.queued_messages",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Queued Messages",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"Overall total of ready and unacknowledged queued messages. Messages that are delivered immediately are not counted here."}),(0,a.Z)(n,"rabbitmq.message_rates",{info:"Overall messaging rates including acknowledgements, deliveries, redeliveries, and publishes."}),(0,a.Z)(n,"rabbitmq.global_counts",{info:"Overall totals for channels, consumers, connections, queues and exchanges."}),(0,a.Z)(n,"rabbitmq.file_descriptors",{info:'Total number of used filed descriptors. See <b><a href="https://www.rabbitmq.com/production-checklist.html#resource-limits-file-handle-limit" target="_blank">Open File Limits</a></b> for further details.'}),(0,a.Z)(n,"rabbitmq.sockets",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Sockets Used",colors:o.default[7],layout:{x:9,y:0,w:3,h:5}}],info:'Total number of used socket descriptors. Each used socket also counts as a used file descriptor. See <b><a href="https://www.rabbitmq.com/production-checklist.html#resource-limits-file-handle-limit" target="_blank">Open File Limits</a></b> for further details.'}),(0,a.Z)(n,"rabbitmq.processes",{info:"Total number of processes running within the Erlang VM. This is not the same as the number of processes running on the host."}),(0,a.Z)(n,"rabbitmq.erlang_run_queue",{info:"Number of Erlang processes the Erlang schedulers have queued to run."}),(0,a.Z)(n,"rabbitmq.memory",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Memory Used",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:'Total amount of memory used by the RabbitMQ. This is a complex statistic that can be further analyzed in the management UI. See <b><a href="https://www.rabbitmq.com/production-checklist.html#resource-limits-ram" target="_blank">Memory</a></b> for further details.'}),(0,a.Z)(n,"rabbitmq.disk_space",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Disk Space Consumed",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}}],info:'Total amount of disk space consumed by the message store(s). See <b><a href="https://www.rabbitmq.com/production-checklist.html#resource-limits-disk-space" target=_"blank">Disk Space Limits</a></b> for further details.'}),(0,a.Z)(n,"rabbitmq.queue_messages",{info:"Total amount of messages and their states in this queue."}),(0,a.Z)(n,"rabbitmq.queue_messages_stats",{info:"Overall messaging rates including acknowledgements, deliveries, redeliveries, and publishes."}),(0,a.Z)(n,"ntpd.sys_offset",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum System Offset",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"For hosts without any time critical services an offset of < 100 ms should be acceptable even with high network latencies. For hosts with time critical services an offset of about 0.01 ms or less can be achieved by using peers with low delays and configuring optimal <b>poll exponent</b> values.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ntpd.sys_jitter",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average System Jitter",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:"The jitter statistics are exponentially-weighted RMS averages. The system jitter is defined in the NTPv4 specification; the clock jitter statistic is computed by the clock discipline module.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ntpd.sys_frequency",{info:"The frequency offset is shown in ppm (parts per million) relative to the frequency of the system. The frequency correction needed for the clock can vary significantly between boots and also due to external influences like temperature or radiation.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ntpd.sys_wander",{info:"The wander statistics are exponentially-weighted RMS averages.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ntpd.sys_rootdelay",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average System Root Delay",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}}],info:"The rootdelay is the round-trip delay to the primary reference clock, similar to the delay shown by the <b>ping</b> command. A lower delay should result in a lower clock offset.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ntpd.sys_stratum",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum System Stratum",colors:o.default[7],layout:{x:9,y:0,w:3,h:5}}],info:'The distance in "hops" to the primary reference clock',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ntpd.sys_tc",{info:'Time constants and poll intervals are expressed as exponents of 2. The default poll exponent of 6 corresponds to a poll interval of 64 s. For typical Internet paths, the optimum poll interval is about 64 s. For fast LANs with modern computers, a poll exponent of 4 (16 s) is appropriate. The <a href="http://doc.ntp.org/current-stable/poll.html" target="_blank">poll process</a> sends NTP packets at intervals determined by the clock discipline algorithm.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ntpd.sys_precision",{colors:o.default[6],en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ntpd.peer_offset",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Peer Offset",colors:o.default[1],layout:{x:0,y:5,w:2,h:5}}],info:"The offset of the peer clock relative to the system clock in milliseconds. Smaller values here weight peers more heavily for selection after the initial synchronization of the local clock. For a system providing time service to other systems, these should be as low as possible.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_delay",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Peer Delay",colors:o.default[12],layout:{x:0,y:5,w:2,h:5}}],info:"The round-trip time (RTT) for communication with the peer, similar to the delay shown by the <b>ping</b> command. Not as critical as either the offset or jitter, but still factored into the selection algorithm (because as a general rule, lower delay means more accurate time). In most cases, it should be below 100ms.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_dispersion",{info:"This is a measure of the estimated error between the peer and the local system. Lower values here are better.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_jitter",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Peer Jitter",colors:o.default[4],layout:{x:0,y:5,w:2,h:5}}],info:"This is essentially a remote estimate of the peer's <b>system_jitter</b> value. Lower values here weight highly in favor of peer selection, and this is a good indicator of overall quality of a given time server (good servers will have values not exceeding single digit milliseconds here, with high quality stratum one servers regularly having sub-millisecond jitter).",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_xleave",{info:'This variable is used in interleaved mode (used only in NTP symmetric and broadcast modes). See <a href="http://doc.ntp.org/current-stable/xleave.html" target="_blank">NTP Interleaved Modes</a>.',en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_rootdelay",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Peer Root Delay",colors:o.default[7],layout:{x:0,y:5,w:2,h:5}}],info:"For a stratum 1 server, this is the access latency for the reference clock. For lower stratum servers, it is the sum of the <b>peer_delay</b> and <b>peer_rootdelay</b> for the system they are syncing off of. Similarly to <b>peer_delay</b>, lower values here are technically better, but have limited influence in peer selection.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_rootdisp",{info:"Is the same as <b>peer_rootdelay</b>, but measures accumulated <b>peer_dispersion</b> instead of accumulated <b>peer_delay</b>.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_hmode",{info:"The <b>peer_hmode</b> and <b>peer_pmode</b> variables give info about what mode the packets being sent to and received from a given peer are. Mode 1 is symmetric active (both the local system and the remote peer have each other declared as peers in <b>/etc/ntp.conf</b>), Mode 2 is symmetric passive (only one side has the other declared as a peer), Mode 3 is client, Mode 4 is server, and Mode 5 is broadcast (also used for multicast and manycast operation).",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_pmode",{en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_hpoll",{info:"The <b>peer_hpoll</b> and <b>peer_ppoll</b> variables are log2 representations of the polling interval in seconds.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_ppoll",{en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"ntpd.peer_precision",{en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"spigotmc.tps",{info:"The running 1, 5, and 15 minute average number of server ticks per second. An idealized server will show 20.0 for all values, but in practice this almost never happens. Typical servers should show approximately 19.98-20.0 here. Lower values indicate progressively more server-side lag (and thus that you need better hardware for your server or a lower user limit). For every 0.05 ticks below 20, redstone clocks will lag behind by approximately 0.25%. Values below approximately 19.50 may interfere with complex free-running redstone circuits and will noticeably slow down growth."}),(0,a.Z)(n,"spigotmc.users",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Users",colors:o.default[12],layout:{x:0,y:0,w:3,h:5}}],info:"The number of currently connected users on the monitored Spigot server."}),(0,a.Z)(n,"boinc.tasks",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Tasks",colors:o.default[12],layout:{x:0,y:0,w:3,h:5}}],info:"The total number of tasks and the number of active tasks. Active tasks are those which are either currently being processed, or are partially processed but suspended.",en:{instance:{one:"client",other:"clients"}}}),(0,a.Z)(n,"boinc.states",{mainheads:[{chartLibrary:"bars",title:"Task States",layout:{x:3,y:0,w:3,h:5}}],info:"Counts of tasks in each task state. The normal sequence of states is <b>New</b>, <b>Downloading</b>, <b>Ready to Run</b>, <b>Uploading</b>, <b>Uploaded</b>. Tasks which are marked <b>Ready to Run</b> may be actively running, or may be waiting to be scheduled. <b>Compute Errors</b> are tasks which failed for some reason during execution. <b>Aborted</b> tasks were manually cancelled, and will not be processed. <b>Failed Uploads</b> are otherwise finished tasks which failed to upload to the server, and usually indicate networking issues.",en:{instance:{one:"client",other:"clients"}}}),(0,a.Z)(n,"boinc.sched",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Task Scheduling States",layout:{x:6,y:0,w:3,h:5}}],info:"Counts of active tasks in each scheduling state. <b>Scheduled</b> tasks are the ones which will run if the system is permitted to process tasks. <b>Preempted</b> tasks are on standby, and will run if a <b>Scheduled</b> task stops running for some reason. <b>Uninitialized</b> tasks should never be present, and indicate tha the scheduler has not tried to schedule them yet.",en:{instance:{one:"client",other:"clients"}}}),(0,a.Z)(n,"boinc.process",{info:"Counts of active tasks in each process state. <b>Executing</b> tasks are running right now. <b>Suspended</b> tasks have an associated process, but are not currently running (either because the system isn't processing any tasks right now, or because they have been preempted by higher priority tasks). <b>Quit</b> tasks are exiting gracefully. <b>Aborted</b> tasks exceeded some resource limit, and are being shut down. <b>Copy Pending</b> tasks are waiting on a background file transfer to finish. <b>Uninitialized</b> tasks do not have an associated process yet.",en:{instance:{one:"client",other:"clients"}}}),(0,a.Z)(n,"w1sensor.temp",{aggregationMethod:"avg",info:"Temperature derived from 1-Wire temperature sensors.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"logind.sessions",{info:"Local and remote sessions.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"logind.sessions_type",{mainheads:[{chartLibrary:"bars",title:"Session Types",layout:{x:0,y:0,w:3,h:5}}],info:"<p>Sessions of each session type.</p><p><b>Graphical</b> - sessions are running under one of X11, Mir, or Wayland. <b>Console</b> - sessions are usually regular text mode local logins, but depending on how the system is configured may have an associated GUI. <b>Other</b> - sessions are those that do not fall into the above categories (such as sessions for cron jobs or systemd timer units).</p>",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"logind.sessions_state",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Session States",layout:{x:3,y:0,w:3,h:5}}],info:"<p>Sessions of each session type.</p><p><b>Graphical</b> - sessions are running under one of X11, Mir, or Wayland. <b>Console</b> - sessions are usually regular text mode local logins, but depending on how the system is configured may have an associated GUI. <b>Other</b> - sessions are those that do not fall into the above categories (such as sessions for cron jobs or systemd timer units).</p>",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"logind.users_state",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"User States",layout:{x:6,y:0,w:3,h:5}}],info:"<p>Users in each user state.</p><p><b>Offline</b> - users are not logged in. <b>Closing</b> - users are in the process of logging out without lingering. <b>Online</b> - users are logged in, but have no active sessions. <b>Lingering</b> - users are not logged in, but have one or more services still running. <b>Active</b> - users are logged in, and have at least one active session.</p>",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"proxysql.pool_status",{info:"The status of the backend servers. <b>1=ONLINE</b> backend server is fully operational, <b>2=SHUNNED</b> backend sever is temporarily taken out of use because of either too many connection errors in a time that was too short, or replication lag exceeded the allowed threshold, <b>3=OFFLINE_SOFT</b> when a server is put into OFFLINE_SOFT mode, new incoming connections aren't accepted anymore, while the existing connections are kept until they became inactive. In other words, connections are kept in use until the current transaction is completed. This allows to gracefully detach a backend, <b>4=OFFLINE_HARD</b> when a server is put into OFFLINE_HARD mode, the existing connections are dropped, while new incoming connections aren't accepted either. This is equivalent to deleting the server from a hostgroup, or temporarily taking it out of the hostgroup for maintenance work, <b>-1</b> Unknown status.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.pool_net",{info:"The amount of data sent to/received from the backend (This does not include metadata (packets' headers, OK/ERR packets, fields' description, etc).",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.pool_overall_net",{info:"The amount of data sent to/received from the all backends (This does not include metadata (packets' headers, OK/ERR packets, fields' description, etc).",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.questions",{info:"<b>questions</b> total number of queries sent from frontends, <b>slow_queries</b> number of queries that ran for longer than the threshold in milliseconds defined in global variable <b>mysql-long_query_time</b>. ",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.connections",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["connected"],chartLibrary:"easypiechart",title:"Total Connected connections",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}},{"group_by[0]":["selected"],selectedDimensions:["aborted"],chartLibrary:"easypiechart",title:"Total Aborted connections",colors:o.default[7],layout:{x:9,y:0,w:3,h:5}}],info:"<b>aborted</b> number of frontend connections aborted due to invalid credential or max_connections reached, <b>connected</b> number of frontend connections currently connected, <b>created</b> number of frontend connections created, <b>non_idle</b> number of frontend connections that are not currently idle. ",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.pool_latency",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Max Pool Latency",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:"The currently ping time in microseconds, as reported from Monitor.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.queries",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Queries",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"The number of queries routed towards this particular backend server.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.pool_used_connections",{info:"The number of connections are currently used by ProxySQL for sending queries to the backend server.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.pool_free_connections",{info:"The number of connections are currently free. They are kept open in order to minimize the time cost of sending a query to the backend server.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.pool_ok_connections",{info:"The number of connections were established successfully.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.pool_error_connections",{info:"The number of connections weren't established successfully.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.commands_count",{info:"The total number of commands of that type executed",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.commands_duration",{info:"The total time spent executing commands of that type, in ms",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"sensors.temperature",{groupBy:["node"],aggregationMethod:"max",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Temperature",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"The temperature of the system as reported by the sensors. High values can indicate cooling issues.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"sensors.fan",{groupBy:["node"],aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Fan Speed",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:"The speed of the system fans as reported by the sensors. Low values can indicate cooling issues while high values can indicate excessive noise.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"sensors.voltage",{groupBy:["node"],aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"easypiechart",title:"Minimum Voltage",colors:o.default[7],layout:{x:6,y:0,w:3,h:5}}],info:"The voltage of the system as reported by the sensors. Low values can indicate power issues.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"sensors.current",{groupBy:["node"],aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Current",colors:o.default[12],layout:{x:9,y:0,w:3,h:5}}],info:"The current of the system as reported by the sensors. High values can indicate power issues.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"sensors.power",{groupBy:["node"],aggregationMethod:"avg",info:"The power of the system as reported by the sensors. High values can indicate power issues.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"sensors.energy",{groupBy:["node"],aggregationMethod:"avg",info:"The energy of the system as reported by the sensors. High values can indicate power issues.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"sensors.humidity",{groupBy:["node"],aggregationMethod:"max",info:"The humidity of the system as reported by the sensors. High values can indicate cooling issues.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"tomcat.accesses",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Requests",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"The number of requests made to the Tomcat server. It is important to monitor this metric to ensure that the server is not overloaded.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tomcat.bandwidth",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Bandwidth",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:"The amount of network bandwidth used by the Tomcat server. It is important to monitor this metric to ensure that the server is not overloaded.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tomcat.threads",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Threads",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}}],info:"The number of threads running in the Tomcat application. It is important to monitor this metric to ensure that the application is running efficiently.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tor.traffic",{info:"This metric tracks Tor traffic statistics collected form the Tor control port. It is important to monitor this metric to ensure that the Tor network is not overloaded.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powersupply.capacity",{family:"charge",aggregationMethod:"avg",info:"The current battery charge.",en:{instance:{one:"Power supply",other:"Power supplies"}}}),(0,a.Z)(n,"powersupply.charge",{family:"charge",info:'<p>The battery charge in Amp-hours.</p><p><b>now</b> - actual charge value. <b>full</b>, <b>empty</b> - last remembered value of charge when battery became full/empty. It also could mean "value of charge when battery considered full/empty at given conditions (temperature, age)". I.e. these attributes represents real thresholds, not design values. <b>full_design</b>, <b>empty_design</b> - design charge values, when battery considered full/empty.</p>',en:{instance:{one:"Power supply",other:"Power supplies"}}}),(0,a.Z)(n,"powersupply.energy",{family:"charge",info:'<p>The battery charge in Watt-hours.</p><p><b>now</b> - actual charge value. <b>full</b>, <b>empty</b> - last remembered value of charge when battery became full/empty. It also could mean "value of charge when battery considered full/empty at given conditions (temperature, age)". I.e. these attributes represents real thresholds, not design values. <b>full_design</b>, <b>empty_design</b> - design charge values, when battery considered full/empty.</p>',en:{instance:{one:"Power supply",other:"Power supplies"}}}),(0,a.Z)(n,"powersupply.voltage",{family:"voltage",info:'<p>The power supply voltage.</p><p><b>now</b> - current voltage. <b>max</b>, <b>min</b> - voltage values that hardware could only guess (measure and retain) the thresholds of a given power supply. <b>max_design</b>, <b>min_design</b> - design values for maximal and minimal power supply voltages. Maximal/minimal means values of voltages when battery considered "full"/"empty" at normal conditions.</p>',en:{instance:{one:"Power supply",other:"Power supplies"}}}),(0,a.Z)(n,"vsphere.host_cpu_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["host"],chartLibrary:"bars",title:"Top Hosts by CPU Usage",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:0,y:0,w:3,h:5}}],info:"Summary CPU usage statistics across all CPUs/cores.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_mem_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["host"],chartLibrary:"bars",title:"Top Hosts by Memory Usage",dimensionsSort:"valueDesc",colors:o.default[1],layout:{x:3,y:0,w:3,h:5}}],info:"Percentage of used machine memory: <b>consumed</b> / <b>machine-memory-size</b>.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_mem_usage",{aggregationMethod:"sum",info:'<b>granted</b> is amount of machine memory that is mapped for a host, it equals sum of all granted metrics for all powered-on virtual machines, plus machine memory for vSphere services on the host. <b>consumed</b> is amount of machine memory used on the host, it includes memory used by the Service Console, the VMkernel, vSphere services, plus the total consumed metrics for all running virtual machines. <b>consumed</b> = <b>total host memory</b> - <b>free host memory</b>.<b>active</b> is sum of all active metrics for all powered-on virtual machines plus vSphere services (such as COS, vpxa) on the host.<b>shared</b> is sum of all shared metrics for all powered-on virtual machines, plus amount for vSphere services on the host. <b>sharedcommon</b> is amount of machine memory that is shared by all powered-on virtual machines and vSphere services on the host. <b>shared</b> - <b>sharedcommon</b> = machine memory (host memory) savings (KB). For details see <a href="https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-BFDC988B-F53D-4E97-9793-A002445AFAE1.html" target="_blank">Measuring and Differentiating Types of Memory Usage</a> and <a href="https://vdc-repo.vmware.com/vmwb-repository/dcr-public/fe08899f-1eec-4d8d-b3bc-a6664c168c2c/7fdf97a1-4c0d-4be0-9d43-2ceebbc174d9/doc/memory_counters.html" target="_blank">Memory Counters</a> articles.',en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_mem_swap_io",{aggregationMethod:"sum",info:"This statistic refers to VMkernel swapping and not to guest OS swapping. <b>in</b> is sum of <b>swapinRate</b> values for all powered-on virtual machines on the host.<b>swapinRate</b> is rate at which VMKernel reads data into machine memory from the swap file. <b>out</b> is sum of <b>swapoutRate</b> values for all powered-on virtual machines on the host.<b>swapoutRate</b> is rate at which VMkernel writes to the virtual machine\u2019s swap file from machine memory.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_disk_io",{aggregationMethod:"sum",info:"Summary read/write statistics across all disks.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_disk_max_latency",{aggregationMethod:"max",info:"<b>latency</b> is highest latency value across all disks.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_net_traffic",{aggregationMethod:"sum",info:"Summary receive/transmit statistics across all network interfaces.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_net_packets",{aggregationMethod:"sum",info:"Summary receive/transmit statistics across all network interfaces.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_net_errors",{aggregationMethod:"sum",info:"Summary receive/transmit statistics across all network interfaces.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_net_drops",{aggregationMethod:"sum",info:"Summary receive/transmit statistics across all network interfaces.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_overall_status",{aggregationMethod:"sum",info:"<b>green</b> is OK, <b>yellow</b> is might have a problem, <b>red</b> is definitely has a problem, <b>gray</b> is unknown.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.host_system_uptime",{aggregationMethod:"min",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"vsphere.vm_cpu_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["vm"],chartLibrary:"bars",title:"Top VMs by CPU Usage",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}}],info:"Summary CPU usage statistics across all CPUs/cores.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_mem_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["vm"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top VMs by Memory Usage",colors:o.default[4],layout:{x:9,y:0,w:3,h:5}}],info:"Percentage of used virtual machine \u201cphysical\u201d memory: <b>active</b> / <b>virtual machine configured size</b>.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_mem_usage",{aggregationMethod:"sum",info:'<b>granted</b> is amount of guest \u201cphysical\u201d memory that is mapped to machine memory, it includes <b>shared</b> memory amount. <b>consumed</b> is amount of guest \u201cphysical\u201d memory consumed by the virtual machine for guest memory, <b>consumed</b> = <b>granted</b> - <b>memory saved due to memory sharing</b>. <b>active</b> is amount of memory that is actively used, as estimated by VMkernel based on recently touched memory pages. <b>shared</b> is amount of guest \u201cphysical\u201d memory shared with other virtual machines (through the VMkernel\u2019s transparent page-sharing mechanism, a RAM de-duplication technique). For details see <a href="https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-BFDC988B-F53D-4E97-9793-A002445AFAE1.html" target="_blank">Measuring and Differentiating Types of Memory Usage</a> and <a href="https://vdc-repo.vmware.com/vmwb-repository/dcr-public/fe08899f-1eec-4d8d-b3bc-a6664c168c2c/7fdf97a1-4c0d-4be0-9d43-2ceebbc174d9/doc/memory_counters.html" target="_blank">Memory Counters</a> articles.',en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_mem_swap_io",{aggregationMethod:"sum",info:"This statistic refers to VMkernel swapping and not to guest OS swapping. <b>in</b> is rate at which VMKernel reads data into machine memory from the swap file. <b>out</b> is rate at which VMkernel writes to the virtual machine\u2019s swap file from machine memory.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_mem_swap_usage",{aggregationMethod:"sum",info:"This statistic refers to VMkernel swapping and not to guest OS swapping. <b>swapped</b> is amount of guest physical memory swapped out to the virtual machine's swap file by the VMkernel. Swapped memory stays on disk until the virtual machine needs it.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_disk_io",{aggregationMethod:"sum",info:"Summary read/write statistics across all disks.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_disk_max_latency",{aggregationMethod:"max",info:"<b>latency</b> is highest latency value across all disks.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_net_traffic",{aggregationMethod:"sum",info:"Summary receive/transmit statistics across all network interfaces.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_net_packets",{aggregationMethod:"sum",info:"Summary receive/transmit statistics across all network interfaces.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_net_drops",{aggregationMethod:"sum",info:"Summary receive/transmit statistics across all network interfaces.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_overall_status",{aggregationMethod:"sum",info:"<b>green</b> is OK, <b>yellow</b> is might have a problem, <b>red</b> is definitely has a problem, <b>gray</b> is unknown.",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vsphere.vm_system_uptime",{aggregationMethod:"min",en:{instance:{one:"vm",other:"vms"}}}),(0,a.Z)(n,"vcsa.system_health_status",{info:"<b>green</b>: all components are healthy; <b>yellow</b>: one or more components might become overloaded soon; <b>orange</b>: one or more components in the appliance might be degraded; <b>red</b>: one or more components might be in an unusable status and the appliance might become unresponsive soon; <b>gray</b>: no health data is available; <b>unknown</b>: collector failed to decode the status.",en:{instance:{one:"server appliance",other:"server appliances"}}}),(0,a.Z)(n,"vcsa.applmgmt_health_status",{info:"<b>green</b>: the component is healthy; <b>yellow</b>: the component is healthy, but may have some problems; <b>orange</b>: the component is degraded, and may have serious problems; <b>red</b>: the component is unavailable, or will stop functioning soon; <b>gray</b>: no health data is available; <b>unknown</b>: collector failed to decode the status.",en:{instance:{one:"server appliance",other:"server appliances"}}}),(0,a.Z)(n,"vcsa.load_health_status",{info:"<b>green</b>: the component is healthy; <b>yellow</b>: the component is healthy, but may have some problems; <b>orange</b>: the component is degraded, and may have serious problems; <b>red</b>: the component is unavailable, or will stop functioning soon; <b>gray</b>: no health data is available; <b>unknown</b>: collector failed to decode the status.",en:{instance:{one:"server appliance",other:"server appliances"}}}),(0,a.Z)(n,"vcsa.mem_health_status",{info:"<b>green</b>: the component is healthy; <b>yellow</b>: the component is healthy, but may have some problems; <b>orange</b>: the component is degraded, and may have serious problems; <b>red</b>: the component is unavailable, or will stop functioning soon; <b>gray</b>: no health data is available; <b>unknown</b>: collector failed to decode the status.",en:{instance:{one:"server appliance",other:"server appliances"}}}),(0,a.Z)(n,"vcsa.swap_health_status",{info:"<b>green</b>: the component is healthy; <b>yellow</b>: the component is healthy, but may have some problems; <b>orange</b>: the component is degraded, and may have serious problems; <b>red</b>: the component is unavailable, or will stop functioning soon; <b>gray</b>: no health data is available; <b>unknown</b>: collector failed to decode the status.",en:{instance:{one:"server appliance",other:"server appliances"}}}),(0,a.Z)(n,"vcsa.database_storage_health_status",{info:"<b>green</b>: the component is healthy; <b>yellow</b>: the component is healthy, but may have some problems; <b>orange</b>: the component is degraded, and may have serious problems; <b>red</b>: the component is unavailable, or will stop functioning soon; <b>gray</b>: no health data is available; <b>unknown</b>: collector failed to decode the status.",en:{instance:{one:"server appliance",other:"server appliances"}}}),(0,a.Z)(n,"vcsa.storage_health_status",{info:"<b>green</b>: the component is healthy; <b>yellow</b>: the component is healthy, but may have some problems; <b>orange</b>: the component is degraded, and may have serious problems; <b>red</b>: the component is unavailable, or will stop functioning soon; <b>gray</b>: no health data is available; <b>unknown</b>: collector failed to decode the status.",en:{instance:{one:"server appliance",other:"server appliances"}}}),(0,a.Z)(n,"vcsa.software_packages_health_status",{info:"<b>softwarepackages</b> represents information on available software updates available in the remote vSphere Update Manager repository.<b>green</b>: no updates available; <b>orange</b>: non-security updates are available; <b>red</b>: security updates are available; <b>gray</b>: an error retrieving information on software updates; <b>unknown</b>: collector failed to decode the status.",en:{instance:{one:"server appliance",other:"server appliances"}}}),(0,a.Z)(n,"zookeeper.server_state",{info:"<b>0</b>: unknown, <b>1</b>: leader, <b>2</b>: follower, <b>3</b>: observer, <b>4</b>: standalone.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"squidlog.requests",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Requests",colors:o.default[1],layout:{x:0,y:0,w:3,h:5}}],info:"Total number of requests (log lines read). It includes <b>unmatched</b>."}),(0,a.Z)(n,"squidlog.excluded_requests",{info:'<b>unmatched</b> counts the lines in the log file that are not matched by the plugin parser (<a href="https://github.com/netdata/netdata/issues/new?title=squidlog%20reports%20unmatched%20lines&body=squidlog%20plugin%20reports%20unmatched%20lines.%0A%0AThis%20is%20my%20log:%0A%0A%60%60%60txt%0A%0Aplease%20paste%20your%20squid%20server%20log%20here%0A%0A%60%60%60" target="_blank">let us know</a> if you have any unmatched).'}),(0,a.Z)(n,"squidlog.type_requests",{info:"Requests by response type:<br><ul> <li><b>success</b> includes 1xx, 2xx, 0, 304, 401.</li> <li><b>error</b> includes 5xx and 6xx.</li> <li><b>redirect</b> includes 3xx except 304.</li> <li><b>bad</b> includes 4xx except 401.</li> </ul>"}),(0,a.Z)(n,"squidlog.http_status_code_class_responses",{info:'The HTTP response status code classes. According to <a href="https://tools.ietf.org/html/rfc7231" target="_blank">rfc7231</a>:<br> <li><b>1xx</b> is informational responses.</li> <li><b>2xx</b> is successful responses.</li> <li><b>3xx</b> is redirects.</li> <li><b>4xx</b> is bad requests.</li> <li><b>5xx</b> is internal server errors.</li> </ul>Squid also uses <b>0</b> for a result code being unavailable, and <b>6xx</b> to signal an invalid header, a proxy error.'}),(0,a.Z)(n,"squidlog.http_status_code_responses",{info:"Number of responses for each http response status code individually."}),(0,a.Z)(n,"squidlog.uniq_clients",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Unique Clients",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:"Unique clients (requesting instances), within each data collection iteration. If data collection is <b>per second</b>, this chart shows <b>unique clients per second</b>."}),(0,a.Z)(n,"squidlog.bandwidth",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Bandwidth",colors:o.default[7],layout:{x:6,y:0,w:3,h:5}}],info:"The size is the amount of data delivered to the clients. Mind that this does not constitute the net object size, as headers are also counted. Also, failed requests may deliver an error page, the size of which is also logged here."}),(0,a.Z)(n,"squidlog.response_time",{aggregationMethod:"avg",info:"The elapsed time considers how many milliseconds the transaction busied the cache. It differs in interpretation between TCP and UDP:<ul> <li><b>TCP</b> this is basically the time from having received the request to when Squid finishes sending the last byte of the response.</li> <li><b>UDP</b> this is the time between scheduling a reply and actually sending it.</li> </ul>Please note that <b>the entries are logged after the reply finished being sent</b>, not during the lifetime of the transaction."}),(0,a.Z)(n,"squidlog.cache_result_code_requests",{info:'The Squid result code is composed of several tags (separated by underscore characters) which describe the response sent to the client. Check the <a href="https://wiki.squid-cache.org/SquidFaq/SquidLogs#Squid_result_codes" target="_blank">squid documentation</a> about them.'}),(0,a.Z)(n,"squidlog.cache_result_code_transport_tag_requests",{info:"These tags are always present and describe delivery method.<br><ul> <li><b>TCP</b> requests on the HTTP port (usually 3128).</li> <li><b>UDP</b> requests on the ICP port (usually 3130) or HTCP port (usually 4128).</li> <li><b>NONE</b> Squid delivered an unusual response or no response at all. Seen with cachemgr requests and errors, usually when the transaction fails before being classified into one of the above outcomes. Also seen with responses to CONNECT requests.</li> </ul>"}),(0,a.Z)(n,"squidlog.cache_result_code_handling_tag_requests",{info:'These tags are optional and describe why the particular handling was performed or where the request came from.<br><ul> <li><b>CF</b> at least one request in this transaction was collapsed. See <a href="http://www.squid-cache.org/Doc/config/collapsed_forwarding/" target="_blank">collapsed_forwarding</a> for more details about request collapsing.</li> <li><b>CLIENT</b> usually seen with client issued a "no-cache", or analogous cache control command along with the request. Thus, the cache has to validate the object.</li> <li><b>IMS</b> the client sent a revalidation (conditional) request.</li> <li><b>ASYNC</b> the request was generated internally by Squid. Usually this is background fetches for cache information exchanges, background revalidation from <i>stale-while-revalidate</i> cache controls, or ESI sub-objects being loaded.</li> <li><b>SWAPFAIL</b> the object was believed to be in the cache, but could not be accessed. A new copy was requested from the server.</li> <li><b>REFRESH</b> a revalidation (conditional) request was sent to the server.</li> <li><b>SHARED</b> this request was combined with an existing transaction by collapsed forwarding.</li> <li><b>REPLY</b> the HTTP reply from server or peer. Usually seen on <b>DENIED</b> due to <a href="http://www.squid-cache.org/Doc/config/http_reply_access/" target="_blank">http_reply_access</a> ACLs preventing delivery of servers response object to the client.</li> </ul>'}),(0,a.Z)(n,"squidlog.cache_code_object_tag_requests",{info:'These tags are optional and describe what type of object was produced.<br><ul> <li><b>NEGATIVE</b> only seen on HIT responses, indicating the response was a cached error response. e.g. <b>404 not found</b>.</li> <li><b>STALE</b> the object was cached and served stale. This is usually caused by <i>stale-while-revalidate</i> or <i>stale-if-error</i> cache controls.</li> <li><b>OFFLINE</b> the requested object was retrieved from the cache during <a href="http://www.squid-cache.org/Doc/config/offline_mode/" target="_blank">offline_mode</a>. The offline mode never validates any object.</li> <li><b>INVALID</b> an invalid request was received. An error response was delivered indicating what the problem was.</li> <li><b>FAILED</b> only seen on <b>REFRESH</b> to indicate the revalidation request failed. The response object may be the server provided network error or the stale object which was being revalidated depending on stale-if-error cache control.</li> <li><b>MODIFIED</b> only seen on <b>REFRESH</b> responses to indicate revalidation produced a new modified object.</li> <li><b>UNMODIFIED</b> only seen on <b>REFRESH</b> responses to indicate revalidation produced a 304 (Not Modified) status. The client gets either a full 200 (OK), a 304 (Not Modified), or (in theory) another response, depending on the client request and other details.</li> <li><b>REDIRECT</b> Squid generated an HTTP redirect response to this request.</li> </ul>'}),(0,a.Z)(n,"squidlog.cache_code_load_source_tag_requests",{info:"These tags are optional and describe whether the response was loaded from cache, network, or otherwise.<br><ul> <li><b>HIT</b> the response object delivered was the local cache object.</li> <li><b>MEM</b> the response object came from memory cache, avoiding disk accesses. Only seen on HIT responses.</li> <li><b>MISS</b> the response object delivered was the network response object.</li> <li><b>DENIED</b> the request was denied by access controls.</li> <li><b>NOFETCH</b> an ICP specific type, indicating service is alive, but not to be used for this request.</li> <li><b>TUNNEL</b> a binary tunnel was established for this transaction.</li> </ul>"}),(0,a.Z)(n,"squidlog.cache_code_error_tag_requests",{info:"These tags are optional and describe some error conditions which occurred during response delivery.<br><ul> <li><b>ABORTED</b> the response was not completed due to the connection being aborted (usually by the client).</li> <li><b>TIMEOUT</b> the response was not completed due to a connection timeout.</li> <li><b>IGNORED</b> while refreshing a previously cached response A, Squid got a response B that was older than A (as determined by the Date header field). Squid ignored response B (and attempted to use A instead).</li> </ul>"}),(0,a.Z)(n,"squidlog.http_method_requests",{info:'The request method to obtain an object. Please refer to section <a href="https://wiki.squid-cache.org/SquidFaq/SquidLogs#Request_methods" target="_blank">request-methods</a> for available methods and their description.'}),(0,a.Z)(n,"squidlog.hier_code_requests",{info:'A code that explains how the request was handled, e.g. by forwarding it to a peer, or going straight to the source. Any hierarchy tag may be prefixed with <b>TIMEOUT_</b>, if the timeout occurs waiting for all ICP replies to return from the neighbours. The timeout is either dynamic, if the <a href="http://www.squid-cache.org/Doc/config/icp_query_timeout/" target="_blank">icp_query_timeout</a> was not set, or the time configured there has run up. Refer to <a href="https://wiki.squid-cache.org/SquidFaq/SquidLogs#Hierarchy_Codes" target="_blank">Hierarchy Codes</a> for details on hierarchy codes.'}),(0,a.Z)(n,"squidlog.server_address_forwarded_requests",{info:"The IP address or hostname where the request (if a miss) was forwarded. For requests sent to origin servers, this is the origin server's IP address. For requests sent to a neighbor cache, this is the neighbor's hostname. NOTE: older versions of Squid would put the origin server hostname here."}),(0,a.Z)(n,"squidlog.mime_type_requests",{info:"The content type of the object as seen in the HTTP reply header. Please note that ICP exchanges usually don't have any content type."}),(0,a.Z)(n,"cockroachdb.process_cpu_time_combined_percentage",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average CPU Usage",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}}],info:"Current combined cpu utilization, calculated as <b>(user+system)/num of logical cpus</b>."}),(0,a.Z)(n,"cockroachdb.host_disk_bandwidth",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Disk Bandwidth",colors:o.default[1],layout:{x:3,y:0,w:3,h:5}}],info:"Summary disk bandwidth statistics across all system host disks."}),(0,a.Z)(n,"cockroachdb.host_disk_operations",{info:"Summary disk operations statistics across all system host disks."}),(0,a.Z)(n,"cockroachdb.host_disk_iops_in_progress",{info:"Summary disk iops in progress statistics across all system host disks."}),(0,a.Z)(n,"cockroachdb.host_network_bandwidth",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Network Bandwidth",colors:o.default[4],layout:{x:6,y:0,w:3,h:5}}],info:"Summary network bandwidth statistics across all system host network interfaces."}),(0,a.Z)(n,"cockroachdb.host_network_packets",{info:"Summary network packets statistics across all system host network interfaces."}),(0,a.Z)(n,"cockroachdb.live_nodes",{info:"Will be <b>0</b> if this node is not itself live."}),(0,a.Z)(n,"cockroachdb.total_storage_capacity",{info:"Entire disk capacity. It includes non-CR data, CR data, and empty space."}),(0,a.Z)(n,"cockroachdb.storage_capacity_usability",{info:"<b>usable</b> is sum of empty space and CR data, <b>unusable</b> is space used by non-CR data."}),(0,a.Z)(n,"cockroachdb.storage_usable_capacity",{info:"Breakdown of <b>usable</b> space."}),(0,a.Z)(n,"cockroachdb.storage_used_capacity_percentage",{aggregationMethod:"avg",info:"<b>total</b> is % of <b>total</b> space used, <b>usable</b> is % of <b>usable</b> space used."}),(0,a.Z)(n,"cockroachdb.sql_bandwidth",{info:"The total amount of SQL client network traffic."}),(0,a.Z)(n,"cockroachdb.sql_errors",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total SQL Errors",colors:o.default[7],layout:{x:9,y:0,w:3,h:5}}],info:"<b>statement</b> is statements resulting in a planning or runtime error, <b>transaction</b> is SQL transactions abort errors."}),(0,a.Z)(n,"cockroachdb.sql_started_ddl_statements",{info:"The amount of <b>started</b> DDL (Data Definition Language) statements. This type means database schema changes. It includes <b>CREATE</b>, <b>ALTER</b>, <b>DROP</b>, <b>RENAME</b>, <b>TRUNCATE</b> and <b>COMMENT</b> statements."}),(0,a.Z)(n,"cockroachdb.sql_executed_ddl_statements",{info:"The amount of <b>executed</b> DDL (Data Definition Language) statements. This type means database schema changes. It includes <b>CREATE</b>, <b>ALTER</b>, <b>DROP</b>, <b>RENAME</b>, <b>TRUNCATE</b> and <b>COMMENT</b> statements."}),(0,a.Z)(n,"cockroachdb.sql_started_dml_statements",{info:"The amount of <b>started</b> DML (Data Manipulation Language) statements."}),(0,a.Z)(n,"cockroachdb.sql_executed_dml_statements",{info:"The amount of <b>executed</b> DML (Data Manipulation Language) statements."}),(0,a.Z)(n,"cockroachdb.sql_started_tcl_statements",{info:"The amount of <b>started</b> TCL (Transaction Control Language) statements."}),(0,a.Z)(n,"cockroachdb.sql_executed_tcl_statements",{info:"The amount of <b>executed</b> TCL (Transaction Control Language) statements."}),(0,a.Z)(n,"cockroachdb.live_bytes",{info:"The amount of live data used by both applications and the CockroachDB system."}),(0,a.Z)(n,"cockroachdb.kv_transactions",{info:"KV transactions breakdown:<br><ul> <li><b>committed</b> committed KV transactions (including 1PC).</li> <li><b>fast-path_committed</b> KV transaction on-phase commit attempts.</li> <li><b>aborted</b> aborted KV transactions.</li> </ul>"}),(0,a.Z)(n,"cockroachdb.kv_transaction_restarts",{info:'KV transactions restarts breakdown:<br><ul> <li><b>write too old</b> restarts due to a concurrent writer committing first.</li> <li><b>write too old (multiple)</b> restarts due to multiple concurrent writers committing first.</li> <li><b>forwarded timestamp (iso=serializable)</b> restarts due to a forwarded commit timestamp and isolation=SERIALIZABLE".</li> <li><b>possible replay</b> restarts due to possible replays of command batches at the storage layer.</li> <li><b>async consensus failure</b> restarts due to async consensus writes that failed to leave intents.</li> <li><b>read within uncertainty interval</b> restarts due to reading a new value within the uncertainty interval.</li> <li><b>aborted</b> restarts due to an abort by a concurrent transaction (usually due to deadlock).</li> <li><b>push failure</b> restarts due to a transaction push failure.</li> <li><b>unknown</b> restarts due to a unknown reasons.</li> </ul>'}),(0,a.Z)(n,"cockroachdb.ranges",{info:'CockroachDB stores all user data (tables, indexes, etc.) and almost all system data in a giant sorted map of key-value pairs. This keyspace is divided into "ranges", contiguous chunks of the keyspace, so that every key can always be found in a single range.'}),(0,a.Z)(n,"cockroachdb.ranges_replication_problem",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Replication Problems",colors:o.default[12],layout:{x:9,y:0,w:3,h:5}}],info:"Ranges with not optimal number of replicas:<br><ul> <li><b>unavailable</b> ranges with fewer live replicas than needed for quorum.</li> <li><b>under replicated</b> ranges with fewer live replicas than the replication target.</li> <li><b>over replicated</b> ranges with more live replicas than the replication target.</li> </ul>"}),(0,a.Z)(n,"cockroachdb.replicas",{info:"CockroachDB replicates each range (3 times by default) and stores each replica on a different node."}),(0,a.Z)(n,"cockroachdb.replicas_leaders",{info:"For each range, one of the replicas is the <b>leader</b> for write requests, <b>not leaseholders</b> is the number of Raft leaders whose range lease is held by another store."}),(0,a.Z)(n,"cockroachdb.replicas_leaseholders",{info:'For each range, one of the replicas holds the "range lease". This replica, referred to as the <b>leaseholder</b>, is the one that receives and coordinates all read and write requests for the range.'}),(0,a.Z)(n,"cockroachdb.queue_processing_failures",{info:"Failed replicas breakdown by queue:<br><ul> <li><b>gc</b> replicas which failed processing in the GC queue.</li> <li><b>replica gc</b> replicas which failed processing in the replica GC queue.</li> <li><b>replication</b> replicas which failed processing in the replicate queue.</li> <li><b>split</b> replicas which failed processing in the split queue.</li> <li><b>consistency</b> replicas which failed processing in the consistency checker queue.</li> <li><b>raft log</b> replicas which failed processing in the Raft log queue.</li> <li><b>raft snapshot</b> replicas which failed processing in the Raft repair queue.</li> <li><b>time series maintenance</b> replicas which failed processing in the time series maintenance queue.</li> </ul>"}),(0,a.Z)(n,"cockroachdb.rebalancing_queries",{info:"Number of kv-level requests received per second by the store, averaged over a large time period as used in rebalancing decisions."}),(0,a.Z)(n,"cockroachdb.rebalancing_writes",{info:"Number of keys written (i.e. applied by raft) per second to the store, averaged over a large time period as used in rebalancing decisions."}),(0,a.Z)(n,"cockroachdb.slow_requests",{info:"Requests that have been stuck for a long time."}),(0,a.Z)(n,"cockroachdb.timeseries_samples",{info:"The amount of metric samples written to disk."}),(0,a.Z)(n,"cockroachdb.timeseries_write_errors",{info:"The amount of errors encountered while attempting to write metrics to disk."}),(0,a.Z)(n,"cockroachdb.timeseries_write_bytes",{info:"Size of metric samples written to disk."}),(0,a.Z)(n,"cockroachdb.process_cpu_time_percentage",{aggregationMethod:"avg",info:"The percentage of CPU time used by the CockroachDB process. High usage may indicate the need for additional resources or optimization."}),(0,a.Z)(n,"cockroachdb.process_memory",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Memory Usage",colors:o.default[1],layout:{x:0,y:5,w:3,h:5}}],info:"The amount of memory used by the CockroachDB process. High memory usage may indicate the need for additional resources or optimization."}),(0,a.Z)(n,"cockroachdb.process_file_descriptors",{info:"The number of file descriptors used by the CockroachDB process. High usage may indicate the need for additional resources or optimization."}),(0,a.Z)(n,"cockroachdb.process_uptime",{aggregationMethod:"min",info:"The amount of time that the CockroachDB process has been running. This can be useful for understanding the overall health and stability of the system."}),(0,a.Z)(n,"cockroachdb.node_liveness_heartbeats",{info:"The number of liveness heartbeats sent by the CockroachDB node. This can be useful for understanding the overall health and stability of the cluster."}),(0,a.Z)(n,"cockroachdb.sql_statements_total",{info:"The total number of SQL statements executed in the CockroachDB cluster. This can be useful for understanding overall system load and potential bottlenecks."}),(0,a.Z)(n,"cockroachdb.sql_active_distributed_queries",{info:"The number of active distributed SQL queries in the CockroachDB cluster. This can be useful for understanding overall system load and potential bottlenecks."}),(0,a.Z)(n,"cockroachdb.sql_distributed_flows",{info:"'The number of active distributed flows in the CockroachDB cluster. This can be useful for understanding overall system load and potential bottlenecks."}),(0,a.Z)(n,"cockroachdb.rocksdb_table_operations",{info:"The number of RocksDB table operations in the CockroachDB cluster. This can be useful for understanding overall system load and potential bottlenecks."}),(0,a.Z)(n,"cockroachdb.rocksdb_cache_hit_rate",{aggregationMethod:"avg",info:"The RocksDB cache hit rate in the CockroachDB cluster. This can be useful for understanding the efficiency of the cache and identifying potential performance issues."}),(0,a.Z)(n,"cockroachdb.code_heap_memory_usage",{info:"The amount of memory used by the code heap in the CockroachDB cluster. High usage may indicate the need for additional resources or optimization."}),(0,a.Z)(n,"cockroachdb.goroutines",{info:"The number of goroutines in the CockroachDB cluster. This can be useful for understanding overall system load and potential bottlenecks."}),(0,a.Z)(n,"cockroachdb.gc_count",{info:"The number of garbage collection cycles in the CockroachDB cluster. This can be useful for understanding overall system performance and potential bottlenecks."}),(0,a.Z)(n,"cockroachdb.gc_pause",{info:"The total time spent in garbage collection pauses in the CockroachDB cluster. High values may indicate the need for optimization or additional resources."}),(0,a.Z)(n,"cockroachdb.cgo_calls",{info:"The number of CGo calls in the CockroachDB cluster. This can be useful for understanding overall system load and potential bottlenecks."}),(0,a.Z)(n,"perf.instructions_per_cycle",{info:'An IPC < 1.0 likely means memory bound, and an IPC > 1.0 likely means instruction bound. For more details about the metric take a look at this <a href="https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html" target="_blank">blog post</a>.'}),(0,a.Z)(n,"filesystem.vfs_deleted_objects",{title:"VFS remove",info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS unlinker function</a>. This chart may not show all file system events if it uses other functions to store data on disk. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_unlink">application</a> and <a href="#ebpf_services_vfs_unlink">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_unlink"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_io",{title:"VFS IO",info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS I/O functions</a>. This chart may not show all file system events if it uses other functions to store data on disk. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_write">application</a> and <a href="#ebpf_services_vfs_write">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_io"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_io_bytes",{title:"VFS bytes written",info:'Total of bytes read or written with success using the <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS I/O functions</a>. This chart may not show all file system events if it uses other functions to store data on disk. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_write_bytes">application</a> and <a href="#ebpf_services_vfs_write_bytes">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_io_bytes"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_io_error",{title:"VFS IO error",info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS I/O functions</a>. This chart may not show all file system events if it uses other functions to store data on disk. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_write_error">application</a> and <a href="#ebpf_services_vfs_write_error">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_io_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_fsync",{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS syncer function</a>. This chart may not show all file system events if it uses other functions to sync data on disk. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_sync">application</a> and <a href="#ebpf_services_vfs_sync">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_sync"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_fsync_error",{info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS syncer function.</a>. This chart may not show all file system events if it uses other functions to sync data on disk. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_sync_error">application</a> and <a href="#ebpf_services_vfs_sync_error">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_sync_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_open",{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS opener function</a>. This chart may not show all file system events if it uses other functions to open files. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_open">application</a> and <a href="#ebpf_services_vfs_open">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_open"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_open_error",{info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS opener function</a>. This chart may not show all file system events if it uses other functions to open files. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_open_error">application</a> and <a href="#ebpf_services_vfs_open_error">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_open_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_create",{info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS creator function</a>. This chart may not show all file system events if it uses other functions to create files. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_create">application</a> and <a href="#ebpf_services_vfs_create">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_create"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.vfs_create_error",{info:'Number of failed calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">VFS creator function</a>. This chart may not show all file system events if it uses other functions to create files. Netdata shows virtual file system metrics per <a href="#ebpf_apps_vfs_craete_error">application</a> and <a href="#ebpf_services_vfs_create_error">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File Systems</a>.<div id="ebpf_global_vfs_create_error"></div>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.ext4_read_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each read request monitoring ext4 reader <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#ext4" target="_blank">function</a>.'+y+'to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.ext4_write_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each write request monitoring ext4 writer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#ext4" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.ext4_open_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each open request monitoring ext4 opener <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#ext4" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.ext4_sync_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each sync request monitoring ext4 syncer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#ext4" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.xfs_read_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each read request monitoring xfs reader <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#xfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.xfs_write_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each write request monitoring xfs writer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#xfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.xfs_open_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each open request monitoring xfs opener <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#xfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.xfs_sync_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each sync request monitoring xfs syncer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#xfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.nfs_read_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each read request monitoring nfs reader <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#nfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.nfs_write_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each write request monitoring nfs writer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#nfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.nfs_open_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each open request monitoring nfs opener <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#nfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.nfs_attribute_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each get attribute request monitoring nfs attribute <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#nfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.zfs_read_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each read request monitoring zfs reader <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#zfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.zfs_write_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each write request monitoring zfs writer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#zfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.zfs_open_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each open request monitoring zfs opener <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#zfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.zfs_sync_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each sync request monitoring zfs syncer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#zfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.btrfs_read_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each read request monitoring btrfs reader <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#btrfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.btrfs_write_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each write request monitoring btrfs writer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#btrfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.btrfs_open_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each open request monitoring btrfs opener <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#btrfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.btrfs_sync_latency",{aggregationMethod:"avg",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> for each sync request monitoring btrfs syncer <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#btrfs" target="_blank">function</a>.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mount_points.call",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Syscalls to mount and unmount",layout:{x:6,y:0,w:3,h:5}}],info:'Monitor calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#mount-points" target="_blank">syscalls</a> that are responsible for attaching (<b>mount(2)</b>) or removing filesystems (<b>umount(2)</b>). This chart has relationship with <a href="#menu_filesystem">File systems</a>.'+y,en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mount_points.error",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Errors to mount and unmount",colors:o.default[1],layout:{x:9,y:0,w:3,h:5}}],info:'Monitor errors in calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#mount-points" target="_blank">syscalls</a> that are responsible for attaching (<b>mount(2)</b>) or removing filesystems (<b>umount(2)</b>). This chart has relationship with <a href="#menu_filesystem">File systems</a>.'+y,en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.file_descriptor",{info:'Number of calls for internal functions on the Linux kernel responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to open and closing files</a>. Netdata shows file access per <a href="#ebpf_apps_file_open">application</a> and <a href="#ebpf_services_file_open">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File systems</a>',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filesystem.file_error",{info:'Number of failed calls to the kernel internal function responsible <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">to open and closing files</a>. Netdata shows file error per <a href="#ebpf_apps_file_open_error">application</a> and <a href="#ebpf_services_file_open_error">cgroup (systemd Services)</a> if <a href="https://learn.netdata.cloud/guides/troubleshoot/monitor-debug-applications-ebpf" target="_blank">apps</a> or <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#integration-with-cgroupsplugin" target="_blank">cgroup (systemd Services)</a> plugins are enabled.'+y+' to monitor <a href="#menu_filesystem">File systems</a>.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"netdata.aclk_status",{valueRange:[0,1],info:"This chart shows if ACLK was online during entirety of the sample duration.",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"netdata.aclk_query_per_second",{info:"This chart shows how many queries were added for ACLK_query thread to process and how many it was actually able to process.",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"netdata.aclk_latency_mqtt",{aggregationMethod:"avg",info:"Measures latency between MQTT publish of the message and it's PUB_ACK being received",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"vernemq.sockets",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["open_sockets"],chartLibrary:"gauge",title:"Total Connected Clients",desiredUnits:"clients"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.queue_processes",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["queue_processes"],chartLibrary:"gauge",title:"Total Queues Processes",desiredUnits:"processes"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.queue_messages",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["queue_message_in"],chartLibrary:"easypiechart",title:"Total MQTT Receive Rate",desiredUnits:"messages/s"},{"group_by[0]":["selected"],selectedDimensions:["queue_message_out"],chartLibrary:"easypiechart",title:"Total MQTT Send Rate",desiredUnits:"messages/s"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.average_scheduler_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",selectedDimensions:["system_utilization"],chartLibrary:"gauge",title:"Maximum Scheduler Utilization",colors:o.default[5],desiredUnits:"percentage"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_unsubscribe",{info:"This metric measures the number of MQTT unsubscribe attempts. Monitoring this metric can help identify any potential issues related to unsubscription.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_publish",{info:"This metric measures the number of MQTT publish attempts. Monitoring this metric can help identify any potential issues related to publishing.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_publish_errors",{info:"This metric measures the number of errors encountered during MQTT publish attempts. Monitoring this metric can help identify any potential issues related to publishing.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_publish_auth_errors",{info:"This metric measures the number of authentication errors encountered during MQTT publish attempts. Monitoring this metric can help identify any potential authentication issues.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_puback",{info:"This metric measures the number of MQTT puback requests. A PUBACK message is the response to a PUBLISH message with QoS level 1. A PUBACK message is sent by a server in response to a PUBLISH message from a publishing client, and by a subscriber in response to a PUBLISH message from the server. Monitoring this metric can help identify any potential issues related to acknowledgements.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_ping",{info:"This metric measures the number of MQTT ping requests. Monitoring this metric can help identify any potential issues related to communication.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.messages_rate",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["pulsar_rate_in"],chartLibrary:"easypiechart",title:"Total Published",desiredUnits:"messages/s"},{"group_by[0]":["selected"],selectedDimensions:["pulsar_rate_out"],chartLibrary:"easypiechart",title:"Total Dispatched",desiredUnits:"messages/s"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.subscription_msg_rate_redeliver",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["pulsar_subscription_msg_rate_redeliver"],chartLibrary:"gauge",title:"Total Redelivered",desiredUnits:"messages/s"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.subscription_blocked_on_unacked_messages",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["pulsar_subscription_blocked_on_unacked_messages"],chartLibrary:"gauge",title:"Total Blocked On Unacked",desiredUnits:"subscriptions"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.msg_backlog",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["pulsar_msg_backlog"],chartLibrary:"gauge",title:"Total Messages Backlog",desiredUnits:"messages"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.namespace_messages_rate",{heads:[{"group_by[0]":["selected"],selectedDimensions:["publish"],chartLibrary:"easypiechart",title:"Total Published",desiredUnits:"messages/s"},{"group_by[0]":["selected"],selectedDimensions:["dispatch"],chartLibrary:"easypiechart",title:"Total Dispatched",desiredUnits:"messages/s"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.namespace_subscription_msg_rate_redeliver",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["redelivered"],chartLibrary:"gauge",title:"Total Redelivered",desiredUnits:"messages/s"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.namespace_subscription_blocked_on_unacked_messages",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["blocked"],chartLibrary:"gauge",title:"Total Blocked On Unacked",desiredUnits:"subscriptions"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.namespace_msg_backlog",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["backlog"],chartLibrary:"gauge",title:"Total Messages Backlog",desiredUnits:"messages"}],en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"amdgpu.gpu_utilization",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_mem_utilization",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_clk_frequency",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_mem_clk_frequency",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_mem_vram_usage_perc",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_mem_vram_usage",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_mem_vis_vram_usage_perc",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_mem_vis_vram_usage",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_mem_gtt_usage_perc",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"amdgpu.gpu_mem_gtt_usage",{en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.fan_speed",{heads:[{"group_by[0]":["selected"],"aggregation[0]":"max",selectedDimensions:["speed"],chartLibrary:"easypiechart",title:"Maximum Fan Speed",desiredUnits:"percentage"}],en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.temperature",{heads:[{"group_by[0]":["selected"],"aggregation[0]":"max",selectedDimensions:["temp"],chartLibrary:"easypiechart",title:"Maximum Temperature",desiredUnits:"celsius"}],en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.memory_allocated",{heads:[{"group_by[0]":["selected"],selectedDimensions:["used"],chartLibrary:"easypiechart",title:"Total Used Memory",desiredUnits:"MiB"}],en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.power",{aggregationMethod:"avg",heads:[{"group_by[0]":["selected"],selectedDimensions:["power"],chartLibrary:"easypiechart",title:"Total Power Utilization",colors:o.default[5],desiredUnits:"watts"}],en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_pcie_bandwidth_usage",{info:"The amount of PCI Express (PCIe) bandwidth being used by the GPU. Monitoring this metric can help identify if the GPU is being bottlenecked by the PCIe bus and determine if a faster GPU is needed.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_fan_speed_perc",{aggregationMethod:"avg",info:"The speed of the GPU's fan in percent. Monitoring this metric is important to ensure that the GPU is not overheating and that the fan is running at the optimal speed.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_utilization",{aggregationMethod:"avg",info:"The amount of utilization of the GPU's compute and graphics units. Monitoring this metric can help identify potential bottlenecks in the GPU's performance and help tune the system for optimal performance.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_memory_utilization",{aggregationMethod:"avg",info:"The amount of GPU memory being used. Monitoring this metric can help identify potential memory usage issues and help optimize memory usage for better performance.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_decoder_utilization",{aggregationMethod:"avg",info:"The amount of utilization of the GPU's decoder units. Monitoring this metric can help identify potential bottlenecks in the GPU's performance and help tune the system for optimal performance.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_encoder_utilization",{aggregationMethod:"avg",info:"The amount of utilization of the GPU's encoder units. Monitoring this metric can help identify potential bottlenecks in the GPU's performance and help tune the system for optimal performance.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_temperature",{info:"The temperature of the GPU in degrees Celsius. Monitoring this metric is important to ensure that the GPU is not overheating and that the fan is running at the optimal speed.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_clock_freq",{info:"The clock frequency of the GPU in MHz. Monitoring this metric can help identify potential bottlenecks in the GPU's performance and help tune the system for optimal performance.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"nvidia_smi.gpu_performance_state",{info:"The performance state of the GPU. Monitoring this metric can help identify potential performance issues and help tune the system for optimal performance.",en:{instance:{one:"GPU",other:"GPUs"}}}),(0,a.Z)(n,"openvpn.active_clients",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Active Clients"}],info:"The active clients metric indicates the number of clients connected to the OpenVPN server. This metric should be monitored to keep track of the number of connected clients.",en:{instance:{one:"OpenVPN server",other:"OpenVPN servers"}}}),(0,a.Z)(n,"openvpn.total_traffic",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["out"],chartLibrary:"easypiechart",title:"Total Traffic Sent"},{"group_by[0]":["selected"],selectedDimensions:["in"],chartLibrary:"easypiechart",title:"Total Traffic received"}],info:"The total traffic metric indicates the total amount of data sent and received on the OpenVPN server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"OpenVPN server",other:"OpenVPN servers"}}}),(0,a.Z)(n,"openvpn.user_traffic",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Traffic per User"}],info:"The user traffic metric indicates the amount of data sent and received by each user connected to the OpenVPN server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"OpenVPN server",other:"OpenVPN servers"}}}),(0,a.Z)(n,"openvpn.user_connection_time",{aggregationMethod:"avg",info:"The user connection time metric indicates the time each user is connected to the OpenVPN server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"OpenVPN server",other:"OpenVPN servers"}}}),(0,a.Z)(n,"phpdaemon.workers",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Workers",layout:{x:0,y:0,w:3,h:5}}],info:"The workers metric indicates the number of workers running in the phpdaemon. This metric should be monitored to ensure the proper number of workers is running for the best performance.",en:{instance:{one:"daemon",other:"daemons"}}}),(0,a.Z)(n,"phpdaemon.alive_workers",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Active Workers",layout:{x:3,y:0,w:3,h:5}}],info:"The alive workers metric indicates the number of workers currently active in the phpdaemon. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"daemon",other:"daemons"}}}),(0,a.Z)(n,"phpdaemon.idle_workers",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Idle Workers",layout:{x:6,y:0,w:3,h:5}}],info:"The idle workers metric indicates the number of workers that are currently idle in the phpdaemon. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"daemon",other:"daemons"}}}),(0,a.Z)(n,"phpdaemon.uptime",{aggregationMethod:"min",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Uptime",layout:{x:9,y:0,w:3,h:5}}],info:"The uptime metric indicates the time since the phpdaemon was started. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"daemon",other:"daemons"}}}),(0,a.Z)(n,"phpfpm.connections",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["active"],chartLibrary:"easypiechart",title:"Active Connections",layout:{x:0,y:0,w:3,h:5}}],info:"This metric indicates the connections count across the following dimensions: active, max_active, idle.",en:{instance:{one:"FastCGI server",other:"FastCGI servers"}}}),(0,a.Z)(n,"phpfpm.requests",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Requests",layout:{x:3,y:0,w:3,h:5}}],info:"The requests metric indicates the number of requests processed by the phpfpm server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"FastCGI server",other:"FastCGI servers"}}}),(0,a.Z)(n,"phpfpm.performance",{info:"The performance metric indicates the performance of the phpfpm server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"FastCGI server",other:"FastCGI servers"}}}),(0,a.Z)(n,"phpfpm.request_duration",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Request Duration",layout:{x:6,y:0,w:3,h:5}}],info:"The request duration metric indicates the time taken to process each request on the phpfpm server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"FastCGI server",other:"FastCGI servers"}}}),(0,a.Z)(n,"phpfpm.request_cpu",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Request CPU",layout:{x:9,y:0,w:3,h:5}}],info:"The request CPU metric indicates the amount of CPU used to process each request on the phpfpm server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"FastCGI server",other:"FastCGI servers"}}}),(0,a.Z)(n,"phpfpm.request_mem",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Request Memory",layout:{x:0,y:5,w:3,h:5}}],info:"The request memory metric indicates the amount of memory used to process each request on the phpfpm server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"FastCGI server",other:"FastCGI servers"}}}),(0,a.Z)(n,"pihole.dns_queries_total",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Queries",layout:{x:0,y:0,w:3,h:5}}],info:"The DNS queries total metric indicates the total number of DNS queries that have been made to the Pi-hole server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"Pi-hole server",other:"Pi-hole servers"}}}),(0,a.Z)(n,"pihole.dns_queries",{info:"The DNS queries metric indicates the number of DNS queries that have been made to the Pi-hole server in a given time period. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"Pi-hole server",other:"Pi-hole servers"}}}),(0,a.Z)(n,"pihole.dns_queries_percentage",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],selectedDimensions:["blocked"],chartLibrary:"gauge",title:"Blocked Queries %",layout:{x:3,y:0,w:3,h:5}}],info:"The DNS queries percentage metric indicates the percentage of DNS queries that have been made to the Pi-hole server in a given time period. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"Pi-hole server",other:"Pi-hole servers"}}}),(0,a.Z)(n,"pihole.unique_clients",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Clients",layout:{x:6,y:0,w:3,h:5}}],info:"The unique clients metric indicates the number of unique clients making DNS queries to the Pi-hole server. This metric should be monitored to ensure the server is running efficiently.",en:{instance:{one:"Pi-hole server",other:"Pi-hole servers"}}}),(0,a.Z)(n,"pihole.blocklist_last_update",{info:"The blocklist last update metric indicates the last time the Pi-hole's blocklist was updated. This metric should be monitored to ensure that the server is running efficiently.",en:{instance:{one:"Pi-hole server",other:"Pi-hole servers"}}}),(0,a.Z)(n,"pihole.dns_queries_types",{aggregationMethod:"avg",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Query Types",layout:{x:9,y:0,w:3,h:5}}],info:"The DNS queries types metric indicates the types of DNS queries that have been made to the Pi-hole server. This metric should be monitored to ensure that the server is running efficiently.",en:{instance:{one:"Pi-hole server",other:"Pi-hole servers"}}}),(0,a.Z)(n,"pihole.domains_on_blocklist",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"number",title:"Domains on Blocklist",layout:{x:0,y:5,w:3,h:5}}],info:"The DNS queries types metric indicates the types of DNS queries that have been made to the Pi-hole server. This metric should be monitored to ensure that the server is running efficiently.",en:{instance:{one:"Pi-hole server",other:"Pi-hole servers"}}}),(0,a.Z)(n,"pihole.dns_queries_forwarded_destination",{aggregationMethod:"avg",info:"The DNS queries forwarded destination metric indicates the destination of the DNS queries that have been forwarded by the Pi-hole server. This metric should be monitored to ensure that the server is running efficiently.",en:{instance:{one:"Pi-hole server",other:"Pi-hole servers"}}}),(0,a.Z)(n,"supervisord.process_state_code",{info:'<a href="http://supervisord.org/subprocess.html#process-states" target="_blank">Process states map</a>: <b>0</b> - stopped, <b>10</b> - starting, <b>20</b> - running, <b>30</b> - backoff,<b>40</b> - stopping, <b>100</b> - exited, <b>200</b> - fatal, <b>1000</b> - unknown.'}),(0,a.Z)(n,"systemd.service_unit_state",{info:'Service units start and control daemons and the processes they consist of. For details, see <a href="https://www.freedesktop.org/software/systemd/man/systemd.service.html#" target="_blank"> systemd.service(5)</a>',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.socket_unit_state",{info:'Socket units encapsulate local IPC or network sockets in the system, useful for socket-based activation. For details about socket units, see <a href="https://www.freedesktop.org/software/systemd/man/systemd.socket.html#" target="_blank"> systemd.socket(5)</a>, for details on socket-based activation and other forms of activation, see <a href="https://www.freedesktop.org/software/systemd/man/daemon.html#" target="_blank"> daemon(7)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.target_unit_state",{info:'Target units are useful to group units, or provide well-known synchronization points during boot-up, see <a href="https://www.freedesktop.org/software/systemd/man/systemd.target.html#" target="_blank"> systemd.target(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.path_unit_state",{info:'Path units may be used to activate other services when file system objects change or are modified. See <a href="https://www.freedesktop.org/software/systemd/man/systemd.path.html#" target="_blank"> systemd.path(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.device_unit_state",{info:'Device units expose kernel devices in systemd and may be used to implement device-based activation. For details, see <a href="https://www.freedesktop.org/software/systemd/man/systemd.device.html#" target="_blank"> systemd.device(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.mount_unit_state",{info:'Mount units control mount points in the file system. For details, see <a href="https://www.freedesktop.org/software/systemd/man/systemd.mount.html#" target="_blank"> systemd.mount(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.automount_unit_state",{info:'Automount units provide automount capabilities, for on-demand mounting of file systems as well as parallelized boot-up. See <a href="https://www.freedesktop.org/software/systemd/man/systemd.automount.html#" target="_blank"> systemd.automount(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.swap_unit_state",{info:'Swap units are very similar to mount units and encapsulate memory swap partitions or files of the operating system. They are described in <a href="https://www.freedesktop.org/software/systemd/man/systemd.swap.html#" target="_blank"> systemd.swap(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.timer_unit_state",{info:'Timer units are useful for triggering activation of other units based on timers. You may find details in <a href="https://www.freedesktop.org/software/systemd/man/systemd.timer.html#" target="_blank"> systemd.timer(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.scope_unit_state",{info:'Slice units may be used to group units which manage system processes (such as service and scope units) in a hierarchical tree for resource management purposes. See <a href="https://www.freedesktop.org/software/systemd/man/systemd.scope.html#" target="_blank"> systemd.scope(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"systemd.slice_unit_state",{info:'Scope units are similar to service units, but manage foreign processes instead of starting them as well. See <a href="https://www.freedesktop.org/software/systemd/man/systemd.slice.html#" target="_blank"> systemd.slice(5)</a>.',en:{instance:{one:"unit",other:"units"}}}),(0,a.Z)(n,"anomaly_detection.dimensions",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["anomalous"],chartLibrary:"number",desiredUnits:"dimensions",title:"Total Anomalous Dimensions",layout:{x:3,y:0,w:3,h:5}},{"group_by[0]":["selected"],selectedDimensions:["normal"],chartLibrary:"number",desiredUnits:"dimensions",title:"Total Normal Dimensions",layout:{x:6,y:0,w:3,h:5}}],info:"Total count of dimensions considered anomalous or normal. ",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["anomalous"]}),(0,a.Z)(n,"anomaly_detection.anomaly_rate",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",colors:o.default[12],title:"% of Anomalous Dimensions",layout:{x:0,y:0,w:3,h:5}}],info:"Percentage of anomalous dimensions. ",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["anomaly_rate"]}),(0,a.Z)(n,"anomaly_detection.detector_window",{info:"The length of the active window used by the detector. ",en:{instance:{one:"system",other:"systems"}},dimensionsOnNonDimensionGrouping:["above_threshold"]}),(0,a.Z)(n,"anomaly_detection.detector_events",{info:"Flags (0 or 1) to show when an anomaly event has been triggered by the detector. ",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"anomaly_detection.prediction_stats",{info:"Diagnostic metrics relating to prediction time of anomaly detection. ",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"anomaly_detection.training_stats",{info:"Diagnostic metrics relating to training time of anomaly detection. ",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"fail2ban.failed_attempts",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Failed Attempts",layout:{x:0,y:0,w:3,h:5}}],info:"<p>The number of failed attempts.</p><p>This chart reflects the number of 'Found' lines. Found means a line in the service\u2019s log file matches the failregex in its filter.</p>",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"fail2ban.bans",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Bans",layout:{x:3,y:0,w:3,h:5}}],info:"<p>The number of bans.</p><p>This chart reflects the number of 'Ban' and 'Restore Ban' lines. Ban action happens when the number of failed attempts (maxretry) occurred in the last configured interval (findtime).</p>",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"fail2ban.banned_ips",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Banned IPs",layout:{x:6,y:0,w:3,h:5}}],info:"<p>The number of banned IP addresses.</p>",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"consul.node_health_check_status",{info:'The current status of the <a href="https://developer.hashicorp.com/consul/tutorials/developer-discovery/service-registration-health-checks#monitor-a-node" target="_blank">node health check</a>. A node health check monitors the health of the entire node. If the node health check fails, Consul marks the node as unhealthy.',en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.service_health_check_status",{info:'The current status of the <a href="https://developer.hashicorp.com/consul/tutorials/developer-discovery/service-registration-health-checks#monitor-a-service" target="_blank">service health check</a>. A service check only affects the health of the service it is associated with. If the service health check fails, the DNS interface stops returning that service.',en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.client_rpc_requests_rate",{mainheads:[{"group_by[0]":["instance"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"RPC Requests Rate Per Client",desiredUnits:"req/s"}],info:"The number of RPC requests to a Consul server.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.client_rpc_requests_exceeded_rate",{info:'The number of rate-limited RPC requests to a Consul server. An Increase of this metric either indicates the load is getting high enough to limit the rate or a <a href="https://developer.hashicorp.com/consul/docs/agent/config/config-files#limits" target="_blank">incorrectly configured</a> Consul agent.',en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.client_rpc_requests_failed_rate",{info:"The number of failed RPC requests to a Consul server.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.memory_allocated",{mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["datacenter"],chartLibrary:"number",title:"Memory Allocated per Consul DC"}],info:"The amount of memory allocated by the Consul process.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.memory_sys",{info:"The amount of memory obtained from the OS.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.gc_pause_time",{aggregationMethod:"avg",info:"The amount of time spent in stop-the-world garbage collection (GC) pauses.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.kvs_apply_time",{aggregationMethod:"avg",info:"The time it takes to complete an update to the KV store.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.kvs_apply_operations_rate",{mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["datacenter"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Key Value Store Operations Rate per DC"}],info:"The number of KV store updates.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.txn_apply_time",{aggregationMethod:"avg",info:"The time spent applying a transaction operation.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.txn_apply_operations_rate",{info:"The number of applied transaction operations.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_commit_time",{aggregationMethod:"avg",info:"The time it takes to commit a new entry to the Raft log on the leader.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_commits_rate",{mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["datacenter"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Raft Commits Rate per DC"}],info:"The number of applied Raft transactions.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.autopilot_health_status",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Health Status Overview",desiredUnits:"status"}],info:"The overall health of the local server cluster. The status is healthy if <b>all servers</b> are considered healthy by Autopilot.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.autopilot_failure_tolerance",{info:"The number of voting servers that the cluster can lose while continuing to function.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_leader_last_contact_time",{aggregationMethod:"avg",info:"The time since the leader was last able to contact the follower nodes when checking its leader lease.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_leader_elections_rate",{info:"The number of leadership elections. Increments whenever a Consul server starts an election.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_leadership_transitions_rate",{mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["datacenter"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Leadership Transitions Rate per DC",desiredUnits:"transitions/s"}],info:"The number of leadership elections. Increments whenever a Consul server becomes a leader.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.server_leadership_status",{info:"The Consul server leadership status.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_thread_main_saturation_perc",{aggregationMethod:"avg",info:"An approximate measurement of the proportion of time the main Raft goroutine is busy and unavailable to accept new work.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_thread_fsm_saturation_perc",{aggregationMethod:"avg",info:"An approximate measurement of the proportion of time the Raft FSM goroutine is busy and unavailable to accept new work.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_fsm_last_restore_duration",{info:"The time taken to restore the FSM from a snapshot on an agent restart or from the leader calling <i>installSnapshot</i>.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_leader_oldest_log_age",{info:"The time elapsed since the oldest journal was written to the leader's journal storage. This can be important for the health of replication when the write rate is high and the snapshot is large, because followers may not be able to recover from a restart if recovery takes longer than the minimum for the current leader.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_rpc_install_snapshot_time",{aggregationMethod:"avg",info:"The time it takes to process the <i>installSnapshot</i> RPC call.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_boltdb_freelist_bytes",{info:'The number of bytes necessary to encode the freelist metadata. When <a href="https://developer.hashicorp.com/consul/docs/agent/config/config-files#NoFreelistSync" target="_blank">raft_boltdb.NoFreelistSync</a> is set to <i>false</i> these metadata bytes must also be written to disk for each committed log.',en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_boltdb_logs_per_batch_rate",{info:"The number of logs written per batch to the database.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_boltdb_store_logs_time",{aggregationMethod:"avg",info:"The amount of time spent writing logs to the database.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.license_expiration_time",{aggregationMethod:"min`",info:"The amount of time remaining before Consul Enterprise license expires. When the license expires, some Consul Enterprise features will stop working.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"envoy.server_state",{aggregationMethod:"avg",mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Envoy Server States",layout:{x:0,y:0,w:3,h:5}}],info:"Server current state",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"envoy.server_connections_count",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Server Connections Count",colors:o.default[1],layout:{x:3,y:0,w:3,h:5}}],info:"Server current connections",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"envoy.server_parent_connections_count",{info:"Server current parent connections",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"envoy.server_memory_allocated_size",{mainheads:[{"group_by[0]":["instance"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top servers by Memory Allocated",layout:{x:6,y:0,w:3,h:5}}],info:"Server memory allocated size",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"envoy.server_memory_heap_size",{mainheads:[{"group_by[0]":["instance"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top servers by Heap Size",layout:{x:9,y:0,w:3,h:5}}],info:"Server memory heap size",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"envoy.server_memory_physical_size",{info:"Server memory physical size",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"envoy.server_uptime",{aggregationMethod:"min",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Server Uptime",colors:o.default[4],layout:{x:0,y:5,w:3,h:5}}],info:"Envoy Server uptime",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"envoy.cluster_manager_cluster_count",{mainheads:[{"group_by[0]":["dimension"],chartLibrary:"d3pie",title:"Active and Inactive Envoy Clusters ",layout:{x:3,y:5,w:3,h:5}}],info:"Cluster manager current clusters",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_manager_cluster_changes_rate",{info:"Cluster manager cluster changes",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_manager_cluster_updates_rate",{info:"Cluster manager updates",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_manager_cluster_updated_via_merge_rate",{info:"Cluster manager updates applied as merged updates",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_manager_update_merge_cancelled_rate",{info:"Cluster manager cancelled merged updates",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_manager_update_out_of_merge_window_rate",{info:"Cluster manager out of a merge window updates",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_membership_endpoints_count",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Top Clusters by Membership Endpoints",layout:{x:6,y:5,w:3,h:5}}],info:"Cluster membership current endpoints",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_membership_changes_rate",{info:"Cluster membership changes",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_membership_updates_rate",{info:"Cluster membership update rate",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_cx_active_count",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Upstream Active Connections",desiredUnits:"connections",colors:o.default[7],layout:{x:9,y:5,w:3,h:5}}],info:"Cluster upstream current active connections",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_cx_rate",{info:"Cluster upstream connections",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_cx_http_rate",{info:"Cluster upstream connections by HTTP version",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_cx_destroy_rate",{info:"Cluster upstream destroyed connections rate",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_cx_connect_fail_rate",{info:"Cluster upstream failed connections",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_cx_connect_timeout_rate",{info:"Cluster upstream timed out connections",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_cx_bytes_rate",{info:"Cluster upstream connection traffic",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_cx_bytes_buffered_size",{info:"Cluster upstream current connection buffered size",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_active_count",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Upstream Active Requests",desiredUnits:"connections",colors:o.default[7],layout:{x:0,y:10,w:3,h:5}}],info:"Cluster upstream current active requests",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_rate",{info:"Cluster upstream requests",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_failed_rate",{info:"Cluster upstream failed requests",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_pending_active_count",{info:"Cluster upstream current active pending requests",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_pending_rate",{info:"Cluster upstream pending requests",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_pending_failed_rate",{info:"Cluster upstream failed pending requests",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_retry_rate",{info:"Cluster upstream request retries",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_retry_success_rate",{info:"Cluster upstream request successful retries",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.cluster_upstream_rq_retry_backoff_rate",{info:"Cluster upstream request backoff retries",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"envoy.listener_manager_listeners_count",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Listeners Count",desiredUnits:"listeners",colors:o.default[9],layout:{x:3,y:10,w:3,h:5}}],info:"Listener manager current listeners",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_manager_listener_changes_rate",{info:"Listener manager listener changes",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_manager_listener_object_events_rate",{info:"Listener manager listener object events",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_cx_active_count",{info:"Listener admin downstream current active connections",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Downstream Active Connections",desiredUnits:"listeners",colors:o.default[9],layout:{x:6,y:10,w:3,h:5}}],en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_cx_rate",{info:"Listener admin downstream connections",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_cx_destroy_rate",{info:"Listener admin downstream destroyed connections",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_cx_transport_socket_connect_timeout_rate",{info:"Listener admin downstream timed out connections",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_cx_rejected_rate",{info:"Listener admin downstream rejected connections",mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Downstream Rejected Connections",desiredUnits:"listeners",colors:o.default[9],layout:{x:9,y:10,w:3,h:5}}],en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_listener_filter_remote_close_rate",{info:"Listener admin downstream connections closed by remote when peek data for listener filters",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_listener_filter_error_rate",{info:"Listener admin downstream read errors when peeking data for listener filters",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_pre_cx_active_count",{info:"Listener admin downstream current active sockets",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_admin_downstream_pre_cx_timeout_rate",{info:"Listener admin downstream timed out sockets",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_cx_active_count",{info:"Listener downstream current active connections",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_cx_rate",{info:"Listener downstream connections",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_cx_destroy_rate",{info:"Listener downstream destroyed connections",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_cx_transport_socket_connect_timeout_rate",{info:"Listener downstream timed out connections",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_cx_rejected_rate",{info:"Listener downstream rejected connections",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_listener_filter_remote_close_rate",{info:"Listener downstream connections closed by remote when peek data for listener filters",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_listener_filter_error_rate",{info:"Listener downstream read errors when peeking data for listener filters",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_pre_cx_active_count",{info:"Listener downstream current active sockets",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"envoy.listener_downstream_pre_cx_timeout_rate",{info:"Listener downstream timed out sockets",en:{instance:{one:"listener",other:"listeners"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_cpu_requests_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average CPU Utilization",valueRange:[0,100],layout:{x:0,y:5,w:3,h:5}}],info:"The percentage of allocated CPU resources used by Pod requests. A Pod is scheduled to run on a Node only if the Node has enough CPU resources available to satisfy the Pod CPU request.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_cpu_requests_used",{info:'The amount of allocated CPU resources used by Pod requests. 1000 millicpu is equivalent to <a href="https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units" target="_blank">1 physical or virtual CPU core</a>.',en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_cpu_limits_utilization",{aggregationMethod:"avg",info:"The percentage of allocated CPU resources used by Pod limits. Total limits may be over 100 percent (overcommitted).",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_cpu_limits_used",{info:'The amount of allocated CPU resources used by Pod limits. 1000 millicpu is equivalent to <a href="https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units" target="_blank">1 physical or virtual CPU core</a>.',en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_mem_requests_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Memory Utilization",colors:o.default[4],valueRange:[0,100],layout:{x:9,y:5,w:3,h:5}}],info:"The percentage of allocated memory resources used by Pod requests. A Pod is scheduled to run on a Node only if the Node has enough memory resources available to satisfy the Pod memory request.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_mem_requests_used",{info:"The amount of allocated memory resources used by Pod requests.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_mem_limits_utilization",{aggregationMethod:"avg",info:"The percentage of allocated memory resources used by Pod limits. Total limits may be over 100 percent (overcommitted).",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_mem_limits_used",{info:"The amount of allocated memory resources used by Pod limits.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_pods_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Pods Utilization",colors:o.default[12],valueRange:[0,100],layout:{x:3,y:5,w:3,h:5}}],info:"Pods limit utilization.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_allocatable_pods_usage",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Pods limit usage",layout:{x:8,y:0,w:4,h:2.5}}],info:"<p>Pods limit usage.</p><p><b>Available</b> - the number of Pods available for scheduling. <b>Allocated</b> - the number of Pods that have been scheduled.</p>",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_condition",{info:'Health status. If the status of the Ready condition remains False for longer than the <b>pod-eviction-timeout</b> (the default is 5 minutes), then the node controller triggers API-initiated eviction for all Pods assigned to that node. <a href="https://kubernetes.io/docs/concepts/architecture/nodes/#condition" target="_blank">More info.</a>',en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_pods_readiness",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Pod Readiness",colors:o.default[0],valueRange:[0,100],layout:{x:0,y:5,w:3,h:5}}],info:"The percentage of Pods that are ready to serve requests.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_pods_readiness_state",{info:"<p>Pods readiness state.</p><p><b>Ready</b> - the Pod has passed its readiness probe and ready to serve requests. <b>Unready</b> - the Pod has not passed its readiness probe yet.</p>",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_pods_condition",{info:'<p>Pods state. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-conditions" target="_blank">More info.</a></p><b>PodReady</b> - the Pod is able to serve requests and should be added to the load balancing pools of all matching Services. <b>PodScheduled</b> - the Pod has been scheduled to a node. <b>PodInitialized</b> - all init containers have completed successfully. <b>ContainersReady</b> - all containers in the Pod are ready.</p>',en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_pods_phase",{info:'<p>Pods phase. The phase of a Pod is a high-level summary of where the Pod is in its lifecycle. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase" target="_blank">More info.</a></p><p><b>Running</b> - the Pod has been bound to a node, and all of the containers have been created. At least one container is still running, or is in the process of starting or restarting. <b>Failed</b> - all containers in the Pod have terminated, and at least one container has terminated in failure. That is, the container either exited with non-zero status or was terminated by the system. <b>Succedeed</b> - all containers in the Pod have terminated in success, and will not be restarted. <b>Pending</b> - the Pod has been accepted by the Kubernetes cluster, but one or more of the containers has not been set up and made ready to run.</p>',en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_containers",{info:"The total number of containers and init containers.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_containers_state",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Containers by State",layout:{x:0,y:20,w:4,h:2.5}}],info:'<p>The number of containers in different lifecycle states. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-states" target="_blank">More info.</a></p><p><b>Running</b> - a container is executing without issues. <b>Waiting</b> - a container is still running the operations it requires in order to complete start up. <b>Terminated</b> - a container began execution and then either ran to completion or failed for some reason.</p>',en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_init_containers_state",{info:'<p>The number of init containers in different lifecycle states. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-states" target="_blank">More info.</a></p><p><b>Running</b> - a container is executing without issues. <b>Waiting</b> - a container is still running the operations it requires in order to complete start up. <b>Terminated</b> - a container began execution and then either ran to completion or failed for some reason.</p>',en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_age",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Node Uptime",desiredUnits:"dHH:MM:ss",layout:{x:8,y:2.5,w:4,h:2.5}}],info:"The lifetime of the Node.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.node_schedulability",{info:"The schedulability of nodes in the Kubernetes cluster. Monitoring this metric can help identify if there are issues with the cluster's ability to schedule pods on nodes.",en:{instance:{one:"K8s node",other:"K8s nodes"}}}),(0,a.Z)(n,"k8s_state.pod_cpu_requests_used",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"sum",valueRange:[0,null],chartLibrary:"gauge",title:"Total Pod CPU Requests used",units:"percentage",colors:o.default[0],layout:{x:0,y:10,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["k8s_pod_name"],"aggregation[0]":"max",groupingMethod:"max",valueRange:[0,null],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Maximum CPU Requests per Pod",units:"percentage",layout:{x:0,y:15,w:3,h:5}}],info:'The overall CPU resource requests for a Pod. This is the sum of the CPU requests for all the Containers in the Pod. Provided the system has CPU time free, a container is guaranteed to be allocated as much CPU as it requests. 1000 millicpu is equivalent to <a href="https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units" target="_blank">1 physical or virtual CPU core</a>.',en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_cpu_limits_used",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"sum",valueRange:[0,null],chartLibrary:"gauge",title:"Total Pod CPU limits used",units:"percentage",layout:{x:3,y:10,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["k8s_pod_name"],"aggregation[0]":"max",groupingMethod:"max",valueRange:[0,null],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Maximum CPU limits per Pod",units:"percentage",layout:{x:3,y:15,w:3,h:5}}],info:'The overall CPU resource limits for a Pod. This is the sum of the CPU limits for all the Containers in the Pod. If set, containers cannot use more CPU than the configured limit. 1000 millicpu is equivalent to <a href="https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units" target="_blank">1 physical or virtual CPU core</a>.',en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_mem_requests_used",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"sum",valueRange:[0,null],chartLibrary:"gauge",title:"Total Pod Memory Requests used",units:"percentage",colors:o.default[12],layout:{x:6,y:10,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["k8s_pod_name"],"aggregation[0]":"max",groupingMethod:"max",valueRange:[0,null],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Pod Memory Requests per Pod",units:"percentage",layout:{x:6,y:15,w:3,h:5}}],info:"The overall memory resource requests for a Pod. This is the sum of the memory requests for all the Containers in the Pod.",en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_mem_limits_used",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"sum",valueRange:[0,null],chartLibrary:"gauge",title:"Total Pod Memory limits used",units:"percentage",colors:o.default[4],layout:{x:9,y:10,w:3,h:5}},{"group_by[0]":["label"],"group_by_label[0]":["k8s_pod_name"],"aggregation[0]":"max",groupingMethod:"max",valueRange:[0,null],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Maximum Memory limits per Pod",units:"percentage",layout:{x:9,y:15,w:3,h:5}}],info:"The overall memory resource limits for a Pod. This is the sum of the memory limits for all the Containers in the Pod. If set, containers cannot use more RAM than the configured limit.",en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_condition",{info:'The current state of the Pod. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-conditions" target="_blank">More info.</a></p><p><b>PodReady</b> - the Pod is able to serve requests and should be added to the load balancing pools of all matching Services. <b>PodScheduled</b> - the Pod has been scheduled to a node. <b>PodInitialized</b> - all init containers have completed successfully. <b>ContainersReady</b> - all containers in the Pod are ready. ',en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_phase",{mainheads:[{"group_by[0]":["selected"],selectedDimensions:["running"],chartLibrary:"easypiechart",title:"Total Running Pods",desiredUnits:"state",colors:o.default[0],layout:{x:0,y:0,w:2,h:5}},{"group_by[0]":["selected"],selectedDimensions:["failed"],chartLibrary:"easypiechart",title:"Total Failed Pods",desiredUnits:"state",layout:{x:2,y:0,w:2,h:5}},{"group_by[0]":["selected"],selectedDimensions:["succeeded"],chartLibrary:"easypiechart",title:"Total Terminated Pods",desiredUnits:"state",colors:o.default[4],layout:{x:6,y:0,w:2,h:5}},{"group_by[0]":["selected"],selectedDimensions:["pending"],chartLibrary:"easypiechart",title:"Total Pending Pods",desiredUnits:"state",colors:o.default[12],layout:{x:4,y:0,w:2,h:5}}],info:'High-level summary of where the Pod is in its lifecycle. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase" target="_blank">More info.</a></p><p><b>Running</b> - the Pod has been bound to a node, and all of the containers have been created. At least one container is still running, or is in the process of starting or restarting. <b>Failed</b> - all containers in the Pod have terminated, and at least one container has terminated in failure. That is, the container either exited with non-zero status or was terminated by the system. <b>Succedeed</b> - all containers in the Pod have terminated in success, and will not be restarted. <b>Pending</b> - the Pod has been accepted by the Kubernetes cluster, but one or more of the containers has not been set up and made ready to run. This includes time a Pod spends waiting to be scheduled as well as the time spent downloading container images over the network. ',en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_age",{info:'The <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-lifetime" target="_blank">lifetime</a> of the Pod. ',en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_containers",{info:"The number of containers and init containers belonging to the Pod.",en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_containers_state",{info:'The state of each container inside this Pod. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-states" target="_blank">More info.</a> <p><b>Running</b> - a container is executing without issues. <b>Waiting</b> - a container is still running the operations it requires in order to complete start up. <b>Terminated</b> - a container began execution and then either ran to completion or failed for some reason.</p>',en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_init_containers_state",{info:'The state of each init container inside this Pod. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-states" target="_blank">More info.</a> <p><b>Running</b> - a container is executing without issues. <b>Waiting</b> - a container is still running the operations it requires in order to complete start up. <b>Terminated</b> - a container began execution and then either ran to completion or failed for some reason.</p>',en:{instance:{one:"pod",other:"pods"}}}),(0,a.Z)(n,"k8s_state.pod_container_readiness_state",{info:"Specifies whether the container has passed its readiness probe. Kubelet uses readiness probes to know when a container is ready to start accepting traffic.",en:{instance:{one:"container",other:"containers"}}}),(0,a.Z)(n,"k8s_state.pod_container_restarts",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"Container restarts",layout:{x:0,y:22.5,w:4,h:2.5}}],info:"The number of times the container has been restarted.",en:{instance:{one:"container",other:"containers"}}}),(0,a.Z)(n,"k8s_state.pod_container_state",{info:'Current state of the container. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-states" target="_blank">More info.</a> <p><b>Running</b> - a container is executing without issues. <b>Waiting</b> - a container is still running the operations it requires in order to complete start up. <b>Terminated</b> - a container began execution and then either ran to completion or failed for some reason.</p>',en:{instance:{one:"container",other:"containers"}}}),(0,a.Z)(n,"k8s_state.pod_container_waiting_state_reason",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Container waiting state reason",layout:{x:4,y:20,w:4,h:5}}],info:'Reason the container is not yet running. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-state-waiting" target="_blank">More info.</a> ',en:{instance:{one:"container",other:"containers"}}}),(0,a.Z)(n,"k8s_state.pod_container_terminated_state_reason",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Container terminated state reason",layout:{x:8,y:20,w:4,h:5}}],info:'Reason from the last termination of the container. <a href="https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-state-terminated" target="_blank">More info.</a>',en:{instance:{one:"container",other:"containers"}}}),(0,a.Z)(n,"k8s_kubelet.apiserver_audit_requests_rejected",{info:"The number of audit requests to the Kubernetes API server that were rejected. Monitoring this metric can help identify if there are issues with the audit configuration or access control policies on the API server.",en:{instance:{one:"K8s API server",other:"K8s API servers"}}}),(0,a.Z)(n,"k8s_kubelet.apiserver_storage_data_key_generation_failures",{info:"The number of failures when generating data keys for encrypting and decrypting secrets stored in the Kubernetes API server. If this metric is non-zero, it may indicate issues with the encryption configuration or key management.",en:{instance:{one:"K8s API server",other:"K8s API servers"}}}),(0,a.Z)(n,"k8s_kubelet.apiserver_storage_data_key_generation_latencies",{info:"The latencies of data key generation requests to the Kubernetes API server. High latencies may indicate issues with the encryption configuration or key management.",en:{instance:{one:"K8s API server",other:"K8s API servers"}}}),(0,a.Z)(n,"k8s_kubelet.apiserver_storage_data_key_generation_latencies_percent",{aggregationMethod:"avg",info:"The percentile latencies of data key generation requests to the Kubernetes API server. High latencies may indicate issues with the encryption configuration or key management.",en:{instance:{one:"K8s API server",other:"K8s API servers"}}}),(0,a.Z)(n,"k8s_kubelet.apiserver_storage_envelope_transformation_cache_misses",{info:"The number of cache misses when transforming encryption envelopes for secrets stored in the Kubernetes API server. If this metric is non-zero, it may indicate issues with the encryption configuration or key management.",en:{instance:{one:"K8s API server",other:"K8s API servers"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_containers_running",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Running Containers",colors:o.default[2],layout:{x:3,y:0,w:3,h:5}}],info:"The number of containers running on the node managed by the kubelet. Monitoring this metric can help identify if there are issues with container scheduling or resource allocation.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_pods_running",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Running Pods",colors:o.default[0],layout:{x:0,y:0,w:3,h:5}}],info:"The number of pods running on the node managed by the kubelet. Monitoring this metric can help identify if there are issues with pod scheduling or resource allocation.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_pods_log_filesystem_used_bytes",{mainheads:[{chartLibrary:"bars",title:"Pod Logs Disk Usage",layout:{x:9,y:5,w:4,h:5}}],info:"The amount of disk space used by pod logs on the node managed by the kubelet. Monitoring this metric can help identify if there are issues with disk usage or log rotation.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_runtime_operations",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Runtime Operations by Type",layout:{x:6,y:0,w:3,h:5}}],info:"The total number of runtime operations performed by the kubelet on the node, such as starting and stopping containers. Monitoring this metric can help identify if there are issues with the runtime or container management.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_runtime_operations_errors",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Runtime Operations Errors by Type",layout:{x:9,y:0,w:3,h:5}}],info:"The number of runtime operation errors on the node managed by the kubelet. If this metric is non-zero, it may indicate issues with the runtime or container management.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_docker_operations",{info:"The total number of Docker operations performed by the kubelet on the node, such as pulling images or creating containers. Monitoring this metric can help identify if there are issues with the Docker daemon or container management.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_docker_operations_errors",{info:"The number of Docker operation errors on the node managed by the kubelet. If this metric is non-zero, it may indicate issues with the Docker daemon or container management.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_node_config_error",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Node Congifuration Errors",layout:{x:7,y:5,w:2,h:5}}],info:"The number of errors in the node configuration on the node managed by the kubelet. If this metric is non-zero, it may indicate issues with the node's configuration or the kubelet's ability to read and apply it.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_pleg_relist_interval_microseconds",{aggregationMethod:"avg",info:"The interval, in microseconds, between periodic relists performed by the kubelet's Pod Lifecycle Event Generator (PLEG). Monitoring this metric can help identify if the PLEG is not able to keep up with the rate of change in the pod lifecycle on the node.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_pleg_relist_latency_microseconds",{aggregationMethod:"avg",info:"The latency, in microseconds, of the periodic relists performed by the kubelet's Pod Lifecycle Event Generator (PLEG). High latencies may indicate issues with the PLEG or the pod lifecycle on the node.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.kubelet_token_requests",{mainheads:[{"group_by[0]":["dimension"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total and Failed No. of Token Requests",colors:o.default[0],layout:{x:3,y:5,w:3,h:5}}],info:"The number of token requests to the kubelet. Monitoring this metric can help identify if there are issues with authentication or access control on the node.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.rest_client_requests_by_code",{info:"The distribution of HTTP response codes for requests to the kubelet's REST API. Monitoring this metric can help identify if there are issues with the kubelet's API or the components interacting with it.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.rest_client_requests_by_method",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"dygraph",sparkline:!0,overlays:{latestValue:{type:"latestValue"}},hasToolbox:!1,title:"HTTP Requests Rate to API",colors:o.default[0],layout:{x:0,y:5,w:3,h:2.5}}],info:"The distribution of HTTP request methods for requests to the kubelet's REST API. Monitoring this metric can help identify the usage patterns of the API and potential issues with specific request methods.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubelet.volume_manager_total_volumes",{mainheads:[{"group_by[0]":["dimension"],chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Volume Manager State",layout:{x:0,y:7.5,w:3,h:2.5}}],info:"The total number of volumes managed by the kubelet's volume manager. Monitoring this metric can help identify if there are issues with volume management on the node.",en:{instance:{one:"kubelet",other:"kubelets"}}}),(0,a.Z)(n,"k8s_kubeproxy.kubeproxy_sync_proxy_rules",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Sync Proxy Rules",colors:o.default[4],layout:{x:0,y:0,w:3,h:5}}],info:"The total number of synced proxy rules in the Kubernetes proxy. Monitoring this metric can help identify if there are issues with the proxy or its configuration.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"k8s_kubeproxy.kubeproxy_sync_proxy_rules_latency_microsecond",{aggregationMethod:"avg",info:"The latencies of proxy rule sync operations in the Kubernetes proxy. High latencies may indicate issues with the proxy or its configuration.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"k8s_kubeproxy.kubeproxy_sync_proxy_rules_latency",{aggregationMethod:"avg",info:"The latencies of proxy rule sync operations in the Kubernetes proxy. High latencies may indicate issues with the proxy or its configuration.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"k8s_kubeproxy.rest_client_requests_by_code",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"HTTP Response Code Distribution",colors:o.default[4],layout:{x:3,y:0,w:3,h:5}}],info:"The distribution of HTTP response codes for requests to the Kubernetes proxy's REST API. Monitoring this metric can help identify if there are issues with the proxy's API or the components interacting with it.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"k8s_kubeproxy.rest_client_requests_by_method",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"HTTP Request Method Distribution",colors:o.default[4],layout:{x:6,y:0,w:3,h:5}}],info:"The distribution of HTTP request methods for requests to the Kubernetes proxy's REST API. Monitoring this metric can help identify the usage patterns of the API and potential issues with specific request methods.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"k8s_kubeproxy.http_request_duration",{info:"The latencies of HTTP requests handled by the Kubernetes proxy. High latencies may indicate performance issues with the proxy or the components interacting with it.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"windows.logical_disk_bandwidth",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["read"],title:"Total Disk Read",layout:{x:0,y:0,w:2,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["write"],title:"Total Disk Write",layout:{x:3,y:0,w:2,h:5}}],en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.cpu_utilization_total",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["instance"],"group_by[1]":["selected"],"aggregation[1]":"avg",valueRange:[0,100],chartLibrary:"gauge",desiredUnits:"percentage",title:"Average CPU Utilization",colors:o.default[12],layout:{x:6,y:0,w:2,h:5}}],en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.net_nic_bandwidth",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total Net Inbound",layout:{x:9,y:0,w:2,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total Net Outbound",layout:{x:12,y:0,w:2,h:5}}],en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.memory_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["percentage-of-instance"],"group_by[1]":["selected"],"aggregation[1]":"max",chartLibrary:"gauge",selectedDimensions:["used"],desiredUnits:"percentage",colors:o.default[0],title:"Maximum RAM Used",valueRange:[0,100],layout:{x:15,y:0,w:2,h:5}}],en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_cpu_time",{aggregationMethod:"avg",info:'Total CPU utilization. The amount of time spent by the process in <a href="https://en.wikipedia.org/wiki/CPU_modes#Mode_types" target="_blank">user and privileged</a> modes.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_handles",{info:'Total number of <a href="https://learn.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects" target="_blank">handles</a> the process has open. This number is the sum of the handles currently open by each thread in the process.',en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_io_operations",{info:"I/O operations issued in different modes (read, write, other). This property counts all I/O activity generated by the process to include file, network, and device I/Os. Read and write mode includes data operations; other mode includes those that do not involve data, such as control operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_pool_bytes",{info:"Pool Bytes is the last observed number of bytes in the paged or nonpaged pool. The nonpaged pool is an area of system memory (physical memory used by the operating system) for objects that cannot be written to disk, but must remain in physical memory as long as they are allocated. The paged pool is an area of system memory (physical memory used by the operating system) for objects that can be written to disk when they are not being used.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.tcp_conns_active",{info:"Number of times TCP connections have made a direct transition from the CLOSED state to the SYN-SENT state.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.tcp_conns_established",{info:"Number of TCP connections for which the current state is either ESTABLISHED or CLOSE-WAIT.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.tcp_conns_failures",{info:"Number of times TCP connections have made a direct transition to the CLOSED state from the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP connections have made a direct transition from the SYN-RCVD state to the LISTEN state.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.tcp_conns_passive",{info:"Number of times TCP connections have made a direct transition from the LISTEN state to the SYN-RCVD state.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.tcp_conns_resets",{info:"Number of times TCP connections have made a direct transition from the LISTEN state to the SYN-RCVD state.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.tcp_segments_received",{info:"Rate at which segments are received, including those received in error. This count includes segments received on currently established connections.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.tcp_segments_retransmitted",{info:"Rate at which segments are retransmitted, that is, segments transmitted that contain one or more previously transmitted bytes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.tcp_segments_sent",{info:"Rate at which segments are sent, including those on current connections, but excluding those containing only retransmitted bytes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_cpu_utilization",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["dimension"],"aggregation[0]":"avg",chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Average CPU per Process",layout:{x:6,y:5,w:2,h:5}}],info:"Total CPU utilization per process.",dimensionsSort:"valueDesc",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_memory_usage",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Memory per Process",layout:{x:9,y:5,w:2,h:5}}],dimensionsSort:"valueDesc",info:"Total Memory usage per process.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_io_bytes",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total I/O per Process",layout:{x:0,y:5,w:4,h:5}}],info:"Bytes issued to I/O operations in different modes (read, write, other). This property counts all I/O activity generated by the process to include file, network, and device I/Os. Read and write mode includes data operations; other mode includes those that do not involve data, such as control operations.",dimensionsSort:"valueDesc",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_page_faults",{info:"Page faults by the threads executing in this process. A page fault occurs when a thread refers to a virtual memory page that is not in its working set in main memory. This can cause the page not to be fetched from disk if it is on the standby list and hence already in main memory, or if it is in use by another process with which the page is shared.",dimensionsSort:"valueDesc",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_file_bytes",{info:"Current number of bytes this process has used in the paging file(s). Paging files are used to store pages of memory used by the process that are not contained in other files. Paging files are shared by all processes, and lack of space in paging files can prevent other processes from allocating memory.",dimensionsSort:"valueDesc",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.processes_threads",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Active Threads per Process",layout:{x:12,y:5,w:4,h:5}}],info:"Number of threads currently active in this process. An instruction is the basic unit of execution in a processor, and a thread is the object that executes instructions. Every running process has at least one thread.",dimensionsSort:"valueDesc",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"iis.website_traffic",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["received"],title:"Total Traffic Received",layout:{x:3,y:0,w:3,h:5}},{"group_by[0]":["selected"],chartLibrary:"easypiechart",selectedDimensions:["sent"],title:"Total Traffic Sent",layout:{x:6,y:0,w:3,h:5}}],en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"iis.website_active_connections_count",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Active Connections"}],en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"iis.website_requests_rate",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Request Rate",desiredUnits:"Requests/s",colors:o.default[0]}],en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"iis.website_isapi_extension_requests_count",{info:'The number of <a href="https://learn.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms525282(v=vs.90)" target="_blank">ISAPI extension</a> requests that are processed concurrently by the web service.',en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"iis.website_errors_rate",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Errors Rate",desiredUnits:"Errors/s",colors:o.default[0]}],info:"<p>The number of requests that cannot be satisfied by the server.</p><p><b>DocumentLocked</b> - the requested document was locked. Usually reported as HTTP error 423. <b>DocumentNotFound</b> - the requested document was not found. Usually reported as HTTP error 404.</p>",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"iis.website_uptime",{aggregationMethod:"min",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Uptime",desiredUnits:"Seconds"}],en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"mssql.instance_user_connection",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Connections",layout:{x:3,y:0,w:3,h:5}}],en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.database_transactions",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Transactions",layout:{x:3,y:0,w:3,h:5}}],en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.database_data_files_size",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total DB Size",layout:{x:3,y:0,w:3,h:5}}],en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_accessmethods_page_splits",{info:"Page split happens when the page does not have more space. This chart shows the number of page splits per second that occur as the result of overflowing index pages.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_cache_hit_ratio",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Cache Hit Ratio",desiredUnits:"Percentage",colors:o.default[0]}],info:"Indicates the percentage of pages found in the buffer cache without having to read from disk. The ratio is the total number of cache hits divided by the total number of cache lookups over the last few thousand page accesses. After a long period of time, the ratio moves very little. Because reading from the cache is much less expensive than reading from disk, you want this ratio to be high.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_bufman_checkpoint_pages",{info:"Indicates the number of pages flushed to disk per second by a checkpoint or other operation that require all dirty pages to be flushed.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_bufman_page_life_expectancy",{info:"Indicates the number of seconds a page will stay in the buffer pool without references.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_memmgr_external_benefit_of_memory",{info:"It is used by the engine to balance memory usage between cache and is useful to support when troubleshooting cases with unexpected cache growth. The value is presented as an integer based on an internal calculation.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_sql_errors",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total SQL Errors",desiredUnits:"Errors/s",colors:o.default[0]}],info:"Errors in Microsoft SQL Server.</p><p><b>Db_offline</b> - Tracks severe errors that cause SQL Server to take the current database offline. <b>Info</b> - Information related to error messages that provide information to users but do not cause errors. <b>Kill_connection</b> - Tracks severe errors that cause SQL Server to kill the current connection. <b>User</b> - User errors.</p>",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_sqlstats_auto_parameterization_attempts",{info:"Auto-parameterization occurs when an instance of SQL Server tries to parameterize a Transact-SQL request by replacing some literals with parameters so that reuse of the resulting cached execution plan across multiple similar-looking requests is possible. Note that auto-parameterizations are also known as simple parameterizations in newer versions of SQL Server. This counter does not include forced parameterizations.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_sqlstats_batch_requests",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Batch Requests",layout:{x:3,y:0,w:3,h:5}}],info:"This statistic is affected by all constraints (such as I/O, number of users, cache size, complexity of requests, and so on). High batch requests mean good throughput.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_sqlstats_safe_auto_parameterization_attempts",{info:"Note that auto-parameterizations are also known as simple parameterizations in later versions of SQL Server.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"mssql.instance_sqlstats_sql_compilations",{info:"Indicates the number of times the compile code path is entered. Includes compiles caused by statement-level recompilations in SQL Server. After SQL Server user activity is stable, this value reaches a steady state.",en:{instance:{one:"SQL server",other:"SQL servers"}}}),(0,a.Z)(n,"ad.binds",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Binds",desiredUnits:"Binds/s",colors:o.default[0]}],en:{instance:{one:"AD server",other:"AD servers"}}}),(0,a.Z)(n,"ad.ldap_searches",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"gauge",title:"Average Cache Hit Ratio",desiredUnits:"Percentage",colors:o.default[0]}],en:{instance:{one:"AD server",other:"AD servers"}}}),(0,a.Z)(n,"ad.dra_replication_intersite_compressed_traffic",{info:"The compressed size, in bytes, of inbound and outbound compressed replication data (size after compression, from DSAs in other sites).",en:{instance:{one:"AD server",other:"AD servers"}}}),(0,a.Z)(n,"ad.dra_replication_intrasite_compressed_traffic",{info:"The number of bytes replicated that were not compressed (that is., from DSAs in the same site).",en:{instance:{one:"AD server",other:"AD servers"}}}),(0,a.Z)(n,"ad.dra_replication_properties_updated",{info:"The number of properties that are updated due to incoming property winning the reconciliation logic that determines the final value to be replicated.",en:{instance:{one:"AD server",other:"AD servers"}}}),(0,a.Z)(n,"ad.dra_replication_objects_filtered",{info:"The number of objects received from inbound replication partners that contained no updates that needed to be applied.",en:{instance:{one:"AD server",other:"AD servers"}}}),(0,a.Z)(n,"ad.dra_replication_pending_syncs",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Pending Syncs",layout:{x:3,y:0,w:3,h:5}}],info:"The number of directory synchronizations that are queued for this server but not yet processed.",en:{instance:{one:"AD server",other:"AD servers"}}}),(0,a.Z)(n,"ad.dra_replication_sync_requests",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"gauge",title:"Total Sync Requests",desiredUnits:"Requests/s",colors:o.default[0]}],info:"The number of directory synchronizations that are queued for this server but not yet processed.",en:{instance:{one:"AD server",other:"AD servers"}}}),(0,a.Z)(n,"netframework.clrexception_thrown",{info:"The exceptions include both .NET exceptions and unmanaged exceptions that are converted into .NET exceptions.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrexception_filters",{info:"An exception filter evaluates regardless of whether an exception is handled.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrexception_finallys",{info:"The metric counts only the finally blocks executed for an exception; finally blocks on normal code paths are not counted by this counter.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrinterop_com_callable_wrappers",{info:"A COM callable wrappers (CCW) is a proxy for a managed object being referenced from an unmanaged COM client.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrinterop_interop_stubs_created",{info:"The Stubs are responsible for marshaling arguments and return values from managed to unmanaged code, and vice versa, during a COM interop call or a platform invoke call.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrjit_methods",{info:"The metric does not include pre-JIT-compiled methods.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrjit_time",{aggregationMethod:"avg",info:"The metric is updated at the end of every JIT compilation phase. A JIT compilation phase occurs when a method and its dependencies are compiled.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrjit_standard_failures",{info:"The failure can occur if the MSIL cannot be verified or if there is an internal error in the JIT compiler.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrloading_loader_heap_size",{info:"The memory committed by the class loader across all application domains is the physical space reserved in the disk paging file.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrloading_assemblies_loaded",{info:"If the assembly is loaded as domain-neutral from multiple application domains, the metric is incremented only once.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrlocksandthreads_recognized_threads",{info:"Displays the total number of threads that have been recognized by the runtime since the application started. These threads are associated with a corresponding managed thread object. The runtime does not create these threads, but they have run inside the runtime at least once.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrmemory_heap_size",{info:"The metric shows maximum bytes that can be allocated, but it does not indicate the current number of bytes allocated.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrmemory_promoted",{info:"Memory is promoted when it survives a garbage collection.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrmemory_number_gc_handles",{info:"Garbage collection handles are handles to resources external to the common language runtime and the managed environment.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrmemory_induced_gc",{info:"The metric is updated when an explicit call to GC.Collect happens.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrmemory_number_sink_blocks_in_use",{info:"Synchronization blocks are per-object data structures allocated for storing synchronization information. They hold weak references to managed objects and must be scanned by the garbage collector.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrmemory_committed",{info:"Committed memory is the physical memory for which space has been reserved in the disk paging file.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrmemory_reserved",{info:"Reserved memory is the virtual memory space reserved for the application when no disk or main memory pages have been used.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"netframework.clrmemory_gc_time",{aggregationMethod:"avg",info:"Displays the percentage of time that was spent performing a garbage collection in the last sample.",en:{instance:{one:".NET server",other:".NET servers"}}}),(0,a.Z)(n,"adaptec_raid.ld_status",{info:"Status of logical devices (1: Failed or Degraded).",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"adaptec_raid.pd_state",{info:"State of physical devices (1: not Online).",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"adaptec_raid.smart_warnings",{info:"S.M.A.R.T warnings.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"adaptec_raid.temperature",{info:"Temperature.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"alerts.status",{info:"Alert Values.",en:{instance:{one:"alert",other:"alerts"}}}),(0,a.Z)(n,"am2320.temperature",{aggregationMethod:"avg",info:"Temperature.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"am2320.humidity",{aggregationMethod:"avg",info:"Relative Humidity.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"anomalies.probability",{info:"Anomaly Probability.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"anomalies.anomaly",{info:"Anomaly.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"ap.clients",{info:"Connected clients to ${ssid} on ${dev}.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"ap.net",{info:"Bandwidth for ${ssid} on ${dev}.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"ap.packets",{info:"Packets for ${ssid} on ${dev}.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"ap.issues",{info:"Transmit Issues for ${ssid} on ${dev}.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"ap.signal",{info:"Average Signal for ${ssid} on ${dev}.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"ap.bitrate",{info:"Bitrate for ${ssid} on ${dev}.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.charge",{aggregationMethod:"avg",info:"UPS Charge.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.battery.voltage",{aggregationMethod:"avg",info:"UPS Battery Voltage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.input.voltage",{aggregationMethod:"avg",info:"UPS Input Voltage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.output.voltage",{aggregationMethod:"avg",info:"UPS Output Voltage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.input.frequency",{aggregationMethod:"avg",info:"UPS Input Voltage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.load",{aggregationMethod:"avg",info:"UPS Load.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.load_usage",{info:"UPS Load Usage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.temperature",{aggregationMethod:"avg",info:"UPS Temperature.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.time",{aggregationMethod:"min",info:"UPS Time Remaining.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"apcupsd.online",{info:"UPS ONLINE flag.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"netdata.apps_cpu",{info:"Apps Plugin CPU.",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"netdata.apps_sizes",{info:"Apps Plugin Files.",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"netdata.apps_fix",{aggregationMethod:"avg",info:"Apps Plugin Normalization Ratios.",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"netdata.apps_children_fix",{aggregationMethod:"avg",info:"Apps Plugin Exited Children Normalization Ratios.",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"bind_rndc.name_server_statistics",{info:"Name Server Statistics.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"bind_rndc.incoming_queries",{info:"Incoming queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"bind_rndc.outgoing_queries",{info:"Outgoing queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"bind_rndc.stats_size",{info:"Named Stats File Size.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"cassandra.storage_exceptions_rate",{info:"Storage exceptions rate.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"ceph.pool_read_operations",{info:"Ceph Read Pool Operations/s.",en:{instance:{one:"pool",other:"pools"}}}),(0,a.Z)(n,"ceph.pool_write_operations",{info:"Ceph Write Pool Operations/s.",en:{instance:{one:"pool",other:"pools"}}}),(0,a.Z)(n,"services.services.throttle_io_write",{info:"Systemd Services Throttle Disk Write Bandwidth.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"throttle_io_ops_write",{info:"Systemd Services Throttle Disk Write Operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"changefinder.scores",{info:"ChangeFinder.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"changefinder.flags",{info:"ChangeFinder.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"cockroachdb.process_cpu_time",{aggregationMethod:"avg",info:"CPU Time.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.sql_connections",{info:"Active SQL Connections.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.logical_data",{info:"Logical Data.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.logical_data_count",{info:"Logical Data Count.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.range_events",{info:"Range Events.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.range_snapshot_events",{info:"Range Snapshot Events.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.rocksdb_read_amplification",{info:"RocksDB Read Amplification.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.rocksdb_cache_usage",{info:"RocksDB Block Cache Usage.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.rocksdb_cache_operations",{info:"RocksDB Block Cache Operations.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.rocksdb_sstables",{info:"RocksDB SSTables.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"cockroachdb.replicas_quiescence",{info:"Replicas Quiescence.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"consul.autopilot_server_health_status",{info:"Autopilot server health status.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.autopilot_server_stable_time",{aggregationMethod:"avg",info:"Autopilot server stable time.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.autopilot_server_serf_status",{info:"Autopilot server Serf status.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.autopilot_server_voter_status",{info:"Autopilot server Raft voting membership.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.network_lan_rtt",{info:"Network lan RTT.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"consul.raft_follower_last_contact_leader_time",{aggregationMethod:"avg",info:"Raft follower last contact with the leader time.",en:{instance:{one:"datacenter",other:"datacenters"}}}),(0,a.Z)(n,"coredns.dns_request_count_total_per_status",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Dropped DNS Requests",selectedDimensions:["dropped"],colors:o.default[1],layout:{x:12,y:0,w:2,h:5}}],info:"Number Of Processed And Dropped DNS Requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.dns_requests_count_total_per_proto",{info:"Number Of DNS Requests Per Transport Protocol.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.dns_requests_count_total_per_ip_family",{info:"Number Of DNS Requests Per IP Family.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.dns_requests_count_total_per_per_type",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"DNS Requests per Type",layout:{x:3,y:0,w:2.5,h:5}}],info:"Number Of DNS Requests Per Type.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.dns_responses_count_total_per_rcode",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"DNS Responses per Rcode",layout:{x:9,y:0,w:2.5,h:5}}],info:"Number Of DNS Responses Per Rcode.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.server_dns_request_count_total",{info:"Number Of DNS Requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.server_dns_responses_count_total",{info:"Number Of DNS Responses.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.server_request_count_total_per_status",{info:"Number Of Processed And Dropped DNS Requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.server_requests_count_total_per_proto",{info:"Number Of DNS Requests Per Transport Protocol.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.server_requests_count_total_per_ip_family",{info:"Number Of DNS Requests Per IP Family.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.server_requests_count_total_per_per_type",{info:"Number Of DNS Requests Per Type.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.server_responses_count_total_per_rcode",{info:"Number Of DNS Responses Per Rcode.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"coredns.zone_dns_request_count_total",{info:"Number Of DNS Requests.",en:{instance:{one:"zone",other:"zones"}}}),(0,a.Z)(n,"coredns.zone_dns_responses_count_total",{info:"Number Of DNS Responses.",en:{instance:{one:"zone",other:"zones"}}}),(0,a.Z)(n,"coredns.zone_requests_count_total_per_proto",{info:"Number Of DNS Requests Per Transport Protocol.",en:{instance:{one:"zone",other:"zones"}}}),(0,a.Z)(n,"coredns.zone_requests_count_total_per_ip_family",{info:"Number Of DNS Requests Per IP Family.",en:{instance:{one:"zone",other:"zones"}}}),(0,a.Z)(n,"coredns.zone_requests_count_total_per_per_type",{info:"Number Of DNS Requests Per Type.",en:{instance:{one:"zone",other:"zones"}}}),(0,a.Z)(n,"coredns.zone_responses_count_total_per_rcode",{info:"Number Of DNS Responses Per Rcode.",en:{instance:{one:"zone",other:"zones"}}}),(0,a.Z)(n,"couchbase.bucket_quota_percent_used",{aggregationMethod:"avg",info:"Quota Percent Used Per Bucket.",en:{instance:{one:"bucket",other:"buckets"}}}),(0,a.Z)(n,"couchbase.bucket_ops_per_sec",{info:"Operations Per Second Per Bucket.",en:{instance:{one:"bucket",other:"buckets"}}}),(0,a.Z)(n,"couchbase.bucket_disk_fetches",{info:"Disk Fetches Per Bucket.",en:{instance:{one:"bucket",other:"buckets"}}}),(0,a.Z)(n,"couchbase.bucket_item_count",{info:"Item Count Per Bucket.",en:{instance:{one:"bucket",other:"buckets"}}}),(0,a.Z)(n,"couchbase.bucket_disk_used_stats",{info:"Disk Used Per Bucket.",en:{instance:{one:"bucket",other:"buckets"}}}),(0,a.Z)(n,"couchbase.bucket_data_used",{info:"Data Used Per Bucket.",en:{instance:{one:"bucket",other:"buckets"}}}),(0,a.Z)(n,"couchbase.bucket_mem_used",{info:"Memory Used Per Bucket.",en:{instance:{one:"bucket",other:"buckets"}}}),(0,a.Z)(n,"couchbase.bucket_vb_active_num_non_resident",{info:"Number Of Non-Resident Items Per Bucket.",en:{instance:{one:"bucket",other:"buckets"}}}),(0,a.Z)(n,"cups.dests_state",{family:"destination",info:"Destinations by state.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"cups.dests_option",{family:"destination",info:"Destinations by option.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"cups.job_num",{family:"jobs",info:"Active jobs.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"cups.job_size",{family:"jobs",info:"Active jobs size.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"cups.destination_job_num",{family:"jobs",info:"Active jobs of {destination}.",en:{instance:{one:"destination",other:"destinations"}}}),(0,a.Z)(n,"cups.destination_job_size",{family:"jobs",info:"Active jobs size of {destination}.",en:{instance:{one:"destination",other:"destinations"}}}),(0,a.Z)(n,"dnsdist.queries",{info:"Client queries received.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.queries_dropped",{info:"Client queries dropped.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.packets_dropped",{info:"Packets dropped.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.answers",{info:"Answers statistics.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.backend_responses",{info:"Backend responses.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.backend_commerrors",{info:"Backend communication errors.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.backend_errors",{info:"Backend error responses.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.cache",{info:"Cache performance.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.servercpu",{info:"DNSdist server CPU utilization.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.servermem",{info:"DNSdist server memory utilization.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.query_latency",{aggregationMethod:"avg",info:"Query latency.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsdist.query_latency_avg",{info:"Average latency for the last N queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsmasq_dhcp.dhcp_ranges",{info:"Number of DHCP Ranges.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsmasq_dhcp.dhcp_hosts",{info:"Number of DHCP Hosts.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsmasq_dhcp.dhcp_range_utilization",{aggregationMethod:"avg",info:"DHCP Range utilization.",en:{instance:{one:"dhcp range",other:"dhcp ranges"}}}),(0,a.Z)(n,"dnsmasq_dhcp.dhcp_range_allocated_leases",{info:"DHCP Range Allocated Leases.",en:{instance:{one:"dhcp range",other:"dhcp ranges"}}}),(0,a.Z)(n,"dnsmasq.servers_queries",{info:"Queries forwarded to the upstream servers.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsmasq.cache_performance",{info:"Cache performance.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsmasq.cache_operations",{info:"Cache operations.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dnsmasq.cache_size",{aggregationMethod:"avg",info:"Cache size.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dns_query.query_status",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"DNS Query Status",layout:{x:0,y:0,w:4,h:5}}],info:"DNS Query Status.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dns_query.query_time",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum DNS Query Response Time",valueRange:[0,null],colors:o.default[1],layout:{x:3,y:0,w:4,h:5}},{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average DNS Query Response Time",valueRange:[0,null],colors:o.default[0],layout:{x:9,y:0,w:4,h:5}}],info:"DNS Query Time.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"docker_engine.engine_daemon_container_actions",{info:"Container Actions.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"docker_engine.engine_daemon_container_states_containers",{info:"Containers In Various States.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"docker_engine.builder_builds_failed_total",{info:"Builder Builds Fails By Reason.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"docker_engine.engine_daemon_health_checks_failed_total",{info:"Health Checks.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"docker_engine.swarm_manager_leader",{info:"Swarm Manager Leader.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"docker_engine.swarm_manager_object_store",{info:"Swarm Manager Object Store.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"docker_engine.swarm_manager_nodes_per_state",{info:"Swarm Manager Nodes Per State.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"docker_engine.swarm_manager_tasks_per_state",{info:"Swarm Manager Tasks Per State.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"docker.containers_health_status",{info:"Total number of Docker containers in various health states.",en:{instance:{one:"container",other:"containers"}}}),(0,a.Z)(n,"docker.container_writeable_layer_size",{info:"Docker container writable layer size.",en:{instance:{one:"container",other:"containers"}}}),(0,a.Z)(n,"dockerhub.pulls_sum",{info:"Pulls Summary.",en:{instance:{one:"repository",other:"repositories"}}}),(0,a.Z)(n,"dockerhub.pulls",{info:"Pulls.",en:{instance:{one:"repository",other:"repositories"}}}),(0,a.Z)(n,"dockerhub.pulls_rate",{info:"Pulls Rate.",en:{instance:{one:"repository",other:"repositories"}}}),(0,a.Z)(n,"dockerhub.stars",{info:"Stars.",en:{instance:{one:"repository",other:"repositories"}}}),(0,a.Z)(n,"dockerhub.status",{info:"Current Status.",en:{instance:{one:"repository",other:"repositories"}}}),(0,a.Z)(n,"dockerhub.last_updated",{info:"Time Since Last Updated.",en:{instance:{one:"repository",other:"repositories"}}}),(0,a.Z)(n,"dovecot.sessions",{info:"Dovecot Active Sessions.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.logins",{info:"Dovecot Logins.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.commands",{info:"Dovecot Commands.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.faults",{info:"Dovecot Page Faults.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.context_switches",{info:"Dovecot Context Switches.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.io",{info:"Dovecot Disk I/O.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.net",{info:"Dovecot Network Bandwidth.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.syscalls",{info:"Dovecot Number of SysCalls.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.lookup",{info:"Dovecot Lookups.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.cache",{info:"Dovecot Cache Hits.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.auth",{info:"Dovecot Authentications.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"dovecot.auth_cache",{info:"Dovecot Authentication Cache.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"cgroup.fd_closed",{info:"Files closed.",en:{instance:{one:"cgroup",other:"cgroups"}}}),(0,a.Z)(n,"services.file_open",{info:"Number of open files.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"services.file_open_error",{info:"Fails to open files.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"services.file_closed",{info:"Files closed.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"services.file_close_error",{info:"Fails to close files.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"mem.meory_map",{info:"Monitor calls for <code>msync(2)</code>..",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mdstat.mdstat_flush",{info:"MD flushes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"cgroup.oomkills",{info:"OOM kills. This chart is provided by eBPF plugin..",en:{instance:{one:"cgroup",other:"cgroups"}}}),(0,a.Z)(n,"services.oomkills",{info:"OOM kills. This chart is provided by eBPF plugin..",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"apps.oomkills",{info:"OOM kills.",en:{instance:{one:"app group",other:"app groups"}}}),(0,a.Z)(n,"cgroup.net_conn_ipv4",{info:"Calls to tcp_v4_connection.",en:{instance:{one:"cgroup",other:"cgroups"}}}),(0,a.Z)(n,"cgroup.net_conn_ipv6",{info:"Calls to tcp_v6_connection.",en:{instance:{one:"cgroup",other:"cgroups"}}}),(0,a.Z)(n,"cgroup.net_bytes_sent",{info:"Bytes sent.",en:{instance:{one:"cgroup",other:"cgroups"}}}),(0,a.Z)(n,"services.net_conn_ipv4",{info:"Calls to tcp_v4_connection.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"services.net_conn_ipv6",{info:"Calls to tcp_v6_connection.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"services.net_bytes_sent",{info:"Bytes sent.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"services.net_tcp_retransmit",{info:"Calls to tcp_retransmit.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"apps.dc_ratio",{aggregationMethod:"avg",info:"Percentage of files inside directory cache.",en:{instance:{one:"app group",other:"app groups"}}}),(0,a.Z)(n,"services.dc_ratio",{aggregationMethod:"avg",info:"Percentage of files inside directory cache.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"filesystem.read_latency",{aggregationMethod:"avg",info:"ext4 latency for each read request..",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"filesystem.write_latency",{aggregationMethod:"avg",info:"ext4 latency for each write request..",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"filesystem.open_latency",{aggregationMethod:"avg",info:"ext4 latency for each open request..",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"filesystem.sync_latency",{aggregationMethod:"avg",info:"ext4 latency for each sync request..",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"filesystem.attributte_latency",{aggregationMethod:"avg",info:"nfs latency for each attribute request..",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"netdata.ebpf_aral_stat_size",{info:"Bytes allocated for ARAL..",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"netdata.ebpf_aral_stat_alloc",{info:"Calls to allocate memory.",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"netdata.ebpf_kernel_memory",{info:"Memory allocated for hash tables..",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"netdata.ebpf_hash_tables_count",{info:"Number of hash tables loaded.",en:{instance:{one:"agent",other:"agents"}}}),(0,a.Z)(n,"elasticsearch.node_indices_indexing",{info:"Indexing Operations.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_indexing_current",{info:"Indexing Operations Current.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_indexing_time",{aggregationMethod:"avg",info:"Time Spent On Indexing Operations.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_search",{info:"Search Operations.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_search_current",{info:"Search Operations Current.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_search_time",{aggregationMethod:"avg",info:"node_indices_search_time.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_refresh",{info:"Refresh Operations.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_refresh_time",{aggregationMethod:"avg",info:"Time Spent On Refresh Operations.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_flush",{info:"Flush Operations.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_flush_time",{aggregationMethod:"avg",info:"Time Spent On Flush Operations.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_fielddata_memory_usage",{info:"Fielddata Cache Memory Usage.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_fielddata_evictions",{info:"Fielddata Evictions.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_segments_count",{info:"Segments Count.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_segments_memory_usage_total",{info:"Segments Memory Usage Total.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_segments_memory_usage",{info:"Segments Memory Usage.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_translog_operations",{info:"Translog Operations.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_indices_translog_size",{info:"Translog Size.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_file_descriptors",{info:"Process File Descriptors.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_jvm_heap",{aggregationMethod:"avg",info:"JVM Heap Percentage Currently in Use.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_jvm_heap_bytes",{info:"JVM Heap Commit And Usage.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_jvm_buffer_pools_count",{info:"JVM Buffer Pools Count.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_jvm_buffer_pool_direct_memory",{info:"JVM Buffer Pool Direct Memory.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_jvm_buffer_pool_mapped_memory",{info:"JVM Buffer Pool Mapped Memory.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_jvm_gc_count",{info:"JVM Garbage Collections.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_jvm_gc_time",{aggregationMethod:"avg",info:"JVM Time Spent On Garbage Collections.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_thread_pool_queued",{info:"Thread Pool Queued Threads Count.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.node_thread_pool_rejected",{info:"Thread Pool Rejected Threads Count.",en:{instance:{one:"elastic node",other:"elastic nodes"}}}),(0,a.Z)(n,"elasticsearch.cluster_communication_packets",{info:"Cluster Communication.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_communication",{info:"Cluster Communication Bandwidth.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.http_connections",{info:"HTTP Connections.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"elasticsearch.breakers_trips",{info:"Circuit Breaker Trips Count.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"elasticsearch.cluster_health_status",{info:"Cluster Status.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_number_of_nodes",{info:"Cluster Nodes Count.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_shards_count",{info:"Cluster Shards Count.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_pending_tasks",{info:"Cluster Pending Tasks.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_number_of_in_flight_fetch",{info:"Cluster Unfinished Fetches.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_indices_count",{info:"Cluster Indices Count.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_indices_shards_count",{info:"Cluster Indices Shards Count.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_indices_docs_count",{info:"Cluster Indices Docs Count.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_indices_store_size",{info:"Cluster Indices Store Size.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_indices_query_cache",{info:"Cluster Indices Query Cache.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.cluster_nodes_by_role_count",{info:"Cluster Nodes By Role Count.",en:{instance:{one:"cluster",other:"clusters"}}}),(0,a.Z)(n,"elasticsearch.node_index_health",{info:"Index Health.",en:{instance:{one:"index",other:"indexes"}}}),(0,a.Z)(n,"elasticsearch.node_index_shards_count",{info:"Index Shards Count.",en:{instance:{one:"index",other:"indexes"}}}),(0,a.Z)(n,"elasticsearch.node_index_docs_count",{info:"Index Docs Count.",en:{instance:{one:"index",other:"indexes"}}}),(0,a.Z)(n,"elasticsearch.node_index_store_size",{info:"Index Store Size.",en:{instance:{one:"index",other:"indexes"}}}),(0,a.Z)(n,"energid.blockindex",{info:"Blockchain index.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"energid.difficulty",{info:"Blockchain difficulty.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"energid.mempool",{info:"Memory pool.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"energid.secmem",{info:"Secure memory.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"energid.network",{info:"Network.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"energid.timeoffset",{info:"Network time offset.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"energid.utxo_transactions",{info:"Transactions.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"exim.qemails",{info:"Exim Queue Emails.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"fail2ban.faile_attempts",{info:"Failed attempts.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"filecheck.file_existence",{info:"File Existence (0: not exists, 1: exists).",en:{instance:{one:"file",other:"files"}}}),(0,a.Z)(n,"filecheck.file_mtime_ago",{info:"File Time Since the Last Modification.",en:{instance:{one:"file",other:"files"}}}),(0,a.Z)(n,"filecheck.file_size",{info:"File Size.",en:{instance:{one:"file",other:"files"}}}),(0,a.Z)(n,"filecheck.dir_existence",{info:"Dir Existence (0: not exists, 1: exists).",en:{instance:{one:"directory",other:"directories"}}}),(0,a.Z)(n,"filecheck.dir_mtime_ago",{info:"Dir Time Since the Last Modification.",en:{instance:{one:"directory",other:"directories"}}}),(0,a.Z)(n,"filecheck.dir_num_of_files",{info:"Dir Number of Files.",en:{instance:{one:"directory",other:"directories"}}}),(0,a.Z)(n,"filecheck.dir_size",{info:"Dir Size.",en:{instance:{one:"directory",other:"directories"}}}),(0,a.Z)(n,"fluentd.retry_count",{info:"Plugin Retry Count.",en:{instance:{one:"plugin",other:"plugins"}}}),(0,a.Z)(n,"fluentd.buffer_queue_length",{info:"Plugin Buffer Queue Length.",en:{instance:{one:"plugin",other:"plugins"}}}),(0,a.Z)(n,"fluentd.buffer_total_queued_size",{info:"Plugin Buffer Total Size.",en:{instance:{one:"plugin",other:"plugins"}}}),(0,a.Z)(n,"cpu.temperature",{info:"Core temperature.",en:{instance:{one:"core",other:"cores"}}}),(0,a.Z)(n,"cpu.scaling_cur_freq",{info:"Current CPU Scaling Frequency.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.dev_intr",{info:"Device Interrupts.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.soft_intr",{info:"Software Interrupts.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.ipc_shared_mem_segs",{info:"IPC Shared Memory Segments.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.ipc_shared_mem_size",{info:"IPC Shared Memory Segments Size.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.ipc_msq_queues",{info:"Number of IPC Message Queues.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.ipc_msq_messages",{info:"Number of Messages in IPC Message Queues.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.ipc_msq_size",{info:"Size of IPC Message Queues.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipv4.tcpconnaborts",{info:"TCP Connection Aborts.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipv4.tcpofo",{info:"TCP Out-Of-Order Queue.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipv4.tcpsyncookies",{info:"TCP SYN Cookies.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipv4.tcplistenissues",{info:"TCP Listen Socket Issues.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipv4.ecnpkts",{info:"IPv4 ECN Statistics.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipfw.mem",{info:"Memory allocated by rules.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipfw.packets",{info:"Packets.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipfw.bytes",{info:"Bytes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipfw.active",{info:"Active rules.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipfw.expired",{info:"Expired rules.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.packets",{info:"Network Packets.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"zfs.hits_rate",{info:"ZFS ARC Hits Rate.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"zfs.dhits_rate",{info:"ZFS Demand Hits Rate.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"zfs.phits_rate",{info:"ZFS Prefetch Hits Rate.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"zfs.mhits_rate",{info:"ZFS Metadata Hits Rate.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"zfs.l2hits_rate",{info:"ZFS L2 Hits Rate.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"zfs.actual_hits_rate",{info:"ZFS Actual Cache Hits Rate.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"zfs.demand_data_hits_rate",{info:"ZFS Data Demand Efficiency Rate.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"zfs.prefetch_data_hits_rate",{info:"ZFS Data Prefetch Efficiency Rate.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"zfs.trim_bytes",{info:"Successfully TRIMmed bytes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"zfs.trim_requests",{info:"TRIM requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"ipmi.sel",{groupBy:["node"],info:"IPMI Events.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensor_state",{info:"IPMI Sensors State.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensor_temperature_c",{groupBy:["label"],groupByLabel:["component"],aggregationMethod:"max",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Temperature",colors:o.default[1],layout:{x:0,y:0,w:2,h:5}},{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Temperature",layout:{x:2,y:0,w:2,h:2.5}},{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"number",title:"Average Temperature",layout:{x:2,y:2.5,w:2,h:2.5}}],info:"IPMI Sensor Temperature Celsius.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensor_temperature_f",{groupBy:["label"],groupByLabel:["component"],aggregationMethod:"max",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Temperature",colors:o.default[1],layout:{x:0,y:0,w:2,h:5}},{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Temperature",layout:{x:2,y:0,w:2,h:2.5}},{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"number",title:"Average Temperature",layout:{x:2,y:2.5,w:2,h:2.5}}],info:"IPMI Sensor Temperature Fahrenheit.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensor_voltage",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Voltage",colors:o.default[12],layout:{x:8,y:0,w:2,h:5}},{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Voltage",layout:{x:10,y:0,w:2,h:2.5}},{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"number",title:"Average Voltage",layout:{x:10,y:2.5,w:2,h:2.5}}],groupBy:["label"],groupByLabel:["component"],aggregationMethod:"avg",info:"IPMI Sensor Voltage.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensor_ampere",{groupBy:["label"],groupByLabel:["component"],aggregationMethod:"avg",info:"IPMI Sensor Current.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensor_fan_speed",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Fan Speed",layout:{x:4,y:0,w:2,h:5}},{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Fan Speed",layout:{x:6,y:0,w:2,h:2.5}},{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"number",title:"Average Fan Speed",layout:{x:6,y:2.5,w:2,h:2.5}}],groupBy:["label"],groupByLabel:["component"],aggregationMethod:"avg",info:"IPMI Sensor Fans speed.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensor_power",{groupBy:["label"],groupByLabel:["component"],aggregationMethod:"avg",info:"IPMI Sensor Power.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensor_reading_percent",{groupBy:["label"],groupByLabel:["component"],aggregationMethod:"avg",info:"IPMI Sensor Reading Percentage.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.sensors_states",{info:"IPMI Sensors State.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.temperatures_c",{groupBy:["node"],aggregationMethod:"max",mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Temperature",colors:o.default[1],layout:{x:0,y:0,w:2,h:5}},{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Temperature",layout:{x:2,y:0,w:2,h:2.5}},{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"number",title:"Average Temperature",layout:{x:2,y:2.5,w:2,h:2.5}}],info:"System Celsius Temperatures read by IPMI.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.temperatures_f",{groupBy:["node"],aggregationMethod:"max",info:"System Celsius Temperatures read by IPMI.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.voltages",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Voltage",colors:o.default[12],layout:{x:8,y:0,w:2,h:5}},{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Voltage",layout:{x:10,y:0,w:2,h:2.5}},{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"number",title:"Average Voltage",layout:{x:10,y:2.5,w:2,h:2.5}}],groupBy:["node"],aggregationMethod:"avg",info:"System Voltages read by IPMI.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.amps",{groupBy:["node"],aggregationMethod:"avg",info:"System Current read by IPMI.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.rpm",{mainheads:[{"group_by[0]":["selected"],"aggregation[0]":"max",chartLibrary:"easypiechart",title:"Maximum Fan Speed",layout:{x:4,y:0,w:2,h:5}},{"group_by[0]":["selected"],"aggregation[0]":"min",chartLibrary:"number",title:"Minimum Fan Speed",layout:{x:6,y:0,w:2,h:2.5}},{"group_by[0]":["selected"],"aggregation[0]":"avg",chartLibrary:"number",title:"Average Fan Speed",layout:{x:6,y:2.5,w:2,h:2.5}}],groupBy:["node"],aggregationMethod:"avg",info:"System Fans read by IPMI.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.watts",{groupBy:["node"],aggregationMethod:"avg",info:"System Power read by IPMI.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"ipmi.percent",{groupBy:["node"],aggregationMethod:"avg",info:"System Metrics read by IPMI.",en:{instance:{one:"sensor",other:"sensors"}}}),(0,a.Z)(n,"freeradius.proxy_bad_authentication",{info:"Bad Authentication Requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"freeradius.accounting",{info:"Accounting.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"freeradius.bad_accounting",{info:"Bad Accounting Requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"freeradius.proxy_accounting",{info:"Accounting.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"freeradius.proxy_bad_accounting",{info:"Bad Accounting Requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"gearman.total_jobs",{info:"Total Jobs.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"gearman.single_job",{info:"{job_name}.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.eth_db_chaindata_ancient_io_rate",{info:"Ancient Chaindata rate.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.eth_db_chaindata_ancient_io",{info:"Session ancient Chaindata.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.eth_db_chaindata_disk_io",{info:"Session chaindata on disk.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.eth_db_chaindata_disk_io_rate",{info:"On disk Chaindata rate.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.tx_pool_pending",{info:"Pending Transaction Pool.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.tx_pool_current",{info:"Transaction Pool.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.tx_pool_queued",{info:"Queued Transaction Pool.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.p2p_peers",{info:"Number of Peers.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"geth.rpc_calls",{info:"rpc calls.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"expvar.memstats.heap",{info:"memory: size of heap memory structures.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"expvar.memstats.stack",{info:"memory: size of stack memory structures.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"expvar.memstats.mspan",{info:"memory: size of mspan memory structures.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"expvar.memstats.mcache",{info:"memory: size of mcache memory structures.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"expvar.memstats.live_objects",{info:"memory: number of live objects.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"expvar.memstats.sys",{info:"memory: size of reserved virtual address space.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"expvar.memstats.gc_pauses",{info:"memory: average duration of GC pauses.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"hddtemp.temperatures",{aggregationMethod:"avg",info:"Disk Temperatures.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.threads",{info:"Number of Threads.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.logs_total",{info:"Number of Logs.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.open_connections",{info:"RPC Open Connections.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.call_queue_length",{info:"RPC Call Queue Length.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.capacity",{info:"Capacity Across All Datanodes.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.used_capacity",{info:"Used Capacity Across All Datanodes.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.load",{info:"Number of Concurrent File Accesses (read/write) Across All DataNodes.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.volume_failures_total",{info:"Number of Volume Failures Across All Datanodes.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.files_total",{info:"Number of Tracked Files.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.blocks_total",{info:"Number of Allocated Blocks in the System.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.blocks",{info:"Number of Problem Blocks (can point to an unhealthy cluster).",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.data_nodes",{info:"Number of Data Nodes By Status.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.datanode_used_capacity",{info:"Used Capacity.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hdfs.datanode_failed_volumes",{info:"Number of Failed Volumes.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hpssa.ctrl_status",{info:"Status 1 is OK, Status 0 is not OK.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hpssa.ctrl_temperature",{aggregationMethod:"avg",info:"Temperature.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hpssa.ld_status",{info:"Status 1 is OK, Status 0 is not OK.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hpssa.pd_status",{info:"Status 1 is OK, Status 0 is not OK.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"hpssa.pd_temperature",{aggregationMethod:"avg",info:"Temperature.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"httpcheck.in_state",{aggregationMethod:"avg",info:"HTTP Current State Duration.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"icecast.listeners",{info:"Number Of Listeners.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"ioping.latency",{info:"Read Latency.",en:{instance:{one:"disk",other:"disks"}}}),(0,a.Z)(n,"ipfs.bandwidth",{info:"IPFS Bandwidth.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"ipfs.peers",{info:"IPFS Peers.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"ipfs.repo_size",{info:"IPFS Repo Size.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"ipfs.repo_objects",{info:"IPFS Repo Objects.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"isc_dhcpd.active_leases_total",{info:"Active Leases Total.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"isc_dhcpd.pool_active_leases",{info:"Pool Active Leases.",en:{instance:{one:"pool",other:"pools"}}}),(0,a.Z)(n,"isc_dhcpd.pool_utilization",{aggregationMethod:"avg",info:"Pool Utilization.",en:{instance:{one:"pool",other:"pools"}}}),(0,a.Z)(n,"libreswan.net",{info:"LibreSWAN Tunnel ${name} Traffic.",en:{instance:{one:"tunnel",other:"tunnels"}}}),(0,a.Z)(n,"libreswan.uptime",{aggregationMethod:"min",info:"LibreSWAN Tunnel ${name} Uptime.",en:{instance:{one:"tunnel",other:"tunnels"}}}),(0,a.Z)(n,"lighttpd.scoreboard",{info:"ScoreBoard.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"litespeed.net_throughput",{info:"Network Throughput HTTPS.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"litespeed.connections",{info:"Connections HTTPS.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"litespeed.requests",{info:"Requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"litespeed.requests_processing",{info:"Requests In Processing.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"litespeed.cache",{info:"Private Cache Hits.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"litespeed.static",{info:"Static Hits.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"logstash.jvm_mem_heap",{info:"JVM Heap Memory.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"megacli.adapter_degraded",{info:"Adapter State.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"megacli.pd_media_error",{info:"Physical Drives Media Errors.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"megacli.pd_predictive_failure",{info:"Physical Drives Predictive Failures.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"megacli.bbu_relative_charge",{aggregationMethod:"avg",info:"Relative State of Charge.",en:{instance:{one:"battery",other:"batteries"}}}),(0,a.Z)(n,"megacli.bbu_cycle_count",{info:"Cycle Count.",en:{instance:{one:"battery",other:"batteries"}}}),(0,a.Z)(n,"memcached.cache",{info:"Cache Size.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.net",{info:"Network.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.connections",{info:"Connections.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.items",{info:"Items.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.evicted_reclaimed",{info:"Evicted and Reclaimed Items.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.get",{info:"Get Requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.get_rate",{info:"Get Request Rate.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.set_rate",{info:"Set Request Rate.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.delete",{info:"Delete Requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.cas",{info:"Check and Set Requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.increment",{info:"Increment Requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.decrement",{info:"Decrement Requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.touch",{info:"Touch Requests.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"memcached.touch_rate",{info:"Touch Request Rate.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mongodb.operations_rate",{info:"Operations rate.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.operations_latency_time",{aggregationMethod:"avg",info:"Operations Latency.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.operations_by_type_rate",{info:"Operations by type.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.document_operations_rate",{info:"Document operations.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.scanned_indexes_rate",{info:"Scanned indexes.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.scanned_documents_rate",{info:"Scanned documents.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.active_clients_count",{info:"Connected clients.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.queued_operations_count",{info:"Queued operations because of a lock.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.lock_acquisitions_rate",{info:"Lock acquisitions.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.cursors_open_count",{info:"Open cursors.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.cursors_open_no_timeout_count",{info:"Open cursors with disabled timeout.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.cursors_opened_rate",{info:"Opened cursors rate.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.cursors_timed_out_rate",{info:"Timed-out cursors.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.cursors_by_lifespan_count",{info:"Cursors lifespan.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.transactions_count",{info:"Current transactions.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.transactions_rate",{info:"Transactions rate.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.transactions_commits_rate",{info:"Transactions commits.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.transactions_commits_duration_time",{aggregationMethod:"avg",info:"Transactions successful commits duration.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.connections_usage",{info:"Connections usage.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.connections_by_state_count",{info:"Connections By State.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.asserts_rate",{info:"Raised assertions.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.network_traffic_rate",{info:"Network traffic.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.network_requests_rate",{info:"Network Requests.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.network_slow_dns_resolutions_rate",{info:"Slow DNS resolution operations.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.network_slow_ssl_handshakes_rate",{info:"Slow SSL handshake operations.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.memory_resident_size",{info:"Used resident memory.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.memory_virtual_size",{info:"Used virtual memory.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.memory_page_faults_rate",{info:"Memory page faults.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.memory_tcmalloc_stats",{info:"TCMalloc statistics.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.wiredtiger_concurrent_read_transactions_usage",{info:"Wired Tiger concurrent read transactions usage.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.wiredtiger_concurrent_write_transactions_usage",{info:"Wired Tiger concurrent write transactions usage.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.wiredtiger_cache_usage",{info:"Wired Tiger cache usage.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.wiredtiger_cache_dirty_space_size",{info:"Wired Tiger cache dirty space size.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.wiredtiger_cache_io_rate",{info:"Wired Tiger IO activity.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.wiredtiger_cache_evictions_rate",{info:"Wired Tiger cache evictions.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.database_collection_count",{info:"Database collections.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mongodb.database_indexes_count",{info:"Database indexes.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mongodb.database_views_count",{info:"Database views.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mongodb.database_documents_count",{info:"Database documents.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mongodb.database_data_size",{info:"Database data size.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mongodb.database_index_size",{info:"Database index size.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mongodb.repl_set_member_state",{info:"Replica Set member state.",en:{instance:{one:"replica",other:"replicas"}}}),(0,a.Z)(n,"mongodb.repl_set_member_health_status",{info:"Replica Set member health status.",en:{instance:{one:"replica",other:"replicas"}}}),(0,a.Z)(n,"mongodb.repl_set_member_replication_lag_time",{aggregationMethod:"max",info:"Replica Set member replication lag.",en:{instance:{one:"replica",other:"replicas"}}}),(0,a.Z)(n,"mongodb.repl_set_member_heartbeat_latency_time",{aggregationMethod:"avg",info:"Replica Set member heartbeat latency.",en:{instance:{one:"replica",other:"replicas"}}}),(0,a.Z)(n,"mongodb.repl_set_member_ping_rtt_time",{aggregationMethod:"avg",info:"Replica Set member ping RTT.",en:{instance:{one:"replica",other:"replicas"}}}),(0,a.Z)(n,"mongodb.repl_set_member_uptime",{aggregationMethod:"min",info:"Replica Set member uptime.",en:{instance:{one:"replica",other:"replicas"}}}),(0,a.Z)(n,"mongodb.sharding_nodes_count",{info:"Sharding Nodes.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.sharding_sharded_databases_count",{info:"Sharded databases.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.sharding_sharded_collections_count",{info:"Sharded collections.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mongodb.sharding_shard_chunks_count",{info:"Shard chunks.",en:{instance:{one:"shard",other:"shards"}}}),(0,a.Z)(n,"monit.filesystems",{info:"Filesystems.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.directories",{info:"Directories.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.files",{info:"Files.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.fifos",{info:"Pipes (fifo).",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.programs",{info:"Programs statuses.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.services",{info:"Processes statuses.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.process_uptime",{aggregationMethod:"min",info:"Processes uptime.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.process_threads",{info:"Processes threads.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.process_childrens",{info:"Child processes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.hosts",{info:"Hosts.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.host_latency",{aggregationMethod:"avg",info:"Hosts latency.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"monit.networks",{info:"Network interfaces and addresses.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mysql.queries_type",{info:"Queries By Type.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.connections",{info:"Connections.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.connections_active",{info:"Active Connections.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.threads",{info:"Threads.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.innodb_os_log_fsync_writes",{info:"InnoDB OS Log Operations.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.innodb_os_log_io",{info:"InnoDB OS Log Bandwidth.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.connection_errors",{info:"Connection Errors.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.open_tables",{info:"Open Tables.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.process_list_queries_count",{info:"Queries Count.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.galera_writesets",{info:"Replicated Writesets.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.galera_conflicts",{info:"Replication Conflicts.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.galera_thread_count",{info:"Total Number of WSRep (applier/rollbacker) Threads.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.key_requests",{info:"MyISAM Key Cache Requests.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.key_disk_ops",{info:"MyISAM Key Cache Disk Operations.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"mysql.slave_status",{info:"I/O / SQL Thread Running State.",en:{instance:{one:"connection",other:"connections"}}}),(0,a.Z)(n,"mysql.userstats_created_transactions",{info:"User Transactions.",en:{instance:{one:"user",other:"users"}}}),(0,a.Z)(n,"mysql.userstats_empty_queries",{info:"User Empty Queries.",en:{instance:{one:"user",other:"users"}}}),(0,a.Z)(n,"netfilter.netlink_new",{info:"Connection Tracker New Connections.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"netfilter.netlink_changes",{info:"Connection Tracker Changes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"netfilter.netlink_search",{info:"Connection Tracker Searches.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"netfilter.netlink_errors",{info:"Connection Tracker Errors.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"netfilter.netlink_expect",{info:"Connection Tracker Expectations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"netfilter.nfacct_packets",{info:"Netfilter Accounting Packets.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"netfilter.nfacct_bytes",{info:"Netfilter Accounting Bandwidth.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"nginxvts.connections_total",{info:"Total connections.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nginxvts.shm_used_node",{info:"Number of node using shared memory.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nginxvts.server_responses_total",{info:"Total number of responses by code class.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nginxvts.server_traffic_total",{info:"Total amount of data transferred to and from the server.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nginxvts.server_cache_total",{info:"Total server cache.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nsd.queries",{info:"queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nsd.zones",{info:"zones.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nsd.protocols",{info:"protocol.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nsd.type",{info:"query type.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nsd.transfer",{info:"transfer.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"nsd.rcode",{info:"return code.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"ntpd.sys_rootdisp",{info:"Total root dispersion to the primary reference clock.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"ntpd.peer_stratum",{info:"Peer stratum.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"nut.charge",{aggregationMethod:"avg",info:"UPS Charge.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.runtime",{info:"UPS Runtime.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.battery.voltage",{aggregationMethod:"avg",info:"UPS Battery Voltage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.input.voltage",{aggregationMethod:"avg",info:"UPS Input Voltage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.input.current",{aggregationMethod:"avg",info:"UPS Input Current.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.input.frequency",{aggregationMethod:"avg",info:"UPS Input Frequency.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.output.voltage",{aggregationMethod:"avg",info:"UPS Output Voltage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.load",{aggregationMethod:"avg",info:"UPS Load.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.load_usage",{info:"UPS Load Usage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.temperature",{aggregationMethod:"avg",info:"UPS Temperature.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nut.clients",{info:"UPS Connected Clients.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_load",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["ups_name"],chartLibrary:"bars",title:"Top by Load",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:0,y:0,w:3,h:5}}],info:"The current load on the UPS, expressed as a percentage of its rated capacity.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_load_usage",{aggregationMethod:"sum",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["ups_name"],chartLibrary:"bars",title:"Top by Power Output",dimensionsSort:"valueDesc",colors:o.default[12],layout:{x:3,y:0,w:3,h:5}}],info:"The amount of power that the UPS delivers to the equipment connected to it.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_status",{aggregationMethod:"sum",info:'The overall status of the UPS. For details, see <a href="https://networkupstools.org/docs/developer-guide.chunked/ar01s04.html#_status_data" target="_blank">NUT status data</a>.',en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_temperature",{aggregationMethod:"max",info:"The current temperature of the UPS.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_battery_charge",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["ups_name"],chartLibrary:"bars",title:"Top by Battery Charge (ascending)",dimensionsSort:"valueAsc",colors:o.default[12],layout:{x:6,y:0,w:3,h:5}}],info:"The current charge level of the UPS battery, expressed as a percentage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_battery_estimated_runtime",{aggregationMethod:"avg",mainheads:[{"group_by[0]":["label"],"group_by_label[0]":["ups_name"],chartLibrary:"bars",title:"Top by Estimated Runtime (ascending)",dimensionsSort:"valueAsc",colors:o.default[12],layout:{x:9,y:0,w:3,h:5}}],info:"The estimated amount of time that the UPS can power its connected equipment during a power outage.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_battery_voltage",{aggregationMethod:"avg",info:"The current voltage of the UPS battery.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_battery_voltage_nominal",{aggregationMethod:"avg",info:"The nominal voltage of the UPS battery. The nominal voltage is the voltage that the battery is designed to operate at.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_input_voltage",{aggregationMethod:"avg",info:"The voltage of the power that is coming into the UPS from the utility.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_input_voltage_nominal",{aggregationMethod:"avg",info:"The nominal input voltage for the UPS. It is the voltage that the UPS is designed to operate at.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_input_current",{aggregationMethod:"avg",info:"The current amount of current that the UPS is drawing from the utility power.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_input_current_nominal",{aggregationMethod:"avg",info:"The nominal input current for the UPS. It is the current that the UPS is expected to draw from the utility power when it is fully loaded.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_input_frequency",{aggregationMethod:"avg",info:"The frequency of the utility power that the UPS is receiving.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_input_frequency_nominal",{aggregationMethod:"avg",info:"The nominal input frequency for the UPS. It is the frequency of the utility power that the UPS is designed to operate at.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_output_voltage",{aggregationMethod:"avg",info:"The voltage of the power that the UPS is providing to the connected equipment.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_output_voltage_nominal",{aggregationMethod:"avg",info:"The nominal output voltage for the UPS. It is the voltage that the UPS is designed to provide to the connected equipment.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_output_current",{aggregationMethod:"avg",info:"The current amount of current that the UPS is providing to the connected equipment.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_output_current_nominal",{aggregationMethod:"avg",info:"The nominal output current for the UPS. It is the amount of current that the UPS is designed to provide to the connected equipment under normal operating conditions.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_output_frequency",{aggregationMethod:"avg",info:"The frequency of the power that the UPS is providing to the connected equipment.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"upsd.ups_output_frequency_nominal",{aggregationMethod:"avg",info:"The nominal output frequency for the UPS. It is the frequency of the power that the UPS is designed to provide to the connected equipment under normal operating conditions.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"nvidia_smi.gpu_pcie_bandwidth_utilization",{aggregationMethod:"avg",info:"PCI Express Bandwidth Utilization.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"nvidia_smi.gpu_frame_buffer_memory_usage",{info:"Frame buffer memory usage.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"nvidia_smi.gpu_bar1_memory_usage",{info:"BAR1 memory usage.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"nvidia_smi.gpu_voltage",{aggregationMethod:"avg",info:"Voltage.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"nvidia_smi.gpu_power_draw",{aggregationMethod:"avg",info:"Power draw.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"nvidia_smi.gpu_mig_mode_current_status",{info:"MIG current mode.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"nvidia_smi.gpu_mig_devices_count",{info:"MIG devices.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"nvidia_smi.gpu_mig_frame_buffer_memory_usage",{info:"Frame buffer memory usage.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"nvidia_smi.gpu_mig_bar1_memory_usage",{info:"BAR1 memory usage.",en:{instance:{one:"gpu",other:"gpus"}}}),(0,a.Z)(n,"openldap.total_connections",{info:"Total Connections.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"openldap.traffic_stats",{info:"Traffic.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"openldap.operations_status",{info:"Operations Status.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"openldap.referrals",{info:"Referrals.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"openldap.entries",{info:"Entries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"openldap.ldap_operations",{info:"Operations.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"openldap.waiters",{info:"Waiters.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"opensips.dialogs_active",{info:"OpenSIPS Active Dialogs.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.users",{info:"OpenSIPS Users.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.registrar",{info:"OpenSIPS Registrar.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.transactions",{info:"OpenSIPS Transactions.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.core_rcv",{info:"OpenSIPS Core Receives.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.core_fwd",{info:"OpenSIPS Core Forwards.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.core_drop",{info:"OpenSIPS Core Drops.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.core_err",{info:"OpenSIPS Core Errors.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.core_bad",{info:"OpenSIPS Core Bad.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.tm_replies",{info:"OpenSIPS TM Replies.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.transactions_status",{info:"OpenSIPS Transactions Status.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.transactions_inuse",{info:"OpenSIPS InUse Transactions.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.sl_replies",{info:"OpenSIPS SL Replies.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.dialogs",{info:"OpenSIPS Dialogs.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.net_waiting",{info:"OpenSIPS Network Waiting.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.uri_checks",{info:"OpenSIPS URI Checks.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.traces",{info:"OpenSIPS Traces.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.shmem",{info:"OpenSIPS Shared Memory.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"opensips.shmem_fragment",{info:"OpenSIPS Shared Memory Fragmentation.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"oracledb.session_count",{info:"Session Count.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.session_limit_usage",{info:"Session Limit Usage.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.logons",{info:"Logons.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.physical_disk_read_writes",{info:"Physical Disk Reads/Writes.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.sorts_on_disks",{info:"Sorts On Disk.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.full_table_scans",{info:"Full Table Scans.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.database_wait_time_ratio",{aggregationMethod:"avg",info:"Database Wait Time Ratio.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.shared_pool_free_memory",{info:"Shared Pool Free Memory.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.in_memory_sorts_ratio",{aggregationMethod:"avg",info:"In-Memory Sorts Ratio.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.sql_service_response_time",{aggregationMethod:"avg",info:"SQL Service Response Time.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.user_rollbacks",{info:"User Rollbacks.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.enqueue_timeouts",{info:"Enqueue Timeouts.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.cache_hit_ration",{aggregationMethod:"avg",info:"Cache Hit Ratio.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.global_cache_blocks",{info:"Global Cache Blocks Events.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.activity",{info:"Activities.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.wait_time",{aggregationMethod:"avg",info:"Wait Time.",en:{instance:{one:"db server",other:"db servers"}}}),(0,a.Z)(n,"oracledb.tablespace_size",{info:"Size.",en:{instance:{one:"tablespace",other:"tablespaces"}}}),(0,a.Z)(n,"oracledb.tablespace_usage",{info:"Usage.",en:{instance:{one:"tablespace",other:"tablespaces"}}}),(0,a.Z)(n,"oracledb.tablespace_usage_in_percent",{aggregationMethod:"avg",info:"Usage.",en:{instance:{one:"tablespace",other:"tablespaces"}}}),(0,a.Z)(n,"oracledb.allocated_size",{info:"Size.",en:{instance:{one:"tablespace",other:"tablespaces"}}}),(0,a.Z)(n,"oracledb.allocated_usage",{info:"Usage.",en:{instance:{one:"tablespace",other:"tablespaces"}}}),(0,a.Z)(n,"oracledb.allocated_usage_in_percent",{aggregationMethod:"avg",info:"Usage.",en:{instance:{one:"tablespace",other:"tablespaces"}}}),(0,a.Z)(n,"perf.cpu_cycles",{info:"CPU cycles.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.instructions",{info:"Instructions.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.branch_instructions",{info:"Branch instructions.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.cache",{info:"Cache operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.bus_cycles",{info:"Bus cycles.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.stalled_cycles",{info:"Stalled frontend and backend cycles.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.migrations",{info:"CPU migrations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.alignment_faults",{info:"Alignment faults.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.emulation_faults",{info:"Emulation faults.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.l1d_cache",{info:"L1D cache operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.l1d_cache_prefetch",{info:"L1D prefetch cache operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.l1i_cache",{info:"L1I cache operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.ll_cache",{info:"LL cache operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.dtlb_cache",{info:"DTLB cache operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.itlb_cache",{info:"ITLB cache operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"perf.pbu_cache",{info:"PBU cache operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"pihole.unwanted_domains_blocking_status",{info:"Unwanted Domains Blocking Status.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"pika.connections",{info:"Connections.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"pika.clients",{info:"Clients.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"pika.memory",{info:"Memory usage.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"pika.connected_replicas",{info:"Connected replicas.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"pika.commands",{info:"Processed commands.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"pika.commands_calls",{info:"Calls per command.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"pika.database_strings_keys",{info:"Strings type keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_strings_expires_keys",{info:"Strings type expires keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_strings_invalid_keys",{info:"Strings type invalid keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_hashes_keys",{info:"Hashes type keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_hashes_expires_keys",{info:"Hashes type expires keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_hashes_invalid_keys",{info:"Hashes type invalid keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_lists_keys",{info:"Lists type keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_lists_expires_keys",{info:"Lists type expires keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_lists_invalid_keys",{info:"Lists type invalid keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_zsets_keys",{info:"Zsets type keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_zsets_expires_keys",{info:"Zsets type expires keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_zsets_invalid_keys",{info:"Zsets type invalid keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_sets_keys",{info:"Sets type keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_sets_expires_keys",{info:"Sets type expires keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.database_sets_invalid_keys",{info:"Sets invalid keys per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"pika.uptime",{aggregationMethod:"min",info:"Uptime.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"portcheck.state_duration",{info:"Current State Duration.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"postgres.locks_utilization",{aggregationMethod:"avg",info:"Acquired locks utilization.",en:{instance:{one:"pg server",other:"pg servers"}}}),(0,a.Z)(n,"postgres.catalog_relations_count",{info:"Relation count.",en:{instance:{one:"pg server",other:"pg servers"}}}),(0,a.Z)(n,"postgres.catalog_relations_size",{info:"Relation size.",en:{instance:{one:"pg server",other:"pg servers"}}}),(0,a.Z)(n,"postgres.table_size",{info:"Table total size.",en:{instance:{one:"table",other:"tables"}}}),(0,a.Z)(n,"powerdns.questions_in",{info:"Incoming questions.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns.questions_out",{info:"Outgoing questions.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns.cache_usage",{info:"Cache Usage.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns.cache_size",{info:"Cache Size.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns.latency",{info:"Answer latency.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns_recursor.questions_in",{info:"Incoming questions.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns_recursor.questions_out",{info:"Outgoing questions.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns_recursor.answer_time",{info:"Queries answered within a time range.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns_recursor.timeouts",{info:"Timeouts on outgoing UDP queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns_recursor.drops",{info:"Drops.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns_recursor.cache_usage",{info:"Cache Usage.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"powerdns_recursor.cache_size",{info:"Cache Size.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"cpu.cpufreq",{info:"Current CPU Frequency.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mem.hugepage",{info:"Dedicated HugePages Memory.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mem.pagetype",{info:"pagetype_Node{node}_{zone}_{type}.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"system.message_queue_message",{info:"IPC Message Queue Number of Messages.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"md.nonredundant",{family:"redundancy",info:"Nonredundant Array Availability.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"wireless.status",{family:"status",info:"Internal status reported by interface..",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"btrfs.commits",{family:"commits",info:"BTRFS Commits.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"btrfs.commits_perc_time",{family:"commits",aggregationMethod:"avg",info:"BTRFS Commits Time Share.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"btrfs.commit_timings",{family:"commits",info:"BTRFS Commit Timings.",en:{instance:{one:"filesystem",other:"filesystems"}}}),(0,a.Z)(n,"btrfs.device_errors",{family:"errors",info:"BTRFS Device Errors.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"proxysql.client_connections_count",{info:"Client connections.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.client_connections_rate",{info:"Client connections rate.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.server_connections_count",{info:"Server connections.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.server_connections_rate",{info:"Server connections rate.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.backends_traffic",{info:"Backends traffic.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.clients_traffic",{info:"Clients traffic.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.active_transactions_count",{info:"Client connections that are currently processing a transaction.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.questions_rate",{info:"Client requests / statements executed.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.slow_queries_rate",{info:"Slow queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.queries_rate",{info:"Queries rate.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.backend_statements_count",{info:"Statements available across all backend connections.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.backend_statements_rate",{info:"Statements executed against the backends.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.client_statements_count",{info:"Statements that are in use by clients.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.client_statements_rate",{info:"Statements executed by clients.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.cached_statements_count",{info:"Global prepared statements.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.query_cache_entries_count",{info:"Query Cache entries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.query_cache_memory_used",{info:"Query Cache memory used.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.query_cache_io",{info:"Query Cache I/O.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.query_cache_requests_rate",{info:"Query Cache requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.mysql_monitor_workers_count",{info:"MySQL monitor workers.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.mysql_monitor_workers_rate",{info:"MySQL monitor workers rate.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.mysql_monitor_connect_checks_rate",{info:"MySQL monitor connect checks.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.mysql_monitor_ping_checks_rate",{info:"MySQL monitor ping checks.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.mysql_monitor_read_only_checks_rate",{info:"MySQL monitor read only checks.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.mysql_monitor_replication_lag_checks_rate",{info:"MySQL monitor replication lag checks.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.jemalloc_memory_used",{info:"Jemalloc used memory.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.memory_used",{info:"Memory used.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.uptime",{aggregationMethod:"min",info:"Uptime.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"proxysql.mysql_command_execution_rate",{info:"MySQL command execution.",en:{instance:{one:"command",other:"commands"}}}),(0,a.Z)(n,"proxysql.mysql_command_execution_time",{aggregationMethod:"avg",info:"MySQL command execution time.",en:{instance:{one:"command",other:"commands"}}}),(0,a.Z)(n,"proxysql.mysql_command_execution_duration",{info:"MySQL command execution duration histogram.",en:{instance:{one:"command",other:"commands"}}}),(0,a.Z)(n,"proxysql.mysql_user_connections_utilization",{aggregationMethod:"avg",info:"MySQL user connections utilization.",en:{instance:{one:"user",other:"users"}}}),(0,a.Z)(n,"proxysql.mysql_user_connections_count",{info:"MySQL user connections used.",en:{instance:{one:"user",other:"users"}}}),(0,a.Z)(n,"proxysql.backend_status",{info:"Backend status.",en:{instance:{one:"sql backend",other:"sql backends"}}}),(0,a.Z)(n,"proxysql.backend_connections_usage",{info:"Backend connections usage.",en:{instance:{one:"sql backend",other:"sql backends"}}}),(0,a.Z)(n,"proxysql.backend_connections_rate",{info:"Backend connections established.",en:{instance:{one:"sql backend",other:"sql backends"}}}),(0,a.Z)(n,"proxysql.backend_queries_rate",{info:"Backend queries.",en:{instance:{one:"sql backend",other:"sql backends"}}}),(0,a.Z)(n,"proxysql.backend_traffic",{info:"Backend traffic.",en:{instance:{one:"sql backend",other:"sql backends"}}}),(0,a.Z)(n,"proxysql.backend_latency",{aggregationMethod:"avg",info:"Backend latency.",en:{instance:{one:"sql backend",other:"sql backends"}}}),(0,a.Z)(n,"pulsar.broker_components",{info:"Broker Components.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.throughput_rate",{info:"Throughput Rate.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.storage_size",{info:"Storage Size.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.storage_operations_rate",{info:"Storage Read/Write Operations Rate.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.storage_write_latency",{aggregationMethod:"avg",info:"Storage Write Latency.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.entry_size",{info:"Entry Size.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.subscription_delayed",{info:"Subscriptions Delayed for Dispatching.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.replication_rate",{info:"Replication Rate.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.replication_throughput_rate",{info:"Replication Throughput Rate.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.replication_backlog",{info:"Replication Backlog.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"pulsar.namespace_broker_components",{info:"Broker Components.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_throughput_rate",{info:"Throughput Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_storage_size",{info:"Storage Size.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_storage_operations_rate",{info:"Storage Read/Write Operations Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_storage_write_latency",{aggregationMethod:"avg",info:"Storage Write Latency.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_entry_size",{info:"Entry Size.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_subscription_delayed",{info:"Subscriptions Delayed for Dispatching.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_replication_rate",{info:"Replication Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_replication_throughput_rate",{info:"Replication Throughput Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.namespace_replication_backlog",{info:"Replication Backlog.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_producers",{info:"Topic Producers.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_subscriptions",{info:"Topic Subscriptions.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_consumers",{info:"Topic Consumers.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_messages_rate_in",{info:"Topic Publish Messages Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_messages_rate_out",{info:"Topic Dispatch Messages Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_throughput_rate_in",{info:"Topic Publish Throughput Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_throughput_rate_out",{info:"Topic Dispatch Throughput Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_storage_size",{info:"Topic Storage Size.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_storage_read_rate",{info:"Topic Storage Read Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_storage_write_rate",{info:"Topic Storage Write Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_msg_backlog",{info:"Topic Messages Backlog Size.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_subscription_delayed",{info:"Topic Subscriptions Delayed for Dispatching.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_subscription_msg_rate_redeliver",{info:"Topic Subscriptions Redelivered Message Rate.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_subscription_blocked_on_unacked_messages",{info:"Topic Subscriptions Blocked On Unacked Messages.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_replication_rate_in",{info:"Topic Replication Rate From Remote Cluster.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_replication_rate_out",{info:"Topic Replication Rate To Remote Cluster.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_replication_throughput_rate_in",{info:"Topic Replication Throughput Rate From Remote Cluster.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_replication_throughput_rate_out",{info:"Topic Replication Throughput Rate To Remote Cluster.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"pulsar.topic_replication_backlog",{info:"Topic Replication Backlog.",en:{instance:{one:"namespace",other:"namespaces"}}}),(0,a.Z)(n,"puppet.jvm",{info:"JVM Non-Heap.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"puppet.fdopen",{info:"File Descriptors.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"rabbitmq.messages_count",{info:"Messages.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.messages_rate",{info:"Messages.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.objects_count",{info:"Objects.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.connection_churn_rate",{info:"Connection churn.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.channel_churn_rate",{info:"Channel churn.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.queue_churn_rate",{info:"Queue churn.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.file_descriptors_count",{info:"File descriptors.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.sockets_count",{info:"Used sockets.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.erlang_processes_count",{info:"Erlang processes.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.erlang_run_queue_processes_count",{info:"Erlang run queue.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.memory_usage",{info:"Memory.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.disk_space_free_size",{info:"Free disk space.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"rabbitmq.vhost_messages_count",{info:"Vhost messages.",en:{instance:{one:"vhost",other:"vhosts"}}}),(0,a.Z)(n,"rabbitmq.vhost_messages_rate",{info:"Vhost messages rate.",en:{instance:{one:"vhost",other:"vhosts"}}}),(0,a.Z)(n,"rabbitmq.queue_messages_count",{info:"Queue messages.",en:{instance:{one:"queue",other:"queues"}}}),(0,a.Z)(n,"rabbitmq.queue_messages_rate",{info:"Queue messages rate.",en:{instance:{one:"queue",other:"queues"}}}),(0,a.Z)(n,"redis.connections",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Connections",layout:{x:14,y:0,w:1.999999999,h:5}}],info:"Accepted and rejected (maxclients limit) connections.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.memory",{info:"Memory usage.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.key_eviction_events",{info:"Evicted keys due to maxmemory limit.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.net",{info:"Bandwidth.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.rdb_changes",{info:"TI,TLE.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.bgsave_now",{aggregationMethod:"max",info:"Duration of the on-going RDB save operation if any.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.bgsave_health",{info:"Status of the last RDB save operation (0: ok, 1: err).",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.bgsave_last_rdb_save_since_time",{aggregationMethod:"min",info:"Time elapsed since the last successful RDB save.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.aof_file_size",{info:"AOF file size.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.commands_usec",{info:"Total CPU time consumed by the commands.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.commands_usec_per_sec",{info:"Average CPU consumed per command execution.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.key_expiration_events",{info:"Expired keys.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.database_keys",{info:"Keys per database.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.database_expires_keys",{info:"Keys with an expiration per database.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.connected_replicas",{info:"Connected replicas.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"redis.master_link_status",{info:"Master link status.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"rethinkdb.cluster_connected_servers",{info:"Connected Servers.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"rethinkdb.cluster_clients_active",{info:"Active Clients.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"rethinkdb.cluster_queries",{info:"Queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"rethinkdb.cluster_documents",{info:"Documents.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"rethinkdb.client_connections",{info:"Client Connections.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"rethinkdb.clients_active",{info:"Active Clients.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"rethinkdb.queries",{info:"Queries.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"rethinkdb.documents",{info:"Documents.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"riak.kv.throughput",{info:"Reads & writes coordinated by this node.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.dt.vnode_updates",{info:"Update operations coordinated by local vnodes by data type.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.search",{info:"Search queries on the node.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.search.documents",{info:"Documents indexed by search.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.consistent.operations",{info:"Consistent node operations.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.kv.latency.get",{info:"Time between reception of a client GET request and subsequent response to client.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.kv.latency.put",{info:"Time between reception of a client PUT request and subsequent response to client.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.dt.latency.counter_merge",{info:"Time it takes to perform an Update Counter operation.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.dt.latency.set_merge",{info:"Time it takes to perform an Update Set operation.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.dt.latency.map_merge",{info:"Time it takes to perform an Update Map operation.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.search.latency.query",{info:"Search query latency.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.search.latency.index",{info:"Time it takes Search to index a new document.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.consistent.latency.get",{info:"Strongly consistent read latency.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.consistent.latency.put",{info:"Strongly consistent write latency.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.vm",{info:"Total processes running in the Erlang VM.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.vm.memory.processes",{info:"Memory allocated & used by Erlang processes.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.kv.siblings_encountered.get",{info:"Number of siblings encountered during GET operations by this node during the past minute.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.kv.objsize.get",{info:"Object size encountered by this node during the past minute.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.search.vnodeq_size",{info:"Number of unprocessed messages in the vnode message queues of Search on this node in the past minute.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.search.index",{info:"Number of writes to Search failed due to bad data format by reason.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.core.protobuf_connections",{info:"Protocol buffer connections by status.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.core.repairs",{info:"Number of repair operations this node has coordinated.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.core.fsm_active",{info:"Active finite state machines by kind.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"riak.core.fsm_rejected",{info:"Finite state machines being rejected by Sidejobs overload protection.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"syscall.rw",{info:"R/Ws.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"smb2.rw",{info:"R/Ws.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"smb2.create_close",{info:"Create/Close.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"smb2.get_set_info",{info:"Info.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"smb2.find",{info:"Find.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"smb2.notify",{info:"Notify.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"smb2.sm_counters",{info:"Lesser Ops.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"scaleio.system_capacity_total",{info:"Total Capacity.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_capacity_in_use",{info:"Capacity In Use.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_capacity_usage",{info:"Capacity Usage.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_capacity_available_volume_allocation",{info:"Available For Volume Allocation.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_capacity_health_state",{info:"Capacity Health State.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_workload_primary_bandwidth_total",{info:"Primary Backend Bandwidth Total (Read and Write).",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_workload_primary_bandwidth",{info:"Primary Backend Bandwidth.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_workload_primary_iops_total",{info:"Primary Backend IOPS Total (Read and Write).",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_workload_primary_iops",{info:"Primary Backend IOPS.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_workload_primary_io_size_total",{info:"Primary Backend I/O Size Total (Read and Write).",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_rebalance",{info:"Rebalance.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_rebalance_left",{info:"Rebalance Pending Capacity.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_rebalance_time_until_finish",{aggregationMethod:"min",info:"Rebalance Approximate Time Until Finish.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_rebuild",{info:"Rebuild Bandwidth Total (Forward, Backward and Normal).",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_rebuild_left",{info:"Rebuild Pending Capacity Total (Forward, Backward and Normal).",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_defined_components",{info:"Components.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_components_volumes_by_type",{info:"Volumes By Type.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.system_components_volumes_by_mapping",{info:"Volumes By Mapping.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.storage_pool_capacity_total",{info:"Total Capacity.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.storage_pool_capacity_in_use",{info:"Capacity In Use.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.storage_pool_capacity_usage",{info:"Capacity Usage.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.storage_pool_capacity_utilization",{aggregationMethod:"avg",info:"Capacity Utilization.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.storage_pool_capacity_available_volume_allocation",{info:"Available For Volume Allocation.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.storage_pool_capacity_health_state",{info:"Capacity Health State.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.storage_pool_components",{info:"Components.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.sdc_mdm_connection_state",{info:"MDM Connection State.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.sdc_bandwidth",{info:"Bandwidth.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.sdc_iops",{info:"IOPS.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.sdc_io_size",{info:"IOPS Size.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"scaleio.sdc_num_of_mapped_volumed",{info:"Mapped Volumes.",en:{instance:{one:"storage server",other:"storage servers"}}}),(0,a.Z)(n,"mem.slabmemory",{info:"Memory Usage.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mem.slabfilling",{info:"Object Filling.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"mem.slabwaste",{info:"Memory waste.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.read_error_rate",{info:"Read Error Rate.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.seek_error_rate",{info:"Seek Error Rate.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.soft_read_error_rate",{info:"Soft Read Error Rate.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.write_error_rate",{info:"Write Error Rate.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.read_total_err_corrected",{info:"Read Error Corrected.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.read_total_unc_errors",{info:"Read Error Uncorrected.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.write_total_err_corrected",{info:"Write Error Corrected.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.write_total_unc_errors",{info:"Write Error Uncorrected.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.verify_total_err_corrected",{info:"Verify Error Corrected.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.verify_total_unc_errors",{info:"Verify Error Uncorrected.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.sata_interface_downshift",{info:"SATA Interface Downshift.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.udma_crc_error_count",{info:"UDMA CRC Error Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.throughput_performance",{info:"Throughput Performance.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.seek_time_performance",{info:"Seek Time Performance.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.start_stop_count",{info:"Start/Stop Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.power_on_hours_count",{info:"Power-On Hours Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.power_cycle_count",{info:"Power Cycle Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.unexpected_power_loss",{info:"Unexpected Power Loss.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.spin_up_time",{aggregationMethod:"avg",info:"Spin-Up Time.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.spin_up_retries",{info:"Spin-up Retries.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.calibration_retries",{info:"Calibration Retries.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.airflow_temperature_celsius",{aggregationMethod:"avg",info:"Airflow Temperature Celsius.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.temperature_celsius",{aggregationMethod:"avg",info:"Temperature.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.reallocated_sectors_count",{info:"Reallocated Sectors Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.reserved_block_count",{aggregationMethod:"avg",info:"Reserved Block Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.program_fail_count",{info:"Program Fail Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.erase_fail_count",{info:"Erase Fail Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.wear_leveller_worst_case_erase_count",{info:"Wear Leveller Worst Case Erase Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.unused_reserved_nand_blocks",{info:"Unused Reserved NAND Blocks.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.reallocation_event_count",{info:"Reallocation Event Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.current_pending_sector_count",{info:"Current Pending Sector Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.offline_uncorrectable_sector_count",{info:"Offline Uncorrectable Sector Count.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.percent_lifetime_used",{aggregationMethod:"avg",info:"Percent Lifetime Used.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.media_wearout_indicator",{aggregationMethod:"avg",info:"Media Wearout Indicator.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"smartd_log.nand_writes_1gib",{info:"NAND Writes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"solr.search_requests",{info:"Search Requests.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.search_errors",{info:"Search Errors.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.search_errors_by_type",{info:"Search Errors By Type.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.search_requests_processing_time",{aggregationMethod:"avg",info:"Search Requests Processing Time.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.search_requests_timings",{info:"Search Requests Timings.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.search_requests_processing_time_percentile",{aggregationMethod:"avg",info:"Search Requests Processing Time Percentile.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.update_requests",{info:"Update Requests.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.update_errors",{info:"Update Errors.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.update_errors_by_type",{info:"Update Errors By Type.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.update_requests_processing_time",{aggregationMethod:"avg",info:"Update Requests Processing Time.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.update_requests_timings",{info:"Update Requests Timings.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"solr.update_requests_processing_time_percentile",{aggregationMethod:"avg",info:"Update Requests Processing Time Percentile.",en:{instance:{one:"solr server",other:"solr server"}}}),(0,a.Z)(n,"spigotmc.mem",{info:"Minecraft Memory Usage.",en:{instance:{one:"spigot server",other:"spigot servers"}}}),(0,a.Z)(n,"springboot2.response_codes",{info:"Response Codes.",en:{instance:{one:"sb2 server",other:"sb2 servers"}}}),(0,a.Z)(n,"springboot2.thread",{info:"Threads.",en:{instance:{one:"sb2 server",other:"sb2 servers"}}}),(0,a.Z)(n,"springboot2.heap",{info:"Overview.",en:{instance:{one:"sb2 server",other:"sb2 servers"}}}),(0,a.Z)(n,"springboot2.heap_eden",{info:"Eden Space.",en:{instance:{one:"sb2 server",other:"sb2 servers"}}}),(0,a.Z)(n,"springboot2.heap_survivor",{info:"Survivor Space.",en:{instance:{one:"sb2 server",other:"sb2 servers"}}}),(0,a.Z)(n,"springboot2.heap_old",{info:"Old Space.",en:{instance:{one:"sb2 server",other:"sb2 servers"}}}),(0,a.Z)(n,"springboot2.uptime",{aggregationMethod:"min",info:"The uptime of the Java virtual machine.",en:{instance:{one:"sb2 server",other:"sb2 servers"}}}),(0,a.Z)(n,"squid.clients_net",{info:"Squid Client Bandwidth.",en:{instance:{one:"squid instance",other:"squid instances"}}}),(0,a.Z)(n,"squid.clients_requests",{info:"Squid Client Requests.",en:{instance:{one:"squid instance",other:"squid instances"}}}),(0,a.Z)(n,"squid.servers_net",{info:"Squid Server Bandwidth.",en:{instance:{one:"squid instance",other:"squid instances"}}}),(0,a.Z)(n,"squid.servers_requests",{info:"Squid Server Requests.",en:{instance:{one:"squid instance",other:"squid instances"}}}),(0,a.Z)(n,"supervisord.summary_processes",{info:"Processes.",en:{instance:{one:"client / server",other:"clients / servers"}}}),(0,a.Z)(n,"supervisord.processes",{info:"Processes.",en:{instance:{one:"process group",other:"process groups"}}}),(0,a.Z)(n,"supervisord.process_exit_status",{info:"Exit status.",en:{instance:{one:"process group",other:"process groups"}}}),(0,a.Z)(n,"supervisord.process_uptime",{aggregationMethod:"min",info:"Uptime.",en:{instance:{one:"process group",other:"process groups"}}}),(0,a.Z)(n,"supervisord.process_downtime",{info:"Downtime.",en:{instance:{one:"process group",other:"process groups"}}}),(0,a.Z)(n,"tengine.bandwidth_total",{info:"Bandwidth.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tengine.connections_total",{info:"Connections.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tengine.requests_total",{info:"Requests.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tengine.requests_per_response_code_family_total",{info:"Requests Per Response Code Family.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tengine.requests_per_response_code_detailed_total",{info:"Requests Per Response Code Detailed.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tengine.requests_upstream_total",{info:"Number Of Requests Calling For Upstream.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tengine.tries_upstream_total",{info:"Number Of Times Calling For Upstream.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tengine.requests_upstream_per_response_code_family_total",{info:"Upstream Requests Per Response Code Family.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tomcat.processing_time",{aggregationMethod:"avg",info:"processing time.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tomcat.jvm",{info:"JVM Memory Pool Usage.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tomcat.jvm_eden",{info:"Eden Memory Usage.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tomcat.jvm_survivor",{info:"Survivor Memory Usage.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"tomcat.jvm_tenured",{info:"Tenured Memory Usage.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"unbound.queries",{info:"Received Queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.queries_ip_ratelimited",{info:"Rate Limited Queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.dnscrypt_queries",{info:"DNSCrypt Queries.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.cache",{info:"Cache Statistics.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.cache_percentage",{aggregationMethod:"avg",info:"Cache Statistics Percentage.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.prefetch",{info:"Cache Prefetches.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.expired",{info:"Replies Served From Expired Cache.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.zero_ttl_replies",{info:"Replies Served From Expired Cache.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.recursive_replies",{info:"Replies That Needed Recursive Processing.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.recursion_time",{aggregationMethod:"avg",info:"Time Spent On Recursive Processing.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.request_list_usage",{info:"Request List Usage.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.current_request_list_usage",{info:"Current Request List Usage.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.request_list_jostle_list",{info:"Request List Jostle List Events.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.tcpusage",{info:"TCP Handler Buffers.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.uptime",{aggregationMethod:"min",info:"Uptime.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.cache_memory",{info:"Cache Memory.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.mod_memory",{info:"Module Memory.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.mem_streamwait",{info:"TCP and TLS Stream Waif Buffer Memory.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.cache_count",{info:"Cache Items Count.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.type_queries",{info:"Queries By Type.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.class_queries",{info:"Queries By Class.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.opcode_queries",{info:"Queries By OpCode.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.flag_queries",{info:"Queries By Flag.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.rcode_answers",{info:"Replies By RCode.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"unbound.thread_queries",{info:"Thread Received Queries.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_queries_ip_ratelimited",{info:"Thread Rate Limited Queries.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_dnscrypt_queries",{info:"Thread DNSCrypt Queries.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_cache",{info:"Cache Statistics.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_cache_percentage",{aggregationMethod:"avg",info:"Cache Statistics Percentage.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_prefetch",{info:"Cache Prefetches.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_expired",{info:"Replies Served From Expired Cache.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_zero_ttl_replies",{info:"Replies Served From Expired Cache.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_recursive_replies",{info:"Replies That Needed Recursive Processing.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_recursion_time",{aggregationMethod:"avg",info:"Time Spent On Recursive Processing.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_request_list_usage",{info:"Time Spent On Recursive Processing.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_current_request_list_usage",{info:"Current Request List Usage.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_request_list_jostle_list",{info:"Request List Jostle List Events.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"unbound.thread_tcpusage",{info:"TCP Handler Buffers.",en:{instance:{one:"thread",other:"threads"}}}),(0,a.Z)(n,"uwsgi.requests",{info:"Requests.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"uwsgi.tx",{info:"Transmitted data.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"uwsgi.avg_rt",{info:"Average request time.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"uwsgi.memory_rss",{info:"RSS (Resident Set Size).",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"uwsgi.memory_vsz",{info:"VSZ (Virtual Memory Size).",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"uwsgi.exceptions",{info:"Exceptions.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"uwsgi.harakiris",{info:"Harakiris.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"uwsgi.respawns",{info:"Respawns.",en:{instance:{one:"server",other:"servers"}}}),(0,a.Z)(n,"varnish.session_connection",{info:"Connections Statistics.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.client_requests",{info:"Client Requests.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.all_time_hit_rate",{aggregationMethod:"avg",info:"All History Hit Rate Ratio.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.current_poll_hit_rate",{aggregationMethod:"avg",info:"Current Poll Hit Rate Ratio.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.cached_objects_expired",{info:"Expired Objects.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.cached_objects_nuked",{info:"Least Recently Used Nuked Objects.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.threads_total",{info:"Number Of Threads In All Pools.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.threads_statistics",{info:"Threads Statistics.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.threads_queue_len",{info:"Current Queue Length.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.backend_connections",{info:"Backend Connections Statistics.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.backend_requests",{info:"Requests To The Backend.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.esi_statistics",{info:"ESI Statistics.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.memory_usage",{info:"Memory Usage.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.uptime",{aggregationMethod:"min",info:"Uptime.",en:{instance:{one:"accelerator",other:"accelerators"}}}),(0,a.Z)(n,"varnish.backend",{info:"Backend {backend_name}.",en:{instance:{one:"backend",other:"backends"}}}),(0,a.Z)(n,"varnish.storage_usage",{info:"Storage {storage_name} Usage.",en:{instance:{one:"storage",other:"storages"}}}),(0,a.Z)(n,"varnish.storage_alloc_objs",{info:"Storage {storage_name} Allocated Objects.",en:{instance:{one:"storage",other:"storages"}}}),(0,a.Z)(n,"vernemq.socket_operations",{info:"Socket Open and Close Events.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.client_keepalive_expired",{info:"Closed Sockets due to Keepalive Time Expired.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.socket_close_timeout",{info:"Closed Sockets due to no CONNECT Frame On Time.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.socket_errors",{info:"Socket Errors.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.queue_processes_operations",{info:"Queue Processes Setup and Teardown Events.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.queue_process_init_from_storage",{info:"Queue Processes Initialized from Offline Storage.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.queue_undelivered_messages",{info:"Undelivered PUBLISH Messages.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.router_subscriptions",{info:"Subscriptions in the Routing Table.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.router_matched_subscriptions",{info:"Matched Subscriptions.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.router_memory",{info:"Routing Table Memory Usage.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_utilization_scheduler",{aggregationMethod:"avg",info:"Scheduler Utilization.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_processes",{info:"Erlang Processes.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_reductions",{info:"Reductions.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_context_switches",{info:"Context Switches.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_io",{info:"Received and Sent Traffic through Ports.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_run_queue",{info:"Processes that are Ready to Run on All Run-Queues.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_gc_count",{info:"GC Count.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_gc_words_reclaimed",{info:"GC Words Reclaimed.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.system_allocated_memory",{info:"Memory Allocated by the Erlang Processes and by the Emulator.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.bandwidth",{info:"Bandwidth.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.retain_messages",{info:"Stored Retained Messages.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.retain_memory",{info:"Stored Retained Messages Memory Usage.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.cluster_bandwidth",{info:"Communication with Other Cluster Nodes.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.cluster_dropped",{info:"Traffic Dropped During Communication with Other Cluster Nodes.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.netsplit_unresolved",{info:"Unresolved Netsplits.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.netsplits",{info:"Netsplits.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_auth",{info:"v5 AUTH.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_auth_received_reason",{info:"v5 AUTH Received by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_auth_sent_reason",{info:"v5 AUTH Sent by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_connect",{info:"v3/v5 CONNECT and CONNACK.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_connack_sent_reason",{info:"v3/v5 CONNACK Sent by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_disconnect",{info:"v3/v5 DISCONNECT.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_disconnect_received_reason",{info:"v5 DISCONNECT Received by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_disconnect_sent_reason",{info:"v5 DISCONNECT Sent by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_subscribe",{info:"v3/v5 SUBSCRIBE and SUBACK.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_subscribe_error",{info:"v3/v5 Failed SUBSCRIBE Operations due to a Netsplit.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_subscribe_auth_error",{info:"v3/v5 Unauthorized SUBSCRIBE Attempts.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_puback_received_reason",{info:"v5 PUBACK QoS 1 Received by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_puback_sent_reason",{info:"v5 PUBACK QoS 1 Sent by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_puback_invalid_error",{info:"v3/v5 PUBACK QoS 1 Received Unexpected Messages.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubrec",{info:"v3/v5 PUBREC QoS 2.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubrec_received_reason",{info:"v5 PUBREC QoS 2 Received by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubrec_sent_reason",{info:"v5 PUBREC QoS 2 Sent by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubrec_invalid_error",{info:"v3 PUBREC QoS 2 Received Unexpected Messages.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubrel",{info:"v3/v5 PUBREL QoS 2.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubrel_received_reason",{info:"v5 PUBREL QoS 2 Received by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubrel_sent_reason",{info:"v5 PUBREL QoS 2 Sent by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubcom",{info:"v3/v5 PUBCOMP QoS 2.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubcomp_received_reason",{info:"v5 PUBCOMP QoS 2 Received by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubcomp_sent_reason",{info:"v5 PUBCOMP QoS 2 Sent by Reason.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.mqtt_pubcomp_invalid_error",{info:"v3/v5 PUBCOMP QoS 2 Received Unexpected Messages.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"vernemq.node_uptime",{aggregationMethod:"min",info:"Node Uptime.",en:{instance:{one:"broker",other:"brokers"}}}),(0,a.Z)(n,"web_log.requests",{mainheads:[{"group_by[0]":["selected"],chartLibrary:"easypiechart",title:"Total Requests",colors:o.default[12],layout:{x:0,y:0,w:3,h:5}}],info:"Total Requests.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.excluded_requests",{info:"Excluded Requests.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.status_code_class_responses",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Responses by Status Code Class",layout:{x:9,y:0,w:3,h:5}}],info:"Responses By Status Code Class.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.status_code_class_1xx_responses",{info:"Informational Responses By Status Code.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.status_code_class_2xx_responses",{info:"Successful Responses By Status Code.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.status_code_class_3xx_responses",{info:"Redirects Responses By Status Code.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.status_code_class_4xx_responses",{info:"Client Errors Responses By Status Code.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.status_code_class_5xx_responses",{info:"Server Errors Responses By Status Code.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.bandwidth",{info:"Bandwidth.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.requests_processing_time_histogram",{info:"Requests Processing Time Histogram.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.upstream_response_time",{aggregationMethod:"avg",info:"Upstream Response Time.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.upstream_responses_time_histogram",{info:"Upstream Responses Time Histogram.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.current_poll_uniq_clients",{info:"Current Poll Unique Clients.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.vhost_requests",{info:"Requests By Vhost.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.port_requests",{info:"Requests By Port.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.scheme_requests",{info:"Requests By Scheme.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.http_method_requests",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Total Requests by HTTP Method",layout:{x:6,y:0,w:3,h:5}}],info:"Requests By HTTP Method.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.http_version_requests",{info:"Requests By HTTP Version.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.ip_proto_requests",{info:"Requests By IP Protocol.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.ssl_proto_requests",{info:"Requests By SSL Connection Protocol.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.ssl_cipher_suite_requests",{info:"Requests By SSL Connection Cipher Suite.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.url_pattern_requests",{info:"URL Field Requests By Pattern.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.custom_field_pattern_requests",{info:"Custom Field Requests By Pattern.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.custom_time_field_summary",{info:"Custom Time Field Summary.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.custom_time_field_histogram",{info:"Custom Time Field Histogram.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.url_pattern_status_code_responses",{info:"Responses By Status Code.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.url_pattern_http_method_requests",{info:"Requests By HTTP Method.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.url_pattern_bandwidth",{info:"Bandwidth.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"web_log.url_pattern_request_processing_time",{aggregationMethod:"avg",info:"Request Processing Time.",en:{instance:{one:"web server",other:"web servers"}}}),(0,a.Z)(n,"whoisquery.time_until_expiration",{info:"Time Until Domain Expiration.",en:{instance:{one:"cpu core",other:"cpu cores"}}}),(0,a.Z)(n,"windows.cpu_core_utilization",{aggregationMethod:"avg",info:"Core CPU Utilization.",en:{instance:{one:"cpu core",other:"cpu cores"}}}),(0,a.Z)(n,"windows.cpu_core_interrupts",{info:"Received and Serviced Hardware Interrupts.",en:{instance:{one:"cpu core",other:"cpu cores"}}}),(0,a.Z)(n,"windows.cpu_core_dpcs",{info:"Received and Serviced Deferred Procedure Calls (DPC).",en:{instance:{one:"cpu core",other:"cpu cores"}}}),(0,a.Z)(n,"windows.cpu_core_cstate",{aggregationMethod:"avg",info:"Core Time Spent in Low-Power Idle State.",en:{instance:{one:"cpu core",other:"cpu cores"}}}),(0,a.Z)(n,"windows.memory_page_faults",{info:"Memory Page Faults.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.memory_swap_utilization",{aggregationMethod:"avg",info:"Swap Utilization.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.memory_swap_operations",{info:"Swap Operations.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.memory_swap_pages",{info:"Swap Pages.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.memory_cached",{info:"Cached.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.memory_cache_faults",{info:"Cache Faults.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.memory_system_pool",{info:"System Memory Pool.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.logical_disk_utilization",{aggregationMethod:"avg",info:"Space usage.",en:{instance:{one:"disk",other:"disks"}}}),(0,a.Z)(n,"windows.logical_disk_operations",{info:"Operations.",en:{instance:{one:"disk",other:"disks"}}}),(0,a.Z)(n,"windows.logical_disk_latency",{aggregationMethod:"avg",info:"Average Read/Write Latency.",en:{instance:{one:"disk",other:"disks"}}}),(0,a.Z)(n,"windows.net_nic_packets",{info:"Packets.",en:{instance:{one:"interface",other:"interfaces"}}}),(0,a.Z)(n,"windows.net_nic_errors",{info:"Errors.",en:{instance:{one:"interface",other:"interfaces"}}}),(0,a.Z)(n,"windows.net_nic_discarded",{info:"Discards.",en:{instance:{one:"interface",other:"interfaces"}}}),(0,a.Z)(n,"windows.os_processes",{info:"Processes.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.os_users",{info:"Number of Users.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.os_visible_memory_usage",{info:"Visible Memory Usage.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.os_paging_files_usage",{info:"Paging Files Usage.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.system_threads",{info:"Threads.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.system_uptime",{aggregationMethod:"min",info:"Uptime.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.logon_type_sessions",{info:"Active User Logon Sessions By Type.",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.thermalzone_temperature",{aggregationMethod:"avg",info:"Thermal zone temperature.",en:{instance:{one:"zone",other:"zones"}}}),(0,a.Z)(n,"windows.processes_page_file_bytes",{info:"Bytes used in page file(s).",en:{instance:{one:"system",other:"systems"}}}),(0,a.Z)(n,"windows.service_state",{info:"Service state.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"windows.service_status",{info:"Service status.",en:{instance:{one:"service",other:"services"}}}),(0,a.Z)(n,"iis.website_users_count",{info:"Website users with pending requests.",en:{instance:{one:"website",other:"websites"}}}),(0,a.Z)(n,"iis.website_connection_attempts_rate",{info:"Website connections attempts.",en:{instance:{one:"website",other:"websites"}}}),(0,a.Z)(n,"iis.website_isapi_extension_requests_rate",{info:"Website extensions request.",en:{instance:{one:"website",other:"websites"}}}),(0,a.Z)(n,"iis.website_ftp_file_transfer_rate",{info:"Website FTP file transfer rate.",en:{instance:{one:"website",other:"websites"}}}),(0,a.Z)(n,"iis.website_logon_attempts_rate",{info:"Website logon attempts.",en:{instance:{one:"website",other:"websites"}}}),(0,a.Z)(n,"mssql.instance_bufman_iops",{info:"Number of pages input and output.",en:{instance:{one:"mssql server",other:"mssql servers"}}}),(0,a.Z)(n,"mssql.instance_blocked_processes",{info:"Blocked processes.",en:{instance:{one:"mssql server",other:"mssql servers"}}}),(0,a.Z)(n,"mssql.instance_locks_lock_wait",{info:"Lock requests that required the caller to wait.",en:{instance:{one:"mssql server",other:"mssql servers"}}}),(0,a.Z)(n,"mssql.instance_locks_deadlocks",{info:"Lock requests that resulted in deadlock.",en:{instance:{one:"mssql server",other:"mssql servers"}}}),(0,a.Z)(n,"mssql.instance_memmgr_connection_memory_bytes",{info:"Amount of dynamic memory to maintain connections.",en:{instance:{one:"mssql server",other:"mssql servers"}}}),(0,a.Z)(n,"mssql.instance_memmgr_pending_memory_grants",{info:"Process waiting for memory grant.",en:{instance:{one:"mssql server",other:"mssql servers"}}}),(0,a.Z)(n,"mssql.instance_memmgr_server_memory",{info:"Memory committed.",en:{instance:{one:"mssql server",other:"mssql servers"}}}),(0,a.Z)(n,"mssql.instance_sqlstats_sql_recompilations",{info:"SQL re-compilations.",en:{instance:{one:"mssql server",other:"mssql servers"}}}),(0,a.Z)(n,"mssql.database_active_transactions",{info:"Active transactions per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mssql.database_backup_restore_operations",{info:"Backup IO per database.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mssql.database_log_flushed",{info:"Log flushed.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mssql.database_log_flushes",{info:"Log flushes.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"mssql.database_write_transactions",{info:"Write transactions.",en:{instance:{one:"database",other:"databases"}}}),(0,a.Z)(n,"ad.database_operations",{info:"AD database operations.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.directory_operations",{info:"AD directory operations.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.name_cache_lookups",{info:"Name cache lookups.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.name_cache_hits",{info:"Name cache hits.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.atq_average_request_latency",{aggregationMethod:"avg",info:"Average request processing time.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.atq_outstanding_requests",{info:"Outstanding requests.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.dra_replication_sync_objects_remaining",{info:"DRA replication full sync objects remaining.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.dra_replication_properties_filtered",{info:"DRA replication properties filtered.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.ds_threads",{info:"Directory Service threads.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"ad.ldap_last_bind_time",{aggregationMethod:"min",info:"LDAP last successful bind time.",en:{instance:{one:"ad instance",other:"ad instances"}}}),(0,a.Z)(n,"adcs.cert_template_requests",{info:"Certificate requests processed.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_failed_requests",{info:"Certificate failed requests processed.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_issued_requests",{info:"Certificate issued requests processed.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_pending_requests",{info:"Certificate pending requests processed.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_request_processing_time",{aggregationMethod:"avg",info:"Certificate last request processing time.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_retrievals",{info:"Total of certificate retrievals.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_retrieval_processing_time",{aggregationMethod:"avg",info:"Certificate last retrieval processing time.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_request_cryptographic_signing_time",{aggregationMethod:"avg",info:"Certificate last signing operation request time.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_request_policy_module_processing",{info:"Certificate last policy module processing request time.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_challenge_responses",{info:"Certificate challenge responses.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_challenge_response_processing_time",{aggregationMethod:"avg",info:"Certificate last challenge response time.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_signed_certificate_timestamp_lists",{info:"Certificate Signed Certificate Timestamp Lists processed.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adcs.cert_template_signed_certificate_timestamp_list_processing_time",{aggregationMethod:"avg",info:"Certificate last Signed Certificate Timestamp List process time.",en:{instance:{one:"cert template",other:"cert templates"}}}),(0,a.Z)(n,"adfs.ad_login_connection_failures",{info:"Connection failures.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.certificate_authentications",{info:"User Certificate authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.db_artifact_failures",{info:"Connection failures to the artifact database.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.db_artifact_query_time_seconds",{aggregationMethod:"avg",info:"Time taken for an artifact database query.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.db_config_failures",{info:"Connection failures to the configuration database.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.db_config_query_time_seconds",{aggregationMethod:"avg",info:"Time taken for a configuration database query.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.device_authentications",{info:"Device authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.external_authentications",{info:"Authentications from external MFA providers.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.federated_authentications",{info:"Authentications from Federated Sources.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.federation_metadata_requests",{info:"Federation Metadata requests.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_authorization_requests",{info:"Incoming requests to the OAuth Authorization endpoint.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_client_authentications",{info:"OAuth client authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_client_credentials_requests",{info:"OAuth client credentials requests.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_client_privkey_jwt_authentications",{info:"OAuth client private key JWT authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_client_secret_basic_authentications",{info:"OAuth client secret basic authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_client_secret_post_authentications",{info:"OAuth client secret post authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_client_windows_authentications",{info:"OAuth client windows integrated authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_logon_certificate_requests",{info:"OAuth logon certificate requests.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_password_grant_requests",{info:"OAuth password grant requests.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.oauth_token_requests_success",{info:"Successful RP token requests over OAuth protocol.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.passive_requests",{info:"Passive requests.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.passport_authentications",{info:"Microsoft Passport SSO authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.password_change_requests",{info:"Password change requests.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.samlp_token_requests_success",{info:"Successful RP token requests over SAML-P protocol.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.sso_authentications",{info:"SSO authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.token_requests",{info:"Token access requests.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.userpassword_authentications",{info:"AD U/P authentications.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.windows_integrated_authentications",{info:"Windows integrated authentications using Kerberos or NTLM.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.wsfed_token_requests_success",{info:"Successful RP token requests over WS-Fed protocol.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"adfs.wstrust_token_requests_success",{info:"Successful RP token requests over WS-Trust protocol.",en:{instance:{one:"adfs instance",other:"adfs instances"}}}),(0,a.Z)(n,"netframework.clrexception_throw_to_catch_depth",{info:"Traversed stack frames.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrinterop_interop_marshallings",{info:"Arguments and return values marshallings.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrjit_il_bytes",{info:"Compiled Microsoft intermediate language (MSIL) bytes.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrloading_appdomains_loaded",{info:"Loaded application domains.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrloading_appdomains_unloaded",{info:"Unloaded application domains.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrloading_classes_loaded",{info:"Loaded classes in all assemblies.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrloading_class_load_failures",{info:"Class load failures.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrlocksandthreads_queue_length",{info:"Threads waited to acquire a managed lock.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrlocksandthreads_current_logical_threads",{info:"Logical threads.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrlocksandthreads_current_physical_threads",{info:"Physical threads.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrlocksandthreads_contentions",{info:"Fails to acquire a managed lock.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrmemory_allocated_bytes",{info:"Memory allocated on the garbage collection heap.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrmemory_finalization_survivors",{info:"Objects that survived garbage-collection.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrmemory_collections",{info:"Garbage collections.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrmemory_number_pinned_objects",{info:"Pinned objects encountered.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrremoting_channels",{info:"Registered channels.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrremoting_context_bound_classes_loaded",{info:"Loaded context-bound classes.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrremoting_context_bound_objects",{info:"Allocated context-bound objects.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrremoting_context_proxies",{info:"Remoting proxy objects.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrremoting_contexts",{info:"Total of remoting contexts.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrremoting_remote_calls",{info:"Remote Procedure Calls (RPC) invoked.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrsecurity_link_time_checks",{info:"Link-time code access security checks.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrsecurity_checks_time",{aggregationMethod:"avg",info:"Time spent performing runtime code access security checks.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrsecurity_stack_walk_depth",{info:"Depth of the stack.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"netframework.clrsecurity_runtime_checks",{info:"Runtime code access security checks performed.",en:{instance:{one:".net process",other:".net processes"}}}),(0,a.Z)(n,"exchange.activesync_ping_cmds_pending",{info:"Ping commands pending in queue.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.activesync_requests",{info:"HTTP requests received from ASP.NET.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.activesync_sync_cmds",{info:"Sync commands processed.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.autodiscover_requests",{info:"Autodiscover service requests processed.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.avail_service_requests",{info:"Requests serviced.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.owa_current_unique_users",{mainheads:[{chartLibrary:"easypiechart",title:"OWA Unique Users",colors:o.default[12],layout:{x:0,y:0,w:2,h:5}}],info:"Unique users currently logged on to Outlook Web App.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.owa_requests_total",{mainheads:[{chartLibrary:"easypiechart",title:"OWA Total Requests",layout:{x:3,y:0,w:2,h:5}}],info:"Requests handled by Outlook Web App.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.rpc_active_user_count",{info:"Active unique users in the last 2 minutes.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.rpc_avg_latency",{aggregationMethod:"avg",mainheads:[{"aggregation[0]":"avg",chartLibrary:"easypiechart",title:"Average Latency",colors:o.default[1],layout:{x:12,y:0,w:2,h:5}}],info:"Average latency.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.rpc_connection_count",{mainheads:[{chartLibrary:"easypiechart",title:"Total Client Connections",colors:o.default[2],layout:{x:15,y:0,w:2,h:5}}],info:"Client connections.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.rpc_operations",{info:"RPC operations.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.rpc_requests",{info:"Clients requests currently being processed.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.rpc_user_count",{info:"RPC users.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.transport_queues_active_mail_box_delivery",{mainheads:[{chartLibrary:"bars",dimensionsSort:"valueDesc",title:"Active Mailbox Delivery Queue",layout:{x:9,y:0,w:4,h:5}}],info:"Active Mailbox Delivery Queue length.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.transport_queues_external_active_remote_delivery",{info:"External Active Remote Delivery Queue length.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.transport_queues_external_largest_delivery",{info:"External Largest Delivery Queue length.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.transport_queues_internal_active_remote_delivery",{info:"Internal Active Remote Delivery Queue length.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.transport_queues_internal_largest_delivery",{info:"Internal Largest Delivery Queue length.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.transport_queues_retry_mailbox_delivery",{info:"Internal Active Remote Delivery Queue length.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.transport_queues_poison",{info:"Poison Queue Length.",en:{instance:{one:"host",other:"hosts"}}}),(0,a.Z)(n,"exchange.workload_active_tasks",{info:"Workload active tasks.",en:{instance:{one:"workload",other:"workloads"}}}),(0,a.Z)(n,"exchange.workload_completed_tasks",{info:"Workload completed tasks.",en:{instance:{one:"workload",other:"workloads"}}}),(0,a.Z)(n,"exchange.workload_queued_tasks",{info:"Workload queued tasks.",en:{instance:{one:"workload",other:"workloads"}}}),(0,a.Z)(n,"exchange.workload_yielded_tasks",{info:"Workload yielded tasks.",en:{instance:{one:"workload",other:"workloads"}}}),(0,a.Z)(n,"exchange.workload_activity_status",{info:"Workload activity status.",en:{instance:{one:"workload",other:"workloads"}}}),(0,a.Z)(n,"exchange.ldap_long_running_ops_per_sec",{info:"Long Running LDAP operations.",en:{instance:{one:"ldap process",other:"ldap processes"}}}),(0,a.Z)(n,"exchange.ldap_read_time",{aggregationMethod:"avg",info:"Time to send an LDAP read request and receive a response.",en:{instance:{one:"ldap process",other:"ldap processes"}}}),(0,a.Z)(n,"exchange.ldap_search_time",{aggregationMethod:"avg",info:"Time to send an LDAP search request and receive a response.",en:{instance:{one:"ldap process",other:"ldap processes"}}}),(0,a.Z)(n,"exchange.ldap_write_time",{aggregationMethod:"avg",info:"Time to send an LDAP search request and receive a response.",en:{instance:{one:"ldap process",other:"ldap processes"}}}),(0,a.Z)(n,"exchange.ldap_timeout_errors",{info:"LDAP timeout errors.",en:{instance:{one:"ldap process",other:"ldap processes"}}}),(0,a.Z)(n,"exchange.http_proxy_avg_auth_latency",{aggregationMethod:"avg",info:"Average time spent authenticating CAS.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"exchange.http_proxy_avg_cas_processing_latency_sec",{aggregationMethod:"avg",info:"Average time spent authenticating CAS.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"exchange.http_proxy_mailbox_proxy_failure_rate",{aggregationMethod:"avg",info:"Percentage of failures between this CAS and MBX servers.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"exchange.http_proxy_mailbox_server_locator_avg_latency_sec",{aggregationMethod:"avg",info:"Average latency of MailboxServerLocator web service calls.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"exchange.http_proxy_outstanding_proxy_requests",{info:"Concurrent outstanding proxy requests.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"exchange.http_proxy_requests",{info:"Number of proxy requests processed each second.",en:{instance:{one:"proxy",other:"proxies"}}}),(0,a.Z)(n,"wireguard.device_network_io",{info:"Device traffic.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"wireguard.device_peers",{info:"Device peers.",en:{instance:{one:"device",other:"devices"}}}),(0,a.Z)(n,"wireguard.peer_network_io",{info:"Peer traffic.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"wireguard.peer_latest_handshake_ago",{info:"Peer time elapsed since the latest handshake.",en:{instance:{one:"peer",other:"peers"}}}),(0,a.Z)(n,"x509check.time_until_expiration",{info:"Time Until Certificate Expiration.",en:{instance:{one:"certificate",other:"certificates"}},groupBy:["label"],groupByLabel:["source"]}),(0,a.Z)(n,"x509check.revocation_status",{info:"Revocation Status.",en:{instance:{one:"certificate",other:"certificates"}},groupBy:["label"],groupByLabel:["source"]}),(0,a.Z)(n,"xenstat.mem",{info:"Memory Usage.",en:{instance:{one:"xenstat instance",other:"xenstat instances"}}}),(0,a.Z)(n,"xenstat.domains",{info:"Number of Domains.",en:{instance:{one:"xenstat instance",other:"xenstat instances"}}}),(0,a.Z)(n,"xenstat.cpus",{info:"Number of CPUs.",en:{instance:{one:"xenstat instance",other:"xenstat instances"}}}),(0,a.Z)(n,"xenstat.cpu_freq",{info:"CPU Frequency.",en:{instance:{one:"xenstat instance",other:"xenstat instances"}}}),(0,a.Z)(n,"xendomain.states",{info:"Domain States.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.cpu",{aggregationMethod:"avg",info:"CPU Usage (100% = 1 core).",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.mem",{info:"Memory Reservation.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.vcpu",{aggregationMethod:"avg",info:"CPU Usage per VCPU.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.oo_req_vbd",{info:"VBD{%u} Out Of Requests.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.requests_vbd",{info:"VBD{%u} Requests.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.sectors_vbd",{info:"VBD{%u} Read/Written Sectors.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.bytes_network",{info:"Network{%u} Received/Sent Bytes.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.packets_network",{info:"Network{%u} Received/Sent Packets.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.errors_network",{info:"Network{%u} Receive/Transmit Errors.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"xendomain.drops_network",{info:"Network{%u} Receive/Transmit Drops.",en:{instance:{one:"domain",other:"domains"}}}),(0,a.Z)(n,"zookeeper.requests",{info:"Outstanding Requests.",en:{instance:{one:"zk instance",other:"zk instances"}}}),(0,a.Z)(n,"zookeeper.requests_latency",{aggregationMethod:"avg",info:"Requests Latency.",en:{instance:{one:"zk instance",other:"zk instances"}}}),(0,a.Z)(n,"zookeeper.connections",{info:"Alive Connections.",en:{instance:{one:"zk instance",other:"zk instances"}}}),(0,a.Z)(n,"zookeeper.packets",{info:"Packets.",en:{instance:{one:"zk instance",other:"zk instances"}}}),(0,a.Z)(n,"zookeeper.file_descriptor",{info:"Open File Descriptors.",en:{instance:{one:"zk instance",other:"zk instances"}}}),(0,a.Z)(n,"zookeeper.nodes",{info:"Number of Nodes.",en:{instance:{one:"zk instance",other:"zk instances"}}}),(0,a.Z)(n,"zookeeper.watches",{info:"Number of Watches.",en:{instance:{one:"zk instance",other:"zk instances"}}}),(0,a.Z)(n,"zookeeper.approximate_data_size",{info:"Approximate Data Tree Size.",en:{instance:{one:"zk instance",other:"zk instances"}}}),(0,a.Z)(n,"zscores.z",{info:"Z Score.",en:{instance:{one:"chart",other:"charts"}}}),(0,a.Z)(n,"zscores.3stddev",{info:"Z Score >3.",en:{instance:{one:"chart",other:"charts"}}}),n)},71929:function(e,t,s){var n=s(87462),a=s(45987),o=(s(23157),s(67294)),r=s(93416),i=s(45335),c=["children","onClick"],l=(0,o.forwardRef)((function(e,t){var s=e.children,l=e.onClick,h=(0,a.Z)(e,c),d=(0,i.sm)(),u=(0,o.useCallback)((function(e){var t=e.target.hash,s=void 0===t?"":t;s.startsWith("#menu")&&(e.preventDefault(),d.goToLink(s.substr(1))),l&&l(e)}),[d]);return"string"===typeof s?o.createElement(r.TextSmall,(0,n.Z)({color:"textDescription",dangerouslySetInnerHTML:{__html:s},onClick:u},h,{ref:t})):s||null}));t.Z=l},89692:function(e,t,s){s.d(t,{G_:function(){return X},ZP:function(){return ce},lV:function(){return re},FO:function(){return te},oS:function(){return se},iK:function(){return $},JK:function(){return ae},bF:function(){return ne}});var n=s(4942),a=s(21433),o=(s(74916),s(15306),s(41539),s(39714),s(47042),s(92222),s(47941),s(82526),s(57327),s(88449),s(2490),s(59849),s(38880),s(15581),s(34514),s(54747),s(49337),s(33321),s(69070),s(39612)),r=s(7592),i=s(1673),c=s(57915),l=s(51257),h=s(53045),d=s(60989),u=s(49356),p=s(44814),m=s(17726),f=s(47810),g=s(9221),b=s(96914),y=s(67992),_=s(57026),v=s(7452),w=s(62160),k=s(8792),T=s(59986),S=s(85241),Z=s(81511),x=s(491),P=s(53728),M=s(20446),q=s(32660),C=s(27879),L=s(52571),D=s(34327),I=s(42137),N=s(80955),R=s(2866),U=s(12296),A=s(35117),B=s(42775),F=s(77007),O=s(79186),z=s(46357),E=s(13914),H=s(91435),Q=s(3163),V=s(73793),j=s(91871),G=s(66062),W={system:{title:"System Overview",icon:s(12690).xV,info:"Overview of the key system metrics."},services:{title:"systemd Services",icon:f.Kb,info:"Resources utilization of <b>systemd services</b>. Netdata monitors all systemd services via <a href='https://en.wikipedia.org/wiki/Cgroups' target='_blank'>cgroups</a> (the resources accounting used by containers). <br /><b>Tip:</b> <br />• Default view of cgroup charts show <b>aggregate</b> information from all your VMs and containers <br />• For instance level view of cgroups change the Group by to <b>instance</b> <br /><a href='https://learn.netdata.cloud/docs/cloud/visualize/overview#group-by-dimension-node-or-chart' style='color: green' target='_blank'><b>• Checkout our docs for more details</b></a>"},ap:{title:"Access Points",icon:j.$A,info:"Performance metrics for the access points (i.e. wireless interfaces in AP mode) found on the system."},tc:{title:"Quality of Service",icon:G.g4,info:'Netdata collects and visualizes <b>tc</b> class utilization using its <a href="https://github.com/netdata/netdata/blob/master/collectors/tc.plugin/tc-qos-helper.sh.in" target="_blank">tc-helper plugin</a>. If you also use <a href="http://firehol.org/#fireqos" target="_blank">FireQOS</a> for setting up QoS, netdata automatically collects interface and class names. If your QoS configuration includes overheads calculation, the values shown here will include these overheads (the total bandwidth for the same interface as reported in the Network Interfaces section, will be lower than the total bandwidth reported here). QoS data collection may have a slight time difference compared to the interface (QoS data collection uses a BASH script, so a shift in data collection of a few milliseconds should be justified).'},net:{title:"Network Interfaces",icon:B.Hw,info:'<p>Performance <a href="https://www.kernel.org/doc/html/latest/networking/statistics.html" target="_blank">metrics for network interfaces</a>.</p><p>Netdata retrieves this data reading the <b>/proc/net/dev</b> file and <b>/sys/class/net/</b> directory.</p>'},Infiniband:{title:"Infiniband ports",icon:B.Hw,info:'<p>Performance and exception statistics for <a href="https://en.wikipedia.org/wiki/InfiniBand" target="_blank">Infiniband</a> ports. The individual port and hardware counter descriptions can be found in the <a href="https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters" target="_blank">Mellanox knowledge base</a>.'},wireless:{title:"Wireless Interfaces",icon:j.$A,info:"Performance metrics for wireless interfaces."},ip:{title:"Networking Stack",icon:V.uM,info:function(e){return"linux"===e.os?"Metrics for the networking stack of the system. These metrics are collected from <b>/proc/net/netstat</b> or attaching <b>kprobes</b> to kernel functions, apply to both IPv4 and IPv6 traffic and are related to operation of the kernel networking stack.":"Metrics for the networking stack of the system."}},ipv4:{title:"IPv4 Networking",icon:V.uM,info:'Metrics for the IPv4 stack of the system. <a href="https://en.wikipedia.org/wiki/IPv4" target="_blank">Internet Protocol version 4 (IPv4)</a> is the fourth version of the Internet Protocol (IP). It is one of the core protocols of standards-based internetworking methods in the Internet. IPv4 is a connectionless protocol for use on packet-switched networks. It operates on a best effort delivery model, in that it does not guarantee delivery, nor does it assure proper sequencing or avoidance of duplicate delivery. These aspects, including data integrity, are addressed by an upper layer transport protocol, such as the Transmission Control Protocol (TCP).'},ipv6:{title:"IPv6 Networking",icon:V.uM,info:'Metrics for the IPv6 stack of the system. <a href="https://en.wikipedia.org/wiki/IPv6" target="_blank">Internet Protocol version 6 (IPv6)</a> is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion. IPv6 is intended to replace IPv4.'},sctp:{title:"SCTP Networking",icon:V.uM,info:'<p><a href="https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol" target="_blank">Stream Control Transmission Protocol (SCTP)</a> is a computer network protocol which operates at the transport layer and serves a role similar to the popular protocols TCP and UDP. SCTP provides some of the features of both UDP and TCP: it is message-oriented like UDP and ensures reliable, in-sequence transport of messages with congestion control like TCP. It differs from those protocols by providing multi-homing and redundant paths to increase resilience and reliability.</p><p>Netdata collects SCTP metrics reading the <b>/proc/net/sctp/snmp</b> file.</p>'},ipvs:{title:"IP Virtual Server",icon:"serviceIPVS",info:'<p><a href="http://www.linuxvirtualserver.org/software/ipvs.html" target="_blank">IPVS (IP Virtual Server)</a> implements transport-layer load balancing inside the Linux kernel, so called Layer-4 switching. IPVS running on a host acts as a load balancer at the front of a cluster of real servers, it can direct requests for TCP/UDP based services to the real servers, and makes services of the real servers to appear as a virtual service on a single IP address.</p><p>Netdata collects summary statistics, reading <b>/proc/net/ip_vs_stats</b>. To display the statistics information of services and their servers, run <b>ipvsadm -Ln --stats</b> or <b>ipvsadm -Ln --rate</b> for the rate statistics. For details, see <a href="https://linux.die.net/man/8/ipvsadm" target="_blank">ipvsadm(8)</a>.</p>'},netfilter:{title:"Firewall (netfilter)",icon:Q.U7,info:"Performance metrics of the netfilter components."},ipfw:{title:"Firewall (ipfw)",icon:Q.U7,info:"Counters and memory usage for the ipfw rules."},cpu:{title:"CPUs",icon:H.BD,info:'Detailed information for each CPU of the system. A summary of the system for all CPUs can be found at the <a href="#menu_system">System Overview</a> section.'},mem:{title:"Memory",icon:L.zv,info:"Detailed information about the memory management of the system."},disk:{title:"Disks",icon:l.vc,info:"Charts with performance information for all the system disks. Special care has been given to present disk performance metrics in a way compatible with <b>iostat -x</b>. netdata by default prevents rendering performance charts for individual partitions and unmounted virtual disks. Disabled charts can still be enabled by configuring the relative settings in the netdata configuration file."},mount:{title:"Mount Points",icon:l.vc,info:""},mdstat:{title:"MD arrays",icon:l.vc,info:'<p>RAID devices are virtual devices created from two or more real block devices. <a href="https://man7.org/linux/man-pages/man4/md.4.html" target="_blank">Linux Software RAID</a> devices are implemented through the md (Multiple Devices) device driver.</p><p>Netdata monitors the current status of MD arrays reading <a href="https://raid.wiki.kernel.org/index.php/Mdstat" target="_blank">/proc/mdstat</a> and <b>/sys/block/%s/md/mismatch_cnt</b> files.</p>'},sensors:{title:"Sensors",icon:E.XE,info:"Readings of the configured system sensors."},ipmi:{title:"IPMI",icon:E.XE,info:"The Intelligent Platform Management Interface (IPMI) is a set of computer interface specifications for an autonomous computer subsystem that provides management and monitoring capabilities independently of the host system's CPU, firmware (BIOS or UEFI) and operating system."},amdgpu:{title:"AMD GPUs",icon:L.zv,info:"Performance and usage metrics for each AMD GPU in the system."},samba:{title:"Samba",icon:k.cC,info:"Performance metrics of the Samba file share operations of this system. Samba is a implementation of Windows services, including Windows SMB protocol file shares."},nfsd:{title:"NFS Server",icon:k.cC,info:'Performance metrics of the Network File Server. <a href="https://en.wikipedia.org/wiki/Network_File_System" target="_blank">NFS</a> is a distributed file system protocol, allowing a user on a client computer to access files over a network, much like local storage is accessed. NFS, like many other protocols, builds on the Open Network Computing Remote Procedure Call (ONC RPC) system.'},nfs:{title:"NFS Client",icon:k.cC,info:'Performance metrics of the <a href="https://en.wikipedia.org/wiki/Network_File_System" target="_blank">NFS</a> operations of this system, acting as an NFS client.'},zfs:{title:"ZFS Cache",icon:k.cC,info:'Performance metrics of the <a href="https://en.wikipedia.org/wiki/ZFS#Caching_mechanisms" target="_blank">ZFS ARC and L2ARC</a>. The following charts visualize all metrics reported by <a href="https://github.com/openzfs/zfs/blob/master/cmd/arcstat/arcstat.in" target="_blank">arcstat.py</a> and <a href="https://github.com/openzfs/zfs/blob/master/cmd/arc_summary/arc_summary3" target="_blank">arc_summary.py</a>.'},zfspool:{title:"ZFS pools",icon:"serviceDatabase",info:"State of ZFS pools."},btrfs:{title:"BTRFS filesystem",icon:k.cC,info:"Disk space metrics for the BTRFS filesystem."},app:{title:"Applications",icon:"applicationsSolid",info:'Per application statistics are collected using <a href="https://learn.netdata.cloud/docs/agent/collectors/apps.plugin" target="_blank">apps.plugin</a>. This plugin walks through all processes and aggregates statistics for <a href="https://learn.netdata.cloud/docs/agent/collectors/apps.plugin#configuration" target="_blank">application groups</a>. The plugin also counts the resources of exited children. So for processes like shell scripts, the reported values include the resources used by the commands these scripts run within each timeframe.',height:1.5},usergroup:{title:"User Groups",icon:C.IL,info:'Per user group statistics are collected using <a href="https://learn.netdata.cloud/docs/agent/collectors/apps.plugin" target="_blank">apps.plugin</a>. This plugin walks through all processes and aggregates statistics per user group. The plugin also counts the resources of exited children. So for processes like shell scripts, the reported values include the resources used by the commands these scripts run within each timeframe.',height:1.5},user:{title:"Users",icon:z.FV,info:'Per user statistics are collected using <a href="https://learn.netdata.cloud/docs/agent/collectors/apps.plugin" target="_blank">apps.plugin</a>. This plugin walks through all processes and aggregates statistics per user. The plugin also counts the resources of exited children. So for processes like shell scripts, the reported values include the resources used by the commands these scripts run within each timeframe.',height:1.5},apps:{title:"Applications (old)",icon:"applicationsSolid",info:'Per application statistics are collected using <a href="https://learn.netdata.cloud/docs/agent/collectors/apps.plugin" target="_blank">apps.plugin</a>. This plugin walks through all processes and aggregates statistics for <a href="https://learn.netdata.cloud/docs/agent/collectors/apps.plugin#configuration" target="_blank">application groups</a>. The plugin also counts the resources of exited children. So for processes like shell scripts, the reported values include the resources used by the commands these scripts run within each timeframe.',height:1.5},groups:{title:"User Groups (old)",icon:C.IL,info:'Per user group statistics are collected using <a href="https://learn.netdata.cloud/docs/agent/collectors/apps.plugin" target="_blank">apps.plugin</a>. This plugin walks through all processes and aggregates statistics per user group. The plugin also counts the resources of exited children. So for processes like shell scripts, the reported values include the resources used by the commands these scripts run within each timeframe.',height:1.5},users:{title:"Users (old)",icon:z.FV,info:'Per user statistics are collected using <a href="https://learn.netdata.cloud/docs/agent/collectors/apps.plugin" target="_blank">apps.plugin</a>. This plugin walks through all processes and aggregates statistics per user. The plugin also counts the resources of exited children. So for processes like shell scripts, the reported values include the resources used by the commands these scripts run within each timeframe.',height:1.5},netdata:{title:"Netdata Monitoring",icon:O.ko,info:"Performance metrics for the operation of netdata itself and its plugins."},aclk_test:{title:"ACLK Test Generator",info:"For internal use to perform integration testing."},example:{title:"Example Charts",info:"Example charts, demonstrating the external plugin architecture."},cgroup:{title:"",icon:"serviceContainer",info:"Netdata collects Container and VM resource utilization metrics from <a href='https://man7.org/linux/man-pages/man7/cgroups.7.html' style='color: green' target='_blank'><b>cgroups</b></a>, a Linux kernel feature that enables the organization, management, and isolation of system resources among groups of processes. The charts show the aggregated view across all instances by default, to visualize the metrics per container or VM instance, <a href='https://learn.netdata.cloud/docs/cloud/visualize/overview#group-by-dimension-node-or-chart' style='color: green' target='_blank'>change the Group by to <b>instance</b></a>"},cgqemu:{title:"",icon:q.To,info:"QEMU virtual machine resource utilization metrics. QEMU (short for Quick Emulator) is a free and open-source hosted hypervisor that performs hardware virtualization."},docker:{title:"Docker",icon:"serviceDockerHubPress",info:"Docker container and image metrics. Charts show aggregated view across all containers by default, to visualize the metrics per container, <a href='https://learn.netdata.cloud/docs/cloud/visualize/overview#group-by-dimension-node-or-chart' style='color: green' target='_blank'>change the Group by to <b>instance</b></a>"},dockerhub:{icon:"serviceDockerHubPress"},fping:{title:"fping",icon:F.Ss,info:"Network latency statistics, via <b>fping</b>. <b>fping</b> is a program to send ICMP echo probes to network hosts, similar to <b>ping</b>, but much better performing when pinging multiple hosts. fping versions after 3.15 can be directly used as netdata plugins."},gearman:{title:"Gearman",icon:g.A8,info:"Gearman is a job server that allows you to do work in parallel, to load balance processing, and to call functions between languages."},ioping:{title:"ioping",icon:F.Ss,info:"Disk latency statistics, via <b>ioping</b>. <b>ioping</b> is a program to read/write data probes from/to a disk."},httpcheck:{title:"Http Check",icon:"serviceHTTPCheck",info:"Web Service availability and latency monitoring using HTTP checks. This plugin is a specialized version of the port check plugin."},cassandra:{title:"Cassandra",icon:"serviceDatabase",info:"Performance metrics for <b>Cassandra</b>, the open source distributed NoSQL database management system.<br>For more information: <br><a href='https://learn.netdata.cloud/docs/agent/collectors/go.d.plugin/modules/cassandra' style='color: green' target='_blank'><b>• Netdata Cassandra collector docs</b></a><br><a href='https://www.netdata.cloud/blog/cassandra-monitoring-part1' style='color: green' target='_blank'><b>• Cassandra monitoring guide - Part 1</b></a> and <a href='https://www.netdata.cloud/blog/cassandra-monitoring-part2' style='color: green' target='_blank'><b> Part 2</b></a>"},memcached:{title:"memcached",icon:"serviceMemCached",info:"Performance metrics for <b>memcached</b>. Memcached is a general-purpose distributed memory caching system. It is often used to speed up dynamic database-driven websites by caching data and objects in RAM to reduce the number of times an external data source (such as a database or API) must be read."},monit:{title:"monit",icon:"serviceDatabase",info:"Statuses of checks in <b>monit</b>. Monit is a utility for managing and monitoring processes, programs, files, directories and filesystems on a Unix system. Monit conducts automatic maintenance and repair and can execute meaningful causal actions in error situations."},mysql:{title:"MySQL",icon:"serviceMySQLPress",info:"Performance metrics for <b>mysql</b>, the open-source relational database management system (RDBMS)."},nvme:{title:"NVMe",icon:l.vc,info:"NVMe devices SMART and health metrics. Additional information on metrics can be found in the <a href='https://nvmexpress.org/developers/nvme-specification/' target='_blank'>NVM Express Base Specification</a>."},ping:{title:"Ping",icon:B.Hw,info:"Measures round-trip time and packet loss by sending ping messages to network hosts."},postgres:{title:"PostgreSQL",icon:"servicePostgreSQL",info:"Performance metrics for <b>PostgreSQL</b>, the open source object-relational database management system (ORDBMS).<br>For more information:<br><a href='https://learn.netdata.cloud/docs/agent/collectors/go.d.plugin/modules/postgres' style='color: green' target='_blank'><b>• Netdata PostgreSQL collector docs</b></a><br><a href='https://www.netdata.cloud/blog/postgresql-monitoring' style='color: green' target='_blank'><b>• How to monitor PostgreSQL with Netdata</b></a>"},redis:{title:"Redis",icon:"serviceRedis",info:"Performance metrics for <b>Redis</b>, an in-memory data structure store, used as a distributed, in-memory key\u2013value database, cache and message broker, with optional durability.<br>For more information: <br><a href='https://learn.netdata.cloud/docs/agent/collectors/go.d.plugin/modules/redis' style='color: green' target='_blank'><b>• Netdata Redis collector docs</b></a><br><a href='https://www.netdata.cloud/blog/redis-monitoring' style='color: green' target='_blank'><b>• How to monitor Redis with Netdata</b></a>"},rethinkdbs:{title:"RethinkDB",icon:"serviceRethinkDB",info:"Performance metrics for <b>rethinkdb</b>. RethinkDB is the first open-source scalable database built for realtime applications"},retroshare:{title:"RetroShare",icon:"serviceRetroShare",info:"Performance metrics for <b>RetroShare</b>. RetroShare is open source software for encrypted filesharing, serverless email, instant messaging, online chat, and BBS, based on a friend-to-friend network built on GNU Privacy Guard (GPG)."},riakkv:{title:"Riak KV",icon:"serviceDatabase",info:"Metrics for <b>Riak KV</b>, the distributed key-value store."},ipfs:{title:"IPFS",icon:"serviceIPFS",info:"Performance metrics for the InterPlanetary File System (IPFS), a content-addressable, peer-to-peer hypermedia distribution protocol."},phpfpm:{title:"PHP-FPM",icon:"servicePhpFpm",info:"Performance metrics for <b>PHP-FPM</b>, an alternative FastCGI implementation for PHP."},pihole:{title:"Pi-hole",icon:A.gP,info:'Metrics for <a href="https://pi-hole.net/" target="_blank">Pi-hole</a>, a black hole for Internet advertisements. The metrics returned by Pi-Hole API is all from the last 24 hours.'},portcheck:{title:"Port Check",icon:U.s2,info:"Service availability and latency monitoring using port checks."},postfix:{title:"postfix",icon:Z.FU},dovecot:{title:"Dovecot",icon:Z.FU},hddtemp:{title:"HDD Temp",icon:w.wh},nginx:{title:"NGINX",icon:"serviceNginx"},nginxplus:{title:"NGINX Plus",icon:"serviceNginx"},apache:{title:"Apache",icon:"serviceApache"},lighttpd:{title:"Lighttpd",icon:"serviceLighthttpd"},web_log:{title:"Web Server Logs",icon:"serviceWebLog",info:"Key web server performance metrics extracted in real-time from web server log files. For web servers, an extended log file format may optionally be used offering timing information and bandwidth for both requests and responses."},squid:{title:"squid",icon:"serviceSquid"},nut:{title:"UPS",icon:c.St},upsd:{title:"UPS",icon:c.St},apcupsd:{title:"UPS",icon:c.St},snmp:{title:"SNMP",icon:R.V$},go_expvar:{title:"Go - expvars",icon:M.Md,info:'Statistics about running Go applications exposed by the <a href="https://golang.org/pkg/expvar/" target="_blank">expvar package</a>.'},consul:{title:"Consul",icon:N.IJ,info:'Consul performance and health metrics. For details, see <a href="https://developer.hashicorp.com/consul/docs/agent/telemetry#key-metrics" target="_blank">Key Metrics</a>.'},chrony:{title:"Chrony",icon:I.SZ,info:"The system\u2019s clock performance and peers activity status."},couchdb:{icon:"serviceCouchDB",info:'Performance metrics for <b><a href="https://couchdb.apache.org/" target="_blank">CouchDB</a></b>, the open-source, JSON document-based database with an HTTP API and multi-master replication.'},beanstalk:{title:"Beanstalkd",icon:"serviceBeanstalk",info:'Provides statistics on the <b><a href="http://kr.github.io/beanstalkd/" target="_blank">beanstalkd</a></b> server and any tubes available on that server using data pulled from beanstalkc'},rabbitmq:{title:"RabbitMQ",icon:"serviceRabbitMQ",info:'Performance data for the <b><a href="https://www.rabbitmq.com/" target="_blank">RabbitMQ</a></b> open-source message broker.'},ceph:{title:"Ceph",icon:"serviceDatabase",info:'Provides statistics on the <b><a href="http://ceph.com/" target="_blank">ceph</a></b> cluster server, the open-source distributed storage system.'},ntpd:{title:"NTPd",icon:"serviceNtpdPress",info:'Provides statistics for the internal variables of the Network Time Protocol daemon <b><a href="http://www.ntp.org/" target="_blank">ntpd</a></b> and optional including the configured peers (if enabled in the module configuration). The module presents the performance metrics as shown by <b><a href="http://doc.ntp.org/current-stable/ntpq.html">ntpq</a></b> (the standard NTP query program) using NTP mode 6 UDP packets to communicate with the NTP server.'},spigotmc:{title:"Spigot MC",icon:M.Md,info:'Provides basic performance statistics for the <b><a href="https://www.spigotmc.org/" target="_blank">Spigot Minecraft</a></b> server.'},unbound:{title:"Unbound",icon:D.LE},boinc:{title:"BOINC",icon:L.zv,info:'Provides task counts for <b><a href="http://boinc.berkeley.edu/" target="_blank">BOINC</a></b> distributed computing clients.'},w1sensor:{title:"1-Wire Sensors",icon:w.wh,info:'Data derived from <a href="https://en.wikipedia.org/wiki/1-Wire" target="_blank">1-Wire</a> sensors. Currently temperature sensors are automatically detected.'},logind:{title:"Logind",icon:C.IL,info:'Keeps track of user logins and sessions by querying the <a href="https://www.freedesktop.org/software/systemd/man/org.freedesktop.login1.html" target="_blank">systemd-logind API</a>.'},powersupply:{title:"Power Supply",icon:c.St,info:'Statistics for the various system power supplies. Data collected from <a href="https://www.kernel.org/doc/Documentation/power/power_supply_class.txt" target="_blank">Linux power supply class</a>.'},xenstat:{title:"Xen Node",icon:T.xf,info:"General statistics for the Xen node. Data collected using <b>xenstat</b> library</a>."},xendomain:{title:"",icon:q.To,info:"Xen domain resource utilization metrics. Netdata reads this information using <b>xenstat</b> library which gives access to the resource usage information (CPU, memory, disk I/O, network) for a virtual machine."},windows:{title:"Windows",icon:i.ts},iis:{title:"IIS",icon:M.Md},mssql:{title:"SQL Server",icon:P.t5},ad:{title:"Active Directory",icon:i.ts},adcs:{title:"AD Certification Service",icon:i.ts},adfs:{title:"AD Federation Service",icon:i.ts},netframework:{title:".NET Framework",icon:x.py},exchange:{title:"Exchange",icon:Z.FU},perf:{title:"Perf Counters",icon:S.HL,info:"Performance Monitoring Counters (PMC). Data collected using <b>perf_event_open()</b> system call which utilises Hardware Performance Monitoring Units (PMU)."},vsphere:{title:"vSphere",icon:T.xf,info:'Performance statistics for ESXI hosts and virtual machines. Data collected from <a href="https://www.vmware.com/products/vcenter-server.html" target="_blank">VMware vCenter Server</a> using <b><a href="https://github.com/vmware/govmomi"> govmomi</a></b> library.'},vcsa:{title:"VCSA",icon:T.xf,info:'vCenter Server Appliance health statistics. Data collected from <a href="https://vmware.github.io/vsphere-automation-sdk-rest/vsphere/index.html#SVC_com.vmware.appliance.health" target="_blank">Health API</a>.'},zookeeper:{title:"Zookeeper",icon:"serviceDatabase",info:'Provides health statistics for <b><a href="https://zookeeper.apache.org/" target="_blank">Zookeeper</a></b> server. Data collected through the command port using <b><a href="https://zookeeper.apache.org/doc/r3.5.5/zookeeperAdmin.html#sc_zkCommands">mntr</a></b> command.'},hdfs:{title:"HDFS",icon:k.cC,info:'Provides <b><a href="https://hadoop.apache.org/docs/r3.2.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html" target="_blank">Hadoop Distributed File System</a></b> performance statistics. Module collects metrics over <b>Java Management Extensions</b> through the web interface of an <b>HDFS</b> daemon.'},am2320:{title:"AM2320 Sensor",icon:w.wh,info:"Readings from the external AM2320 Sensor."},scaleio:{title:"ScaleIO",icon:"serviceDatabase",info:"Performance and health statistics for various ScaleIO components. Data collected via VxFlex OS Gateway REST API."},squidlog:{title:"Squid log",icon:v.cw},cockroachdb:{title:"CockroachDB",icon:"serviceDatabase",info:"Performance and health statistics for various <b>CockroachDB</b> components."},ebpf:{title:"eBPF",icon:"serviceEBPF",info:"Monitor system calls, internal functions, bytes read, bytes written and errors using <b>eBPF</b>."},filesystem:{title:"Filesystem",icon:l.vc,info:'Number of filesystem events for <a href="#menu_filesystem_submenu_vfs">Virtual File System</a>, <a href="#menu_filesystem_submenu_file_access">File Access</a>, <a href="#menu_filesystem_submenu_directory_cache__eBPF_">Directory cache</a>, and file system latency (<a href="#menu_filesystem_submenu_btrfs_latency">BTRFS</a>, <a href="#menu_filesystem_submenu_ext4_latency">EXT4</a>, <a href="#menu_filesystem_submenu_nfs_latency">NFS</a>, <a href="#menu_filesystem_submenu_xfs_latency">XFS</a>, and <a href="#menu_filesystem_submenu_xfs_latency">ZFS</a>) when your disk has the file system. Filesystem charts have relationship with <a href="#menu_system_submenu_swap">SWAP</a>, <a href="#menu_disk">Disk</a>, <a href="#menu_mem_submenu_synchronization__eBPF_">Sync</a>, and <a href="#menu_mount">Mount Points</a>.'},vernemq:{title:"VerneMQ",icon:_.lX,info:'Performance data for the <b><a href="https://vernemq.com/" target="_blank">VerneMQ</a></b> open-source MQTT broker.'},pulsar:{title:"Pulsar",icon:_.lX,info:'Summary, namespaces and topics performance data for the <b><a href="http://pulsar.apache.org/" target="_blank">Apache Pulsar</a></b> pub-sub messaging system.'},anomalies:{title:"Anomalies",icon:m.jZ,info:'Anomaly scores relating to key system metrics. A high anomaly probability indicates strange behaviour and may trigger an anomaly prediction from the trained models. Read the <a href="https://github.com/netdata/netdata/tree/master/collectors/python.d.plugin/anomalies" target="_blank">anomalies collector docs</a> for more details.'},alerts:{title:"Alerts",icon:y.qm,info:'Charts showing alert status over time. More details <a href="https://github.com/netdata/netdata/blob/master/collectors/python.d.plugin/alerts/README.md" target="_blank">here</a>.'},statsd:{title:"StatsD",icon:b.St,info:'StatsD is an industry-standard technology stack for monitoring applications and instrumenting any piece of software to deliver custom metrics. Netdata allows the user to organize the metrics in different charts and visualize any application metric easily. Read more on <a href="https://learn.netdata.cloud/docs/agent/collectors/statsd.plugin" target="_blank">Netdata Learn</a>.'},supervisord:{title:"Supervisord",icon:g.A8,info:'Detailed statistics for each group of processes controlled by <b><a href="http://supervisord.org/" target="_blank">Supervisor</a></b>. Netdata collects these metrics using <a href="http://supervisord.org/api.html#supervisor.rpcinterface.SupervisorNamespaceRPCInterface.getAllProcessInfo" target="_blank"><b>getAllProcessInfo</b></a> method.'},systemdunits:{title:"systemd units",icon:f.Kb,info:'<b>systemd</b> provides a dependency system between various entities called "units" of 11 different types. Units encapsulate various objects that are relevant for system boot-up and maintenance. Units may be <b>active</b> (meaning started, bound, plugged in, depending on the unit type), or <b>inactive</b> (meaning stopped, unbound, unplugged), as well as in the process of being activated or deactivated, i.e. between the two states (these states are called <b>activating</b>, <b>deactivating</b>). A special <b>failed</b> state is available as well, which is very similar to <b>inactive</b> and is entered when the service failed in some way (process returned error code on exit, or crashed, an operation timed out, or after too many restarts). For details, see <a href="https://www.freedesktop.org/software/systemd/man/systemd.html" target="_blank"> systemd(1)</a>.'},changefinder:{title:"ChangeFinder",icon:m.jZ,info:'Online changepoint detection using machine learning. More details <a href="https://github.com/netdata/netdata/blob/master/collectors/python.d.plugin/changefinder/README.md" target="_blank">here</a>.'},zscores:{title:"Z-Scores",icon:p.WV,info:"Z scores scores relating to key system metrics."},anomaly_detection:{title:"Anomaly Detection",icon:u.qx,info:'Charts relating to anomaly detection, increased <b>anomalous</b> dimensions or a higher than usual <b>anomaly_rate</b> could be signs of some abnormal behaviour. Read our <a href="https://learn.netdata.cloud/guides/monitor/anomaly-detection" target="_blank">anomaly detection guide</a> for more details.'},fail2ban:{title:"Fail2ban",icon:d.is,info:"Netdata keeps track of the current jail status by reading the Fail2ban log file."},wireguard:{title:"WireGuard",icon:h.SP,info:"VPN network interfaces and peers traffic."},prometheus:{icon:"servicePrometheus"},"Kubernetes State":{title:"Kubernetes State",icon:"serviceKubernetes"},"Kubernetes Containers":{title:"Kubernetes Containers",icon:"serviceKubernetes"},"Kubernetes kubelet":{title:"Kubernetes Kubelet",icon:"serviceKubernetes"},"Kubernetes kubeproxy":{title:"Kubernetes Kubeproxy",icon:"serviceKubernetes"},coredns:{title:"CoreDNS",icon:"serviceCoreDns"},dns_query:{title:"DNS Query Response Time",icon:"serviceDns"},sendgrid:{title:"SendGrid",icon:"serviceSendgrid"},smartd_log:{icon:"servicesSmartdlog"},bind:{icon:"serviceBind"},systemd:{icon:"serviceSystemd",info:"Resources utilization of <b>systemd services</b>. Netdata monitors all systemd services via <a href='https://en.wikipedia.org/wiki/Cgroups' target='_blank'>cgroups</a> (the resources accounting used by containers)."},md:{title:"Linux Software RAID",icon:l.vc,info:"Metrics for monitoring Linux Software RAID"},cups:{title:"Printers (cups)",icon:c.St,info:"Metrics for Printer (cups) monitoring"},named:{title:"ISC Bind (named)",icon:"serviceCoreDns",info:"Metrics for named monitoring"},isc_dhcpd:{title:"ISC DHCPd",icon:"serviceCoreDns",info:"Metrics for DHCPd monitoring"}},K={"web_log.squid_bandwidth":{title:"bandwidth",info:'Bandwidth of responses (<b>sent</b>) by squid. This chart may present unusual spikes, since the bandwidth is accounted at the time the log line is saved by the server, even if the time needed to serve it spans across a longer duration. We suggest to use QoS (e.g. <a href="http://firehol.org/#fireqos" target="_blank">FireQOS</a>) for accurate accounting of the server bandwidth.'},"web_log.squid_responses":{title:"responses",info:"Information related to the responses sent by squid."},"web_log.squid_requests":{title:"requests",info:"Information related to the requests squid has received."},"web_log.squid_hierarchy":{title:"hierarchy",info:"Performance metrics for the squid hierarchy used to serve the requests."},"web_log.squid_squid_transport":{title:"transport"},"web_log.squid_squid_cache":{title:"cache",info:"Performance metrics for the performance of the squid cache."},"web_log.squid_timings":{title:"timings",info:"Duration of squid requests. Unrealistic spikes may be reported, since squid logs the total time of the requests, when they complete. Especially for HTTPS, the clients get a tunnel from the proxy and exchange requests directly with the upstream servers, so squid cannot evaluate the individual requests and reports the total time the tunnel was open."},"web_log.squid_clients":{title:"clients"},"web_log.bandwidth":{info:'Bandwidth of requests (<b>received</b>) and responses (<b>sent</b>). <b>received</b> requires an extended log format (without it, the web server log does not have this information). This chart may present unusual spikes, since the bandwidth is accounted at the time the log line is saved by the web server, even if the time needed to serve it spans across a longer duration. We suggest to use QoS (e.g. <a href="http://firehol.org/#fireqos" target="_blank">FireQOS</a>) for accurate accounting of the web server bandwidth.'},"web_log.urls":{info:'Number of requests for each <b>URL pattern</b> defined in <a href="https://github.com/netdata/go.d.plugin/blob/master/config/go.d/web_log.conf" target="_blank"><b>/etc/netdata/go.d/web_log.conf</b></a>. This chart counts all requests matching the URL patterns defined, independently of the web server response codes (i.e. both successful and unsuccessful).'},"web_log.clients":{info:"Charts showing the number of unique client IPs, accessing the web server."},"web_log.timings":{info:"Web server response timings - the time the web server needed to prepare and respond to requests. This requires an extended log format and its meaning is web server specific. For most web servers this accounts the time from the reception of a complete request, to the dispatch of the last byte of the response. So, it includes the network delays of responses, but it does not include the network delays of requests."},"mem.ksm":{title:"deduper (ksm)",info:'<a href="https://en.wikipedia.org/wiki/Kernel_same-page_merging" target="_blank">Kernel Same-page Merging</a> (KSM) performance monitoring, read from several files in <b>/sys/kernel/mm/ksm/</b>. KSM is a memory-saving de-duplication feature in the Linux kernel. The KSM daemon ksmd periodically scans those areas of user memory which have been registered with it, looking for pages of identical content which can be replaced by a single write-protected page.'},"mem.hugepages":{info:'Hugepages is a feature that allows the kernel to utilize the multiple page size capabilities of modern hardware architectures. The kernel creates multiple pages of virtual memory, mapped from both physical RAM and swap. There is a mechanism in the CPU architecture called "Translation Lookaside Buffers" (TLB) to manage the mapping of virtual memory pages to actual physical memory addresses. The TLB is a limited hardware resource, so utilizing a large amount of physical memory with the default page size consumes the TLB and adds processing overhead. By utilizing Huge Pages, the kernel is able to create pages of much larger sizes, each page consuming a single resource in the TLB. Huge Pages are pinned to physical RAM and cannot be swapped/paged out.'},"mem.numa":{info:'Non-Uniform Memory Access (NUMA) is a hierarchical memory design the memory access time is dependent on locality. Under NUMA, a processor can access its own local memory faster than non-local memory (memory local to another processor or memory shared between processors). The individual metrics are described in the <a href="https://www.kernel.org/doc/Documentation/numastat.txt" target="_blank">Linux kernel documentation</a>.'},"mem.ecc":{info:'<p><a href="https://en.wikipedia.org/wiki/ECC_memory" target="_blank">ECC memory</a> is a type of computer data storage that uses an error correction code (ECC) to detect and correct n-bit data corruption which occurs in memory. Typically, ECC memory maintains a memory system immune to single-bit errors: the data that is read from each word is always the same as the data that had been written to it, even if one of the bits actually stored has been flipped to the wrong state.</p><p>Memory errors can be classified into two types: <b>Soft errors</b>, which randomly corrupt bits but do not leave physical damage. Soft errors are transient in nature and are not repeatable, can be because of electrical or magnetic interference. <b>Hard errors</b>, which corrupt bits in a repeatable manner because of a physical/hardware defect or an environmental problem.'},"mem.pagetype":{info:'Statistics of free memory available from <a href="https://en.wikipedia.org/wiki/Buddy_memory_allocation" target="_blank">memory buddy allocator</a>. The buddy allocator is the system memory allocator. The whole memory space is split in physical pages, which are grouped by NUMA node, zone, <a href="https://lwn.net/Articles/224254/" target="_blank">migrate type</a>, and size of the block. By keeping pages grouped based on their ability to move, the kernel can reclaim pages within a page block to satisfy a high-order allocation. When the kernel or an application requests some memory, the buddy allocator provides a page that matches closest the request.'},"ip.ecn":{info:'<a href="https://en.wikipedia.org/wiki/Explicit_Congestion_Notification" target="_blank">Explicit Congestion Notification (ECN)</a> is an extension to the IP and to the TCP that allows end-to-end notification of network congestion without dropping packets. ECN is an optional feature that may be used between two ECN-enabled endpoints when the underlying network infrastructure also supports it.'},"ip.multicast":{info:'<a href="https://en.wikipedia.org/wiki/Multicast" target="_blank">IP multicast</a> is a technique for one-to-many communication over an IP network. Multicast uses network infrastructure efficiently by requiring the source to send a packet only once, even if it needs to be delivered to a large number of receivers. The nodes in the network take care of replicating the packet to reach multiple receivers only when necessary.'},"ip.broadcast":{info:'In computer networking, <a href="https://en.wikipedia.org/wiki/Broadcasting_(networking)" target="_blank">broadcasting</a> refers to transmitting a packet that will be received by every device on the network. In practice, the scope of the broadcast is limited to a broadcast domain.'},"netfilter.conntrack":{title:"connection tracker",info:"Netfilter Connection Tracker performance metrics. The connection tracker keeps track of all connections of the machine, inbound and outbound. It works by keeping a database with all open connections, tracking network and address translation and connection expectations."},"netfilter.nfacct":{title:"bandwidth accounting",info:"The following information is read using the <b>nfacct.plugin</b>."},"netfilter.synproxy":{title:"DDoS protection",info:'DDoS protection performance metrics. <a href="https://github.com/firehol/firehol/wiki/Working-with-SYNPROXY" target="_blank">SYNPROXY</a> is a TCP SYN packets proxy. It is used to protect any TCP server (like a web server) from SYN floods and similar DDoS attacks. SYNPROXY intercepts new TCP connections and handles the initial 3-way handshake using syncookies instead of conntrack to establish the connection. It is optimized to handle millions of packets per second utilizing all CPUs available without any concurrency locking between the connections. It can be used for any kind of TCP traffic (even encrypted), since it does not interfere with the content itself.'},"ipfw.dynamic_rules":{title:"dynamic rules",info:"Number of dynamic rules, created by correspondent stateful firewall rules."},"system.softnet_stat":{title:"softnet",info:function(e){return"linux"===e.os?'<p>Statistics for CPUs SoftIRQs related to network receive work. Break down per CPU core can be found at <a href="#menu_cpu_submenu_softnet_stat">CPU / softnet statistics</a>. More information about identifying and troubleshooting network driver related issues can be found at <a href="https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf" target="_blank">Red Hat Enterprise Linux Network Performance Tuning Guide</a>.</p><p><b>Processed</b> - packets processed. <b>Dropped</b> - packets dropped because the network device backlog was full. <b>Squeezed</b> - number of times the network device budget was consumed or the time limit was reached, but more work was available. <b>ReceivedRPS</b> - number of times this CPU has been woken up to process packets via an Inter-processor Interrupt. <b>FlowLimitCount</b> - number of times the flow limit has been reached (flow limiting is an optional Receive Packet Steering feature).</p>':"Statistics for CPUs SoftIRQs related to network receive work."}},"system.clock synchronization":{info:'<a href="https://en.wikipedia.org/wiki/Network_Time_Protocol" target="_blank">NTP</a> lets you automatically sync your system time with a remote server. This keeps your machine\u2019s time accurate by syncing with servers that are known to have accurate times.'},"cpu.softnet_stat":{title:"softnet",info:function(e){return"linux"===e.os?'<p>Statistics for CPUs SoftIRQs related to network receive work. Total for all CPU cores can be found at <a href="#menu_system_submenu_softnet_stat">System / softnet statistics</a>. More information about identifying and troubleshooting network driver related issues can be found at <a href="https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf" target="_blank">Red Hat Enterprise Linux Network Performance Tuning Guide</a>.</p><p><b>Processed</b> - packets processed. <b>Dropped</b> - packets dropped because the network device backlog was full. <b>Squeezed</b> - number of times the network device budget was consumed or the time limit was reached, but more work was available. <b>ReceivedRPS</b> - number of times this CPU has been woken up to process packets via an Inter-processor Interrupt. <b>FlowLimitCount</b> - number of times the flow limit has been reached (flow limiting is an optional Receive Packet Steering feature).</p>':'Statistics for per CPUs core SoftIRQs related to network receive work. Total for all CPU cores can be found at <a href="#menu_system_submenu_softnet_stat">System / softnet statistics</a>.'}},"go_expvar.memstats":{title:"memory statistics",info:'Go runtime memory statistics. See <a href="https://golang.org/pkg/runtime/#MemStats" target="_blank">runtime.MemStats</a> documentation for more info about each chart and the values.'},"couchdb.dbactivity":{title:"db activity",info:"Overall database reads and writes for the entire server. This includes any external HTTP traffic, as well as internal replication traffic performed in a cluster to ensure node consistency."},"couchdb.httptraffic":{title:"http traffic breakdown",info:"All HTTP traffic, broken down by type of request (<tt>GET</tt>, <tt>PUT</tt>, <tt>POST</tt>, etc.) and response status code (<tt>200</tt>, <tt>201</tt>, <tt>4xx</tt>, etc.)<br/><br/>Any <tt>5xx</tt> errors here indicate a likely CouchDB bug; check the logfile for further information."},"couchdb.ops":{title:"server operations"},"couchdb.perdbstats":{title:"per db statistics",info:'Statistics per database. This includes <a href="http://docs.couchdb.org/en/latest/api/database/common.html#get--db" target="_blank">3 size graphs per database</a>: active (the size of live data in the database), external (the uncompressed size of the database contents), and file (the size of the file on disk, exclusive of any views and indexes). It also includes the number of documents and number of deleted documents per database.'},"couchdb.erlang":{title:"erlang statistics",info:"Detailed information about the status of the Erlang VM that hosts CouchDB. These are intended for advanced users only. High values of the peak message queue (>10e6) generally indicate an overload condition."},"ntpd.system":{title:"system",info:'Statistics of the system variables as shown by the readlist billboard <b>ntpq -c rl</b>. System variables are assigned an association ID of zero and can also be shown in the readvar billboard <b>ntpq -c "rv 0"</b>. These variables are used in the <a href="http://doc.ntp.org/current-stable/discipline.html" target="_blank">Clock Discipline Algorithm</a>, to calculate the lowest and most stable offset.'},"ntpd.peers":{title:"peers",info:'Statistics of the peer variables for each peer configured in <b>/etc/ntp.conf</b> as shown by the readvar billboard <b>ntpq -c "rv <association>"</b>, while each peer is assigned a nonzero association ID as shown by <b>ntpq -c "apeers"</b>. The module periodically scans for new/changed peers (default: every 60s). <b>ntpd</b> selects the best possible peer from the available peers to synchronize the clock. A minimum of at least 3 peers is required to properly identify the best possible peer.'},"mem.page_cache":{title:"page cache (eBPF)",info:'Number of calls to <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#memory" target="_blank">functions</a> used to manipulate the <a href="https://en.wikipedia.org/wiki/Page_cache" target="_blank">Linux page cache</a>. This chart has a relationship with <a href="#menu_filesystem">File Systems</a>, <a href="#menu_mem_submenu_synchronization__eBPF_">Sync</a>, and <a href="#menu_disk">Hard Disk</a>.'},"apps.page_cache":{title:"page cache (eBPF)",info:'Netdata also gives a summary for these charts in <a href="#menu_mem_submenu_page_cache">Memory submenu</a>.'},"filesystem.vfs":{title:"vfs (eBPF)",info:'Number of calls to Virtual File System <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#vfs" target="_blank">functions</a> used to manipulate <a href="#menu_filesystem">File Systems</a>.'},"apps.vfs":{title:"vfs (eBPF)",info:'Netdata also gives a summary for these charts in <a href="#menu_filesystem_submenu_vfs">Filesystem submenu</a>.'},"filesystem.ext4_latency":{title:"ext4 latency (eBPF)",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> is the time it takes for an event to be completed. Based on the <a href="http://www.brendangregg.com/blog/2016-10-06/linux-bcc-ext4dist-ext4slower.html" target="_blank">eBPF ext4dist</a> from BCC tools. This chart is provided by the <a href="#menu_netdata_submenu_ebpf">eBPF plugin</a> to monitor <a href="#menu_filesystem">File systems</a>.'},"filesystem.xfs_latency":{title:"xfs latency (eBPF)",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> is the time it takes for an event to be completed. Based on the <a href="https://github.com/iovisor/bcc/blob/master/tools/xfsdist_example.txt" target="_blank">xfsdist</a> from BCC tools. This chart is provided by the <a href="#menu_netdata_submenu_ebpf">eBPF plugin</a> to monitor <a href="#menu_filesystem">File systems</a>.'},"filesystem.nfs_latency":{title:"nfs latency (eBPF)",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> is the time it takes for an event to be completed. Based on the <a href="https://github.com/iovisor/bcc/blob/master/tools/nfsdist_example.txt" target="_blank">nfsdist</a> from BCC tools. This chart is provided by the <a href="#menu_netdata_submenu_ebpf">eBPF plugin</a> to monitor <a href="#menu_filesystem">File systems</a>.'},"filesystem.zfs_latency":{title:"zfs latency (eBPF)",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> is the time it takes for an event to be completed. Based on the <a href="https://github.com/iovisor/bcc/blob/master/tools/zfsdist_example.txt" target="_blank">zfsdist</a> from BCC tools. This chart is provided by the <a href="#menu_netdata_submenu_ebpf">eBPF plugin</a> to monitor <a href="#menu_filesystem">File systems</a>.'},"filesystem.btrfs_latency":{title:"btrfs latency (eBPF)",info:'<a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#latency-algorithm" target="_blank">Latency</a> is the time it takes for an event to be completed. Based on the <a href="https://github.com/iovisor/bcc/blob/master/tools/btrfsdist_example.txt" target="_blank">btrfsdist</a> from BCC tools. This chart is provided by the <a href="#menu_netdata_submenu_ebpf">eBPF plugin</a> to monitor <a href="#menu_filesystem">File systems</a>.'},"filesystem.file_access":{title:"file access (eBPF)"},"apps.file_access":{title:"file access (eBPF)",info:'Netdata also gives a summary for this chart on <a href="#menu_filesystem_submenu_file_access">Filesystem submenu</a> (more details on <a href="https://learn.netdata.cloud/docs/agent/collectors/ebpf.plugin#file-descriptor" target="_blank">eBPF plugin file chart section</a>).'},"ip.kernel":{title:"kernel functions (eBPF)"},"apps.net":{title:"network",info:'Netdata also gives a summary for eBPF charts in <a href="#menu_ip_submenu_kernel">Networking Stack submenu</a>.'},"system.ipc semaphores":{info:'System V semaphores is an inter-process communication (IPC) mechanism. It allows processes or threads within a process to synchronize their actions. They are often used to monitor and control the availability of system resources such as shared memory segments. For details, see <a href="https://man7.org/linux/man-pages/man7/svipc.7.html" target="_blank">svipc(7)</a>. To see the host IPC semaphore information, run <b>ipcs -us</b>. For limits, run <b>ipcs -ls</b>.'},"system.ipc shared memory":{info:'System V shared memory is an inter-process communication (IPC) mechanism. It allows processes to communicate information by sharing a region of memory. It is the fastest form of inter-process communication available since no kernel involvement occurs when data is passed between the processes (no copying). Typically, processes must synchronize their access to a shared memory object, using, for example, POSIX semaphores. For details, see <a href="https://man7.org/linux/man-pages/man7/svipc.7.html" target="_blank">svipc(7)</a>. To see the host IPC shared memory information, run <b>ipcs -um</b>. For limits, run <b>ipcs -lm</b>.'},"system.ipc message queues":{info:'System V message queues is an inter-process communication (IPC) mechanism. It allow processes to exchange data in the form of messages. For details, see <a href="https://man7.org/linux/man-pages/man7/svipc.7.html" target="_blank">svipc(7)</a>. To see the host IPC messages information, run <b>ipcs -uq</b>. For limits, run <b>ipcs -lq</b>.'},"system.interrupts":{info:'<a href="https://en.wikipedia.org/wiki/Interrupt" target="_blank"><b>Interrupts</b></a> are signals sent to the CPU by external devices (normally I/O devices) or programs (running processes). They tell the CPU to stop its current activities and execute the appropriate part of the operating system. Interrupt types are <b>hardware</b> (generated by hardware devices to signal that they need some attention from the OS), <b>software</b> (generated by programs when they want to request a system call to be performed by the operating system), and <b>traps</b> (generated by the CPU itself to indicate that some error or condition occurred for which assistance from the operating system is needed).'},"system.softirqs":{info:'Software interrupts (or "softirqs") are one of the oldest deferred-execution mechanisms in the kernel. Several tasks among those executed by the kernel are not critical: they can be deferred for a long period of time, if necessary. The deferrable tasks can execute with all interrupts enabled (softirqs are patterned after hardware interrupts). Taking them out of the interrupt handler helps keep kernel response time small.'},"cpu.softirqs":{info:'Total number of software interrupts per CPU. To see the total number for the system check the <a href="#menu_system_submenu_softirqs">softirqs</a> section.'},"cpu.interrupts":{info:'Total number of interrupts per CPU. To see the total number for the system check the <a href="#menu_system_submenu_interrupts">interrupts</a> section. The last column in <b>/proc/interrupts</b> provides an interrupt description or the device name that registered the handler for that interrupt.'},"cpu.throttling":{info:" CPU throttling is commonly used to automatically slow down the computer when possible to use less energy and conserve battery."},"cpu.cpuidle":{info:'<a href="https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface#Processor_states" target="_blank">Idle States (C-states)</a> are used to save power when the processor is idle.'},"services.net":{title:"network (eBPF)"},"services.page_cache":{title:"pache cache (eBPF)"},"netdata.ebpf":{title:"eBPF.plugin",info:'eBPF (extended Berkeley Packet Filter) is used to collect metrics from inside Linux kernel giving a zoom inside your <a href="#ebpf_system_process_thread">Process</a>, <a href="#menu_disk">Hard Disk</a>, <a href="#menu_filesystem">File systems</a> (<a href="#menu_filesystem_submenu_file_access">File Access</a>, and <a href="#menu_filesystem_submenu_directory_cache__eBPF_">Directory Cache</a>), Memory (<a href="#ebpf_global_swap">Swap I/O</a>, <a href="#menu_mem_submenu_page_cache">Page Cache</a>), IRQ (<a href="#ebpf_global_hard_irq">Hard IRQ</a> and <a href="#ebpf_global_soft_irq">Soft IRQ</a> ), <a href="#ebpf_global_shm">Shared Memory</a>, Syscalls (<a href="#menu_mem_submenu_synchronization__eBPF_">Sync</a>, <a href="#menu_mount_submenu_mount__eBPF_">Mount</a>), and <a href="#menu_ip_submenu_kernel">Network</a>.'}};function Y(e,t){var s=Object.keys(e);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(e);t&&(n=n.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),s.push.apply(s,n)}return s}function J(e){for(var t=1;t<arguments.length;t++){var s=null!=arguments[t]?arguments[t]:{};t%2?Y(Object(s),!0).forEach((function(t){(0,n.Z)(e,t,s[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(s)):Y(Object(s)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(s,t))}))}return e}var X=function(e,t,s,n){var a=arguments.length>4&&void 0!==arguments[4]?arguments[4]:{};if("undefined"===typeof e[s])return n;var o=e[s][t];return"undefined"===typeof o?n:"function"===typeof o?o(a):o},$=function(e,t){if(e.sectionTitle)return e.sectionTitle;if("undefined"===typeof e.menuPattern)return X(W,"title",e.id,e.id,t).toString().replace(/_/g," ");var s=e.type||e.id.split(".")[0],n=s===e.menuPattern?"":" ".concat(s.slice(-(s.length-e.menuPattern.length-1)));return"".concat(X(W,"title",e.menuPattern,e.menuPattern,t).toString()," ").concat(n).replace(/_/g," ")},ee=a.Nx,te=function(e){return X(W,"icon",e.menuIcon||e.menuPattern||e.id,ee)},se=function(e,t){return X(W,"info",e.menuPattern||e.id,null,t)},ne=function(e,t,s){var n=t?"".concat(e,".").concat(t):e;return X(K,"title",n,t||e,s).toString().replace(/_/g," ")},ae=function(e,t,s){return X(K,"info",t?"".concat(e,".").concat(t):e,null,s)},oe=function(e,t){var s=X(r.Z,"info",e,null,t);return s?'<div class="shorten dashboard-context-info" role="document">'.concat(s,"</div>"):""},re=function(e,t,s,n){return X(r.Z,t,e,s,n)},ie=function(e){var t;return(null===(t=r.Z[e])||void 0===t?void 0:t.valueRange)||[null,null]},ce=function(e){var t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:{},s=t.menuId,n=t.subMenuId,a=t.sectionInfo,i=arguments.length>2&&void 0!==arguments[2]?arguments[2]:{},c=e.context,l=e.domain,h=e.id,d=e.visible,u=e.filteredOut,p=e.hidden;return J(J({},r.Z[h]),{},{id:h,chartId:h,menuGroupId:s,subMenuId:n,link:"chart_".concat((0,o.Z)(h)),chartLibrary:"dygraph",info:oe(c,i),sectionInfo:a,valueRange:ie(c),colors:"".concat(X(c||h,"colors",c,"",i)),domain:l,visible:d,filteredOut:u,hidden:p})}},53499:function(e,t,s){s.d(t,{Z:function(){return Z}});var n=s(29439),a=s(87462),o=s(45987),r=(s(21249),s(57640),s(9924),s(57327),s(41539),s(88449),s(2490),s(59849),s(67294)),i=s(93416),c=s(27856),l=s(71824),h=s(6811),d=s(84147),u=(s(34553),s(69826),s(31672),s(59461),s(26833),s(85993)),p=s(62525),m=s(45335),f=s(9449),g=(s(88674),function(e,t){var s=(0,l.uK)(),n=(0,f.Z)(u.YE),a=(0,f.Z)(p.aJ),o=(0,f.Z)(l.$b),i=(0,m.vH)(),c=(0,r.useMemo)((function(){return{goToElement:function(s){return!!t.length&&(function(e){var t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:1;new Promise((function(s){!function t(n){if(0===n)return s();e(),setTimeout((function(){return t(--n)}))}(t)}))}((function(){var n=t.findIndex((function(e){return e.id===s}));if(-1!==n)return e.scrollToIndex(n,{align:"start"})}),5),!0)},goToLink:function(e){var t=Object.values(n.current).find((function(t){return t.link===e}));if(t)return c.goToElement(t.id);var s=Object.values(a.current).find((function(t){return t.link===e}));if(s)return c.goToElement(s.id);if(o.current){var r=Object.values(o.current).find((function(t){return t.link===e}));if(r)return c.goToElement(r.chartId)}}}}),[s,t]);return(0,r.useLayoutEffect)((function(){i(c)}),[c]),c}),b=(s(91038),s(78783),null),y=s(93433),_=(s(9653),s(47941),s(66992),s(70189),s(88921),s(96248),s(13599),s(11477),s(64362),s(15389),s(90401),s(45164),s(91238),s(54837),s(87485),s(56767),s(76651),s(61437),s(35285),s(39865),s(33948),s(92222),s(2707),s(98163)),v=(s(85827),s(25387),s(72608),["getComponent","element","index"]),w=["onActiveMenuGroupId","onActiveSubMenuId","getComponent","dashboardOptions","initialChartName","checkVisibility"],k=(0,r.memo)((function(e){var t=e.getComponent,s=e.element,n=e.index,i=(0,o.Z)(e,v),c=(0,r.useMemo)((function(){return s&&t(s)}),[null===s||void 0===s?void 0:s.id,n]);return c?r.createElement(c,(0,a.Z)({key:s.id},s,{index:n},i,{isVisible:!0})):null})),T=(0,r.memo)((0,r.forwardRef)((function(e,t){var s=e.elements,o=e.onScroll,l=e.dashboardOptions,d=e.getComponent,u=e.stickyBg,p=void 0===u?"mainBackground":u,m=e.stickyRef,f=e.nextStickyRef,v=e.stickyIndexes,w=e.containerWidth,T=function(e){var t=(0,r.useRef)(),s=(0,r.useRef)(),n=(0,r.useRef)(0),a=(0,r.useRef)(0);return(0,r.useCallback)((function(o){if(t.current!==e.length&&(a.current=0),s.current&&(a.current<5||t.current!==e.length)){a.current=a.current+1,t.current=e.length;var r=e.findIndex((function(e){return e.id===s.current.id}));if(-1===r)return;var i=o.getMeasurements()[r].start;return o.scrollToOffset(i+n.current),clearTimeout(b),void(b=setTimeout((function(){return a.current=5}),200))}t.current=e.length;var c=o.scrollOffset,l=0,h=o.getMeasurements().find((function(e){return(l+=e.size)>c}));h&&(s.current=e[h.index],n.current=c-h.start)}),[e])}(s),S=(0,r.useRef)(),Z=(0,r.useState)(0),x=(0,n.Z)(Z,2),P=x[0],M=x[1],q=function(e,t,s){var n=s.stickyRef,a=s.nextStickyRef;return(0,r.useCallback)((function(e){if(!t)return(0,_.MK)(e);if(a.current=Number(Object.keys(t).find((function(t){return e.startIndex<t}))),n.current=Number(Object.keys(t).reverse().find((function(t){return e.startIndex>=t}))),a.current-e.startIndex===1&&(n.current=NaN),isNaN(n.current))return(0,_.MK)(e);var s=new Set([n.current].concat((0,y.Z)((0,_.MK)(e))));return(0,y.Z)(s).sort((function(e,t){return e-t}))}),[e,t])}(s,v,{stickyRef:m,nextStickyRef:f}),C=(0,h.MG)({count:s.length,getScrollElement:function(){return t.current},overscan:1,enableSmoothScroll:!1,estimateSize:function(e){return s[e].size},onChange:T,rangeExtractor:q,scrollPaddingStart:20});S.current=C,g(C,s);var L=(0,r.useCallback)((0,c.P)(100,(function(){o.apply(void 0,arguments),t.current&&M(t.current.scrollTop)})),[o]);return r.createElement("div",{ref:t,style:{minHeight:"100%",width:"100%",overflow:"auto"},onScroll:L},r.createElement("div",{style:{minHeight:"".concat(C.getTotalSize(),"px"),width:"100%",position:"relative"}},P>0&&!isNaN(m.current)&&r.createElement(i.Box,{key:m.current,sx:{top:0,left:0,width:"100%",padding:1,position:"sticky",zIndex:10,boxShadow:"2px 6px 6px -7px rgba(0, 0, 0, 0.4)"},background:p},r.createElement(k,(0,a.Z)({},l,{element:s[m.current],index:m.current,getComponent:d,isActiveSticky:!0}))),C.getVirtualItems().map((function(e){return r.createElement(i.Box,{key:e.key,ref:C.measureElement,sx:{top:0,left:0,width:"100%",padding:1,position:"absolute",transform:"translateY(".concat(e.start,"px)")},"data-index":e.index},r.createElement(k,(0,a.Z)({},l,{element:s[e.index],index:e.index,getComponent:d,containerWidth:w})))}))))})),(function(e,t){return e.elements.length===t.elements.length&&e.containerWidth===t.containerWidth})),S=function(e){var t=e.onActiveMenuGroupId,s=e.onActiveSubMenuId,i=e.getComponent,h=e.dashboardOptions,u=e.initialChartName,p=e.checkVisibility,m=(0,o.Z)(e,w),f=(0,d.If)(),g=(0,l.UY)((function(e){return e.filter((function(e){return p?p(e.subMenuChartIds||e.chartIds||[e.id]):f(e.subMenuChartIds||e.chartIds||[e.id])}))})),b=function(e){var t=(0,l.uY)(),s=(0,r.useMemo)((function(){return e.reduce((function(e,s,n){var a=s.id;return t[a]&&(e[n]=!0),e}),{})}),[e]),n=(0,r.useRef)(),a=(0,r.useRef)(),o=(0,r.useCallback)((function(e){return!!s[e]}),[s]),i=(0,r.useCallback)((function(e){return n.current===e}),[]);return[{stickyRef:n,nextStickyRef:a,isSticky:o,isActiveSticky:i},s,t]}(g),y=(0,n.Z)(b,2),_=y[0],v=_.stickyRef,k=_.nextStickyRef,S=y[1],Z=(0,r.useRef)(),x=(0,r.useRef)(),P=(0,r.useMemo)((function(){return x.current&&x.current.cancel(),x.current=function(e){return(0,c.D)(100,(function(t,s,n){var a;if(t){var o=t.getBoundingClientRect().top,r=Array.from(t.querySelectorAll("[data-submenuid], [data-menuid], [data-chartid]")).find((function(t,s){return!(!isNaN(e.current)&&0===s)&&t.getBoundingClientRect().top-o>0}));if(r){var i=r.getAttribute("data-menuid");if(i)return s(""),void n(i);s(r.getAttribute("data-submenuid")||(null===(a=r.closest("[data-submenuid]"))||void 0===a?void 0:a.getAttribute("data-submenuid")))}}}))}(v),function(){return x.current(Z.current,s,t)}}),[g.length,s,t]);return(0,r.useLayoutEffect)((function(){g.length&&P()}),[g.length,u]),r.createElement(T,(0,a.Z)({elements:g,onScroll:P,dashboardOptions:h,getComponent:i,ref:Z,stickyRef:v,nextStickyRef:k,stickyIndexes:S},m))},Z=(0,r.memo)(S)},74662:function(e,t,s){s.d(t,{v:function(){return N},Z:function(){return R}});var n=s(29439),a=s(87462),o=s(67294),r=s(93416),i=s(93433),c=s(45987),l=(s(92222),s(82526),s(57327),s(88449),s(59849),s(38880),s(49337),s(33321),s(69070),s(4942)),h=(s(41539),s(15581),s(2490),s(34514),s(54747),s(2707),s(66992),s(70189),s(78783),s(88921),s(96248),s(13599),s(11477),s(64362),s(15389),s(90401),s(45164),s(91238),s(54837),s(87485),s(56767),s(76651),s(61437),s(35285),s(39865),s(33948),s(85827),s(25387),s(72608),s(47941),s(69826),s(31672),s(59461),s(19601),s(21249),s(57640),s(9924),s(39612)),d=(s(74916),s(77601),s(4723),s(15306),["menuPattern","menu"]);function u(e,t){var s=Object.keys(e);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(e);t&&(n=n.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),s.push.apply(s,n)}return s}function p(e){for(var t=1;t<arguments.length;t++){var s=null!=arguments[t]?arguments[t]:{};t%2?u(Object(s),!0).forEach((function(t){(0,l.Z)(e,t,s[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(s)):u(Object(s)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(s,t))}))}return e}var m=function(e,t){var s=e.id,a=e.name,o=e.family,r=e.context;return function(e){var t,s=arguments.length>1&&void 0!==arguments[1]?arguments[1]:{},a=s.name,o=void 0===a?"":a,r=s.context,i=void 0===r?"":r,l=s.submenuNames,h=void 0===l?{}:l,u=(i||e.chartId).split("."),m=(0,n.Z)(u,3),f=m[0],g=m[1],b=m[2],y=f.split("_"),_=(0,n.Z)(y,2),v=_[0],w=_[1],k=function(t){var s=t.menuPattern,n=t.menu,a=void 0===n?f:n,o=(0,c.Z)(t,d);return p(p(p({id:a,menuPattern:s,key:"".concat(a,"|").concat(e.subMenuId,"|").concat(e.chartId)},o),e),{},{part1:v})},T=function(e){var t=y.length>=2&&w===e?"".concat(v,"_").concat(w):v;return k({menuPattern:t})};switch(v){case"ap":case"net":case"powersupply":case"mount":return k({menu:v});case"cpufreq":case"cpuidle":return k({menu:"cpu"});case"smartd":case"web":return T("log");case"apache":return T("cache");case"bind":return T("rndc");case"go":return T("expvar");case"isc":return T("dhcpd");case"anomaly":return k({});case"disk":return/(inodes|space)/.test(g)||/(inodes|space)/.test(w)?k({menu:"mount"}):k({menu:v});case"k8s":return k("state"===w?{menu:"Kubernetes State"}:w&&"container"!==w?{menu:"Kubernetes ".concat(w)}:{menu:"Kubernetes Containers",flavour:"k8s"});case"cgroup":var S=e.chartId.match(/.*[._/-:]qemu[._/-:]*/)||e.chartId.match(/.*[._/-:]kvm[._/-:]*/)?"cgqemu":"cgroup",Z=1===y.length?"Containers & VMs":void 0;return k({menuPattern:S,sectionTitle:Z});case"ovpn":var x=y.length>3&&"status"===y[1]&&"log"===y[2]?"".concat(v,"_").concat(w):v;return k({menuPattern:x});case"prometheus":if(b)return k({menu:"".concat(g.replace("-"," ")),menuIcon:"prometheus"});var P=e.subMenuId.split("_")[0];return k({menu:"".concat(P),menuIcon:"prometheus"});case"tc":if("tc.qos"===i&&(!("family"in h)||(null===(t=h[v])||void 0===t?void 0:t[e.subMenuId])===e.subMenuId)){var M=o.split("."),q=(0,n.Z)(M,2)[1];h[v]||(h[v]={}),h[v][e.subMenuId]=q.replace(/^(in_|out_)/,"").replace(/(_in|_out)$/,"")}return k({menu:v,priority:e.chartId.match(/.*-ifb$/)?e.priority-1:e.priority});case"dnsmasq":if(2==y.length&&"dhcp"===y[1])return k({menu:"".concat(v,"_").concat(w)});if(y.length>=2&&"dhcp"===y[1])return k({menuPattern:"".concat(v,"_").concat(w)});var C=y.length>1?v:void 0;return k({menuPattern:C});default:var L=y.length>1?v:void 0;return k({menuPattern:L})}}({chartId:s,subMenuId:o||"all",priority:e.priority,visible:e.visible,filteredOut:e.filteredOut,hidden:e.hidden},{name:a,context:r,submenuNames:t})},f=(s(64211),s(41874),s(41609)),g=s.n(f),b=s(7592),y=s(89692);function _(e,t){var s=Object.keys(e);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(e);t&&(n=n.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),s.push.apply(s,n)}return s}function v(e){for(var t=1;t<arguments.length;t++){var s=null!=arguments[t]?arguments[t]:{};t%2?_(Object(s),!0).forEach((function(t){(0,l.Z)(e,t,s[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(s)):_(Object(s)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(s,t))}))}return e}var w=function(e,t,s){var n=arguments.length>3&&void 0!==arguments[3]?arguments[3]:{},a={},o=[];return t.forEach((function(t){var r=s(t);(0,y.G_)(b.Z,e,r.context,[]).forEach((function(i,c){var l="function"===typeof i?i(v(v({},n),{},{id:r.id})):i;if(l&&!function(e,t){return!!e&&(Array.isArray(e)?e.some((function(e){return!g()(t(e))})):!g()(t(e)))}(l.hiddenWhen,s)&&(!l.domain||l.domain===r.domain)){var h="".concat(e,"|").concat(t,"|").concat(c),d=v(v({id:h,chartId:t},n),l);a[h]=d,o.push(h)}}))})),[a,o.sort((function(e,t){return a[e].priority-a[t].priority}))]};function k(e,t){var s=Object.keys(e);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(e);t&&(n=n.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),s.push.apply(s,n)}return s}function T(e){for(var t=1;t<arguments.length;t++){var s=null!=arguments[t]?arguments[t]:{};t%2?k(Object(s),!0).forEach((function(t){(0,l.Z)(e,t,s[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(s)):k(Object(s)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(s,t))}))}return e}var S=function(e,t,s){var n={},a={},o={},r={};return e.forEach((function(e){var a=t(e);a.id&&(s[e]=m(function(e){return T(T({},e),{},{family:(0,y.lV)(e.context,"family",e.family)})}(a),n))})),(0,i.Z)(e).sort((function(e,t){var n,a,o,r;return(null===(n=s[e])||void 0===n?void 0:n.priority)-(null===(a=s[t])||void 0===a?void 0:a.priority)||((null===(o=s[e])||void 0===o?void 0:o.key)||"").localeCompare((null===(r=s[t])||void 0===r?void 0:r.key)||"",void 0,{sensitivity:"accent",ignorePunctuation:!0})})).forEach((function(e){var t=s[e];if(t){var n="".concat(t.id,"|").concat(t.subMenuId);r[n]||(r[n]=[]),a[t.id]||(a[t.id]=new Set),o[t.id]||(o[t.id]=[]),r[n].push(t.chartId),a[t.id].add(n),o[t.id].push(t.chartId)}})),{chartMenus:s,menuGroups:a,menuGroupChartIds:o,subMenus:r,submenuNames:n}},Z=function(e,t){var s=arguments.length>2&&void 0!==arguments[2]?arguments[2]:{},a=s.os,o=s.extraKey,r={},c=S(e,t,r),l=c.menuGroups,d=c.menuGroupChartIds,u=c.subMenus,p=c.submenuNames,m={},f=Object.keys(l).reduce((function(e,s){var c=d[s],u=r[c[0]],p=c.find((function(e){return r[e].menuPattern})),f=p?r[p].menuPattern:"",g=(0,i.Z)(l[s]),b=w("mainheads",c,t,{os:a}),_=(0,n.Z)(b,2),v=_[0],k=_[1];return Object.assign(m,v),e[s]={level:0,id:s,menuPattern:f,priority:u.priority,headIds:k,subMenuIds:g,subMenuChartIds:c,name:(0,y.iK)(u),icon:(0,y.FO)(u),info:(0,y.oS)(u),link:"".concat((0,h.Z)("menu_".concat(s))),size:null!==k&&void 0!==k&&k.length?500:24,flavour:u.flavour,showConfig:!0,extraKey:o},e}),{}),g=Object.keys(u).reduce((function(e,s){var i,c=u[s],l=r[c[0]],d=f[l.id],g=d.id,b=d.menuPattern,_=w("heads",c,t,{os:a}),v=(0,n.Z)(_,2),k=v[0],T=v[1];Object.assign(m,k);var S=b||g,Z=l.subMenuId in(p[l.part1]||{})?"".concat(l.subMenuId," (").concat(null===(i=p[l.part1])||void 0===i?void 0:i[l.subMenuId],")"):(0,y.bF)(S,l.subMenuId);return e[s]={level:1,id:s,menuGroupId:g,priority:l.priority,chartIds:c,headIds:T,name:Z,info:(0,y.JK)(S,l.subMenuId),link:"".concat((0,h.Z)("menu_".concat(l.id,"_submenu_").concat(l.subMenuId))),size:28,showConfig:!0,extraKey:o},e}),{}),b=Object.keys(l),_={},v=b.reduce((function(e,s){var n=f[s];return _[n.id]=!0,[].concat((0,i.Z)(e),[T(T({},n),{},{sticky:!0})],(0,i.Z)(f[s].subMenuIds.reduce((function(e,n){var o=g[n];return _[o.id]=!0,[].concat((0,i.Z)(e),[T(T({},o),{},{sticky:!0})],(0,i.Z)(g[n].chartIds.map((function(e){var o=t(e);if(o)return m[e]=(0,y.ZP)(o,{menuId:s,subMenuId:n,sectionInfo:g[n].info},{os:a}),T(T({},m[e]),{},{level:2,size:365,menuKey:f[s].menuPattern||f[s].id})}))))}),[])))}),[]);return r=null,{stickyIds:_,allElements:v,menuGroupIds:b,menuGroupById:f,subMenuById:g,menuItemAttributesById:m}},x=s(71824),P=s(85993),M=s(62525),q=s(28989),C=s(45335),L=["container","ids","getObject","children","getMenu","deps"],D=[],I=function(e){var t=e.container,s=e.ids,n=e.getObject,a=e.children,r=e.getMenu,l=void 0===r?Z:r,h=e.deps,d=void 0===h?D:h,u=(0,c.Z)(e,L),p=(0,o.useMemo)((function(){return l(s,n,u)}),[n,s].concat((0,i.Z)(d))),m=p.allElements,f=p.menuGroupIds,g=p.menuGroupById,b=p.subMenuById,y=p.menuItemAttributesById,_=p.stickyIds;return o.createElement(x.At,{container:t,menuItemAttributesById:y,getObject:n,allElements:m,stickyIds:_},o.createElement(P.VC,{ids:f},o.createElement(P.fW,{menuGroupById:g},o.createElement(M.St,{subMenuById:b},o.createElement(q.SF,null,o.createElement(C.Ze,null,a))))))},N=function(e){return o.createElement(r.Flex,(0,a.Z)({column:!0,height:"100%",padding:[0,1],overflow:"auto",className:"node-view__container"},e))},R=function(e){var t=(0,o.useRef)(),s=(0,o.useState)(),i=(0,n.Z)(s,2),c=i[0],l=i[1];return(0,o.useLayoutEffect)((function(){l(t.current)}),[]),o.createElement(r.Flex,{ref:t,height:"100%",width:"100%",overflow:{vertical:"auto"}},c&&o.createElement(I,(0,a.Z)({},e,{container:c})))}},22962:function(e,t,s){s.d(t,{Z:function(){return x}});var n=s(29439),a=s(67294),o=s(93416),r=s(65351),i=s(16645),c=s(7693),l=s(92903),h=s(62200),d=s(74059),u=s(9058),p=s(29748),m=s(37518),f=s(5934),g=s(97723),b=s(47133),y=s(78266),_=s(59112),v=s(46667),w=s(33427),k=s(79619),T=s(67336),S=(0,a.memo)((function(e){var t=e.id,s=e.spaceId,r=e.roomId,i=e.chartId,c=e.name,l=(0,v.Z)(),h=(0,n.Z)(l,4),p=h[0],f=h[2],y=h[3],_=(0,b.LJ)(t),S=_.fullyLoaded,Z=_.processing,x=(0,T.O9)(t,{onSuccess:function(){(0,w.FR)("Chart added to ".concat(c)),y()}}),P=p&&S,M=(0,d.vu)(s,"slug"),q=(0,m.tE)(r,"slug"),C=(0,g.jN)(t),L=(0,k.Z)(p&&t,{spaceId:s,spaceSlug:M,roomId:r,roomSlug:q}),D=(0,u.e)();(0,a.useEffect)((function(){if(!L&&P){var e=D.getNode({id:i}).getAttributes(),t=e.aggregationMethod,s=e.selectedDimensions,n=e.groupBy,a=e.groupByLabel,o=e.groupingMethod,r=e.chartType,c=e.selectedLabels,l=e.nodesScope,h=e.selectedInstances,d=e.selectedNodes,u=e.contextScope;C(u,{aggregationMethod:t,selectedDimensions:s,groupBy:n,groupByLabel:a,groupingMethod:o,chartType:r,selectedLabels:c,selectedNodes:d,selectedInstances:h,nodesScope:l},(function(){return setTimeout(x,100)}))}}),[P,L]);var I=p&&(Z||L);return a.createElement(o.Button,{icon:"plus",onClick:f,isLoading:I,disabled:I})})),Z=function(e){var t=e.spaceId,s=e.roomId,n=e.chartId;return[{id:"name",accessorKey:"name",header:"Dashboards",cell:function(e){var t=e.getValue;return a.createElement(o.Flex,{alignItems:"center",gap:3},a.createElement(o.Icon,{name:"dashboards",size:"small",color:"text"}),a.createElement(o.Text,null,t()))}},{id:"plusButton",accessorKey:"id",header:"",cell:function(e){var o=e.getValue,r=e.row;return a.createElement(S,{id:o(),spaceId:t,roomId:s,chartId:n,name:r.original.name})}}]},x=function(e){var t=e.onClose;(0,p.Z)();var s=(0,m.UL)(),v=(0,m.Hm)("name"),w=(0,d.th)(),k=(0,r.Z)("addToDashboardModal"),T=(k.params,k.params.chartId),S=(0,f.ie)(),x=(0,b.QF)(S),P=(0,a.useState)(""),M=(0,n.Z)(P,2),q=M[0],C=M[1],L=(0,a.useState)(!1),D=(0,n.Z)(L,2),I=D[0],N=D[1],R=q.length>0,U=(0,g.Di)(w,s,{onSuccess:t}),A=(0,u.e)().getNode({id:T}),B=(0,a.useMemo)((function(){return Z({spaceId:w,roomId:s,chartId:T})}),[w,s,T]),F=function(){if(A){var e=A.getAttributes(),t=e.aggregationMethod,s=e.selectedDimensions,n=e.groupBy,a=e.groupByLabel,o=e.groupingMethod,r=e.chartType,i=e.selectedLabels,c=e.nodesScope,l=e.selectedInstances,h=e.selectedNodes,d=e.contextScope;U(q,d,{aggregationMethod:t,selectedDimensions:s,groupBy:n,groupByLabel:a,groupingMethod:o,chartType:r,selectedLabels:i,nodesScope:c,selectedInstances:l,selectedNodes:h})}},O=(0,f.L)();return a.createElement(i.u6,{onClose:t},a.createElement(c.x,{onClose:t,title:"Add to Dashboard"}),a.createElement(l.B,null,"Select Dashboard"),a.createElement(i.TZ,{gap:3},a.createElement(o.H4,null,"Add chart to one or more dashboards from the ",v),O?a.createElement(o.Table,{dataColumns:B,data:x}):a.createElement(y.Z,{title:"Loading dashboards..."}),a.createElement(o.H4,null,"Create a new dashboard and add ",T," to it"),a.createElement(_.Z,{value:q,label:"Name",onChange:function(e){return C(e.target.value)},isValid:I,setIsValid:N,isDirty:R,instantFeedback:"all",onKeyDown:function(e){return e.keyCode===h.DV&&I&&F}}),a.createElement(o.Button,{label:"Create & add",onClick:F,disabled:!A||!q})))}},59112:function(e,t,s){var n=s(87462),a=s(29439),o=s(93433),r=s(45987),i=(s(92222),s(67294)),c=s(93416),l=s(30688),h=s(71752),d=s(87574),u=["value","isValid","setIsValid","onChange","label","validators","hint"],p="Dashboard name cannot exceed ".concat(d.x," characters"),m=function(e){var t=e.length<=d.x;return(0,l.f)(t,p)};t.Z=function(e){var t=e.value,s=e.isValid,d=e.setIsValid,p=e.onChange,f=e.label,g=e.validators,b=void 0===g?[]:g,y=e.hint,_=(0,r.Z)(e,u),v=(0,l.A)([m].concat((0,o.Z)(b))),w=(0,i.useState)(""),k=(0,a.Z)(w,2),T=k[0],S=k[1];return(0,i.useEffect)((function(){var e=v(t),n=e.isValid,a=(0,h.T)(e);!s&&n?d(!0):s&&!n&&d(!1),S(a||"")}),[s,d,v,t]),i.createElement(c.TextInput,(0,n.Z)({label:f||" ",name:"userName",placeholder:"Enter dashboard name",value:t,onChange:p,hint:y,error:!s&&T},_))}},59264:function(e,t,s){var n=s(29439);s(92222);t.Z=function(e){var t=new Date(e).toDateString().split(" "),s=(0,n.Z)(t,4),a=s[1],o=s[2],r=s[3];return"".concat(a," ").concat(o,", ").concat(r)}},32864:function(e,t,s){s.d(t,{K:function(){return c}});var n=s(67294),a=s(93416),o=s(82351),r=s(59264),i=s(91008),c=function(e){var t=e.name;return n.createElement(a.Flex,{width:"300px",column:!0,gap:1},n.createElement(a.Text,{strong:!0},"Locked!"),n.createElement(a.Text,null,"The dashboard ",n.createElement(a.Text,{strong:!0},t)," is locked."),n.createElement(a.Text,null,"Your plan is limited to 1 dashboard. You can delete some dashboards or upgrade your plan for no limitations."))},l=function(e){var t,s=e.getValue,r=e.row,l="notAvailable"==(null===r||void 0===r||null===(t=r.original)||void 0===t?void 0:t.state),h=s();return l?n.createElement(o.Z,{content:n.createElement(c,{name:h}),align:"bottom",isBasic:!0},n.createElement(a.Flex,{alignItems:"center"},n.createElement(a.Text,null,h),n.createElement(a.Icon,{name:"padlock",height:"12px",color:"text"}))):n.createElement(i.Z,{as:"Link",to:r.original.slug},h)};t.Z=function(){return[{id:"name",accessorKey:"name",header:"Name",cell:l},{id:"lastModified",accessorKey:"updatedAt",header:"Last modified",cell:function(e){var t=e.getValue;return(0,r.Z)(t())}},{id:"createdAt",accessorKey:"createdAt",header:"Created",cell:function(e){var t=e.getValue;return(0,r.Z)(t())}}]}},87574:function(e,t,s){s.d(t,{X:function(){return o},x:function(){return a}});var n=s(46189),a=50,o="".concat(n.Z.assetsBaseURL,"/img/new-dashboard.svg")},274:function(e,t,s){s.d(t,{Q5:function(){return l},Sz:function(){return u},fQ:function(){return h},lh:function(){return p}});var n=s(4942),a=s(45987),o=(s(21249),s(57640),s(9924),s(92222),s(47941),s(82526),s(57327),s(41539),s(88449),s(2490),s(59849),s(38880),s(15581),s(34514),s(54747),s(49337),s(33321),s(69070),s(26398)),r=["accountID"];function i(e,t){var s=Object.keys(e);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(e);t&&(n=n.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),s.push.apply(s,n)}return s}var c=function(e){return e.map((function(e){return function(e){for(var t=1;t<arguments.length;t++){var s=null!=arguments[t]?arguments[t]:{};t%2?i(Object(s),!0).forEach((function(t){(0,n.Z)(e,t,s[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(s)):i(Object(s)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(s,t))}))}return e}({id:e.accountID},(0,a.Z)(e,r))}))},l=function(e){return o.Z.get("/api/v2/spaces/".concat(e,"/members"),{allow401:!0,transform:c})},h=function(e,t){return o.Z.get("/api/v2/spaces/".concat(e,"/rooms/").concat(t,"/members"),{allow401:!0,transform:c})},d=function(e){var t=e.account_ids;return"account_ids=".concat(t.join(","))},u=function(e,t){return o.Z.delete("/api/v1/spaces/".concat(e,"/members"),{paramsSerializer:d,params:{account_ids:t}})},p=function(e,t,s){return o.Z.patch("/api/v1/spaces/".concat(e,"/members/").concat(t),s)}}}]);
\ No newline at end of file |