From 517a443636daa1e8085cb4e5325524a54e8a8fd7 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Tue, 17 Oct 2023 11:30:23 +0200 Subject: Merging upstream version 1.43.0. Signed-off-by: Daniel Baumann --- .../python.d.plugin/pandas/integrations/pandas.md | 364 +++++++++++++++++++++ 1 file changed, 364 insertions(+) create mode 100644 collectors/python.d.plugin/pandas/integrations/pandas.md (limited to 'collectors/python.d.plugin/pandas/integrations/pandas.md') diff --git a/collectors/python.d.plugin/pandas/integrations/pandas.md b/collectors/python.d.plugin/pandas/integrations/pandas.md new file mode 100644 index 000000000..d5da2f262 --- /dev/null +++ b/collectors/python.d.plugin/pandas/integrations/pandas.md @@ -0,0 +1,364 @@ + + +# Pandas + + + + + +Plugin: python.d.plugin +Module: pandas + + + +## Overview + +[Pandas](https://pandas.pydata.org/) is a de-facto standard in reading and processing most types of structured data in Python. +If you have metrics appearing in a CSV, JSON, XML, HTML, or [other supported format](https://pandas.pydata.org/docs/user_guide/io.html), +either locally or via some HTTP endpoint, you can easily ingest and present those metrics in Netdata, by leveraging the Pandas collector. + +This collector can be used to collect pretty much anything that can be read by Pandas, and then processed by Pandas. + + +The collector uses [pandas](https://pandas.pydata.org/) to pull data and do pandas-based preprocessing, before feeding to Netdata. + + +This collector is supported on all platforms. + +This collector supports collecting metrics from multiple instances of this integration, including remote instances. + + +### Default Behavior + +#### Auto-Detection + +This integration doesn't support auto-detection. + +#### Limits + +The default configuration for this integration does not impose any limits on data collection. + +#### Performance Impact + +The default configuration for this integration is not expected to impose a significant performance impact on the system. + + +## Metrics + +Metrics grouped by *scope*. + +The scope defines the instance that the metric belongs to. An instance is uniquely identified by a set of labels. + +This collector is expecting one row in the final pandas DataFrame. It is that first row that will be taken +as the most recent values for each dimension on each chart using (`df.to_dict(orient='records')[0]`). +See [pd.to_dict()](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_dict.html)." + + +### Per Pandas instance + +These metrics refer to the entire monitored application. + + +This scope has no labels. + +Metrics: + +| Metric | Dimensions | Unit | +|:------|:----------|:----| + + + +## Alerts + +There are no alerts configured by default for this integration. + + +## Setup + +### Prerequisites + +#### Python Requirements + +This collector depends on some Python (Python 3 only) packages that can usually be installed via `pip` or `pip3`. + +```bash +sudo pip install pandas requests +``` + +Note: If you would like to use [`pandas.read_sql`](https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html) to query a database, you will need to install the below packages as well. + +```bash +sudo pip install 'sqlalchemy<2.0' psycopg2-binary +``` + + + +### Configuration + +#### File + +The configuration file name for this integration is `python.d/pandas.conf`. + + +You can edit the configuration file using the `edit-config` script from the +Netdata [config directory](https://github.com/netdata/netdata/blob/master/docs/configure/nodes.md#the-netdata-config-directory). + +```bash +cd /etc/netdata 2>/dev/null || cd /opt/netdata/etc/netdata +sudo ./edit-config python.d/pandas.conf +``` +#### Options + +There are 2 sections: + +* Global variables +* One or more JOBS that can define multiple different instances to monitor. + +The following options can be defined globally: priority, penalty, autodetection_retry, update_every, but can also be defined per JOB to override the global values. + +Additionally, the following collapsed table contains all the options that can be configured inside a JOB definition. + +Every configuration JOB starts with a `job_name` value which will appear in the dashboard, unless a `name` parameter is specified. + + +
Config options + +| Name | Description | Default | Required | +|:----|:-----------|:-------|:--------:| +| chart_configs | an array of chart configuration dictionaries | [] | True | +| chart_configs.name | name of the chart to be displayed in the dashboard. | None | True | +| chart_configs.title | title of the chart to be displayed in the dashboard. | None | True | +| chart_configs.family | [family](https://github.com/netdata/netdata/blob/master/docs/cloud/visualize/interact-new-charts.md#families) of the chart to be displayed in the dashboard. | None | True | +| chart_configs.context | [context](https://github.com/netdata/netdata/blob/master/docs/cloud/visualize/interact-new-charts.md#contexts) of the chart to be displayed in the dashboard. | None | True | +| chart_configs.type | the type of the chart to be displayed in the dashboard. | None | True | +| chart_configs.units | the units of the chart to be displayed in the dashboard. | None | True | +| chart_configs.df_steps | a series of pandas operations (one per line) that each returns a dataframe. | None | True | +| update_every | Sets the default data collection frequency. | 5 | False | +| priority | Controls the order of charts at the netdata dashboard. | 60000 | False | +| autodetection_retry | Sets the job re-check interval in seconds. | 0 | False | +| penalty | Indicates whether to apply penalty to update_every in case of failures. | yes | False | +| name | Job name. This value will overwrite the `job_name` value. JOBS with the same name are mutually exclusive. Only one of them will be allowed running at any time. This allows autodetection to try several alternatives and pick the one that works. | | False | + +
+ +#### Examples + +##### Temperature API Example + +example pulling some hourly temperature data, a chart for today forecast (mean,min,max) and another chart for current. + +
Config + +```yaml +temperature: + name: "temperature" + update_every: 5 + chart_configs: + - name: "temperature_forecast_by_city" + title: "Temperature By City - Today Forecast" + family: "temperature.today" + context: "pandas.temperature" + type: "line" + units: "Celsius" + df_steps: > + pd.DataFrame.from_dict( + {city: requests.get(f'https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lng}&hourly=temperature_2m').json()['hourly']['temperature_2m'] + for (city,lat,lng) + in [ + ('dublin', 53.3441, -6.2675), + ('athens', 37.9792, 23.7166), + ('london', 51.5002, -0.1262), + ('berlin', 52.5235, 13.4115), + ('paris', 48.8567, 2.3510), + ('madrid', 40.4167, -3.7033), + ('new_york', 40.71, -74.01), + ('los_angeles', 34.05, -118.24), + ] + } + ); + df.describe(); # get aggregate stats for each city; + df.transpose()[['mean', 'max', 'min']].reset_index(); # just take mean, min, max; + df.rename(columns={'index':'city'}); # some column renaming; + df.pivot(columns='city').mean().to_frame().reset_index(); # force to be one row per city; + df.rename(columns={0:'degrees'}); # some column renaming; + pd.concat([df, df['city']+'_'+df['level_0']], axis=1); # add new column combining city and summary measurement label; + df.rename(columns={0:'measurement'}); # some column renaming; + df[['measurement', 'degrees']].set_index('measurement'); # just take two columns we want; + df.sort_index(); # sort by city name; + df.transpose(); # transpose so its just one wide row; + - name: "temperature_current_by_city" + title: "Temperature By City - Current" + family: "temperature.current" + context: "pandas.temperature" + type: "line" + units: "Celsius" + df_steps: > + pd.DataFrame.from_dict( + {city: requests.get(f'https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lng}¤t_weather=true').json()['current_weather'] + for (city,lat,lng) + in [ + ('dublin', 53.3441, -6.2675), + ('athens', 37.9792, 23.7166), + ('london', 51.5002, -0.1262), + ('berlin', 52.5235, 13.4115), + ('paris', 48.8567, 2.3510), + ('madrid', 40.4167, -3.7033), + ('new_york', 40.71, -74.01), + ('los_angeles', 34.05, -118.24), + ] + } + ); + df.transpose(); + df[['temperature']]; + df.transpose(); + +``` +
+ +##### API CSV Example + +example showing a read_csv from a url and some light pandas data wrangling. + +
Config + +```yaml +example_csv: + name: "example_csv" + update_every: 2 + chart_configs: + - name: "london_system_cpu" + title: "London System CPU - Ratios" + family: "london_system_cpu" + context: "pandas" + type: "line" + units: "n" + df_steps: > + pd.read_csv('https://london.my-netdata.io/api/v1/data?chart=system.cpu&format=csv&after=-60', storage_options={'User-Agent': 'netdata'}); + df.drop('time', axis=1); + df.mean().to_frame().transpose(); + df.apply(lambda row: (row.user / row.system), axis = 1).to_frame(); + df.rename(columns={0:'average_user_system_ratio'}); + df*100; + +``` +
+ +##### API JSON Example + +example showing a read_json from a url and some light pandas data wrangling. + +
Config + +```yaml +example_json: + name: "example_json" + update_every: 2 + chart_configs: + - name: "london_system_net" + title: "London System Net - Total Bandwidth" + family: "london_system_net" + context: "pandas" + type: "area" + units: "kilobits/s" + df_steps: > + pd.DataFrame(requests.get('https://london.my-netdata.io/api/v1/data?chart=system.net&format=json&after=-1').json()['data'], columns=requests.get('https://london.my-netdata.io/api/v1/data?chart=system.net&format=json&after=-1').json()['labels']); + df.drop('time', axis=1); + abs(df); + df.sum(axis=1).to_frame(); + df.rename(columns={0:'total_bandwidth'}); + +``` +
+ +##### XML Example + +example showing a read_xml from a url and some light pandas data wrangling. + +
Config + +```yaml +example_xml: + name: "example_xml" + update_every: 2 + line_sep: "|" + chart_configs: + - name: "temperature_forcast" + title: "Temperature Forecast" + family: "temp" + context: "pandas.temp" + type: "line" + units: "celsius" + df_steps: > + pd.read_xml('http://metwdb-openaccess.ichec.ie/metno-wdb2ts/locationforecast?lat=54.7210798611;long=-8.7237392806', xpath='./product/time[1]/location/temperature', parser='etree')| + df.rename(columns={'value': 'dublin'})| + df[['dublin']]| + +``` +
+ +##### SQL Example + +example showing a read_sql from a postgres database using sqlalchemy. + +
Config + +```yaml +sql: + name: "sql" + update_every: 5 + chart_configs: + - name: "sql" + title: "SQL Example" + family: "sql.example" + context: "example" + type: "line" + units: "percent" + df_steps: > + pd.read_sql_query( + sql='\ + select \ + random()*100 as metric_1, \ + random()*100 as metric_2 \ + ', + con=create_engine('postgresql://localhost/postgres?user=netdata&password=netdata') + ); + +``` +
+ + + +## Troubleshooting + +### Debug Mode + +To troubleshoot issues with the `pandas` collector, run the `python.d.plugin` with the debug option enabled. The output +should give you clues as to why the collector isn't working. + +- Navigate to the `plugins.d` directory, usually at `/usr/libexec/netdata/plugins.d/`. If that's not the case on + your system, open `netdata.conf` and look for the `plugins` setting under `[directories]`. + + ```bash + cd /usr/libexec/netdata/plugins.d/ + ``` + +- Switch to the `netdata` user. + + ```bash + sudo -u netdata -s + ``` + +- Run the `python.d.plugin` to debug the collector: + + ```bash + ./python.d.plugin pandas debug trace + ``` + + -- cgit v1.2.3