From a64a253794ac64cb40befee54db53bde17dd0d49 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 7 Nov 2018 13:19:29 +0100 Subject: New upstream version 1.11.0+dfsg Signed-off-by: Daniel Baumann --- .../urllib3/contrib/_securetransport/low_level.py | 344 +++++++++++++++++++++ 1 file changed, 344 insertions(+) create mode 100644 collectors/python.d.plugin/python_modules/urllib3/contrib/_securetransport/low_level.py (limited to 'collectors/python.d.plugin/python_modules/urllib3/contrib/_securetransport/low_level.py') diff --git a/collectors/python.d.plugin/python_modules/urllib3/contrib/_securetransport/low_level.py b/collectors/python.d.plugin/python_modules/urllib3/contrib/_securetransport/low_level.py new file mode 100644 index 000000000..0f79a1372 --- /dev/null +++ b/collectors/python.d.plugin/python_modules/urllib3/contrib/_securetransport/low_level.py @@ -0,0 +1,344 @@ +# SPDX-License-Identifier: MIT +""" +Low-level helpers for the SecureTransport bindings. + +These are Python functions that are not directly related to the high-level APIs +but are necessary to get them to work. They include a whole bunch of low-level +CoreFoundation messing about and memory management. The concerns in this module +are almost entirely about trying to avoid memory leaks and providing +appropriate and useful assistance to the higher-level code. +""" +import base64 +import ctypes +import itertools +import re +import os +import ssl +import tempfile + +from .bindings import Security, CoreFoundation, CFConst + + +# This regular expression is used to grab PEM data out of a PEM bundle. +_PEM_CERTS_RE = re.compile( + b"-----BEGIN CERTIFICATE-----\n(.*?)\n-----END CERTIFICATE-----", re.DOTALL +) + + +def _cf_data_from_bytes(bytestring): + """ + Given a bytestring, create a CFData object from it. This CFData object must + be CFReleased by the caller. + """ + return CoreFoundation.CFDataCreate( + CoreFoundation.kCFAllocatorDefault, bytestring, len(bytestring) + ) + + +def _cf_dictionary_from_tuples(tuples): + """ + Given a list of Python tuples, create an associated CFDictionary. + """ + dictionary_size = len(tuples) + + # We need to get the dictionary keys and values out in the same order. + keys = (t[0] for t in tuples) + values = (t[1] for t in tuples) + cf_keys = (CoreFoundation.CFTypeRef * dictionary_size)(*keys) + cf_values = (CoreFoundation.CFTypeRef * dictionary_size)(*values) + + return CoreFoundation.CFDictionaryCreate( + CoreFoundation.kCFAllocatorDefault, + cf_keys, + cf_values, + dictionary_size, + CoreFoundation.kCFTypeDictionaryKeyCallBacks, + CoreFoundation.kCFTypeDictionaryValueCallBacks, + ) + + +def _cf_string_to_unicode(value): + """ + Creates a Unicode string from a CFString object. Used entirely for error + reporting. + + Yes, it annoys me quite a lot that this function is this complex. + """ + value_as_void_p = ctypes.cast(value, ctypes.POINTER(ctypes.c_void_p)) + + string = CoreFoundation.CFStringGetCStringPtr( + value_as_void_p, + CFConst.kCFStringEncodingUTF8 + ) + if string is None: + buffer = ctypes.create_string_buffer(1024) + result = CoreFoundation.CFStringGetCString( + value_as_void_p, + buffer, + 1024, + CFConst.kCFStringEncodingUTF8 + ) + if not result: + raise OSError('Error copying C string from CFStringRef') + string = buffer.value + if string is not None: + string = string.decode('utf-8') + return string + + +def _assert_no_error(error, exception_class=None): + """ + Checks the return code and throws an exception if there is an error to + report + """ + if error == 0: + return + + cf_error_string = Security.SecCopyErrorMessageString(error, None) + output = _cf_string_to_unicode(cf_error_string) + CoreFoundation.CFRelease(cf_error_string) + + if output is None or output == u'': + output = u'OSStatus %s' % error + + if exception_class is None: + exception_class = ssl.SSLError + + raise exception_class(output) + + +def _cert_array_from_pem(pem_bundle): + """ + Given a bundle of certs in PEM format, turns them into a CFArray of certs + that can be used to validate a cert chain. + """ + der_certs = [ + base64.b64decode(match.group(1)) + for match in _PEM_CERTS_RE.finditer(pem_bundle) + ] + if not der_certs: + raise ssl.SSLError("No root certificates specified") + + cert_array = CoreFoundation.CFArrayCreateMutable( + CoreFoundation.kCFAllocatorDefault, + 0, + ctypes.byref(CoreFoundation.kCFTypeArrayCallBacks) + ) + if not cert_array: + raise ssl.SSLError("Unable to allocate memory!") + + try: + for der_bytes in der_certs: + certdata = _cf_data_from_bytes(der_bytes) + if not certdata: + raise ssl.SSLError("Unable to allocate memory!") + cert = Security.SecCertificateCreateWithData( + CoreFoundation.kCFAllocatorDefault, certdata + ) + CoreFoundation.CFRelease(certdata) + if not cert: + raise ssl.SSLError("Unable to build cert object!") + + CoreFoundation.CFArrayAppendValue(cert_array, cert) + CoreFoundation.CFRelease(cert) + except Exception: + # We need to free the array before the exception bubbles further. + # We only want to do that if an error occurs: otherwise, the caller + # should free. + CoreFoundation.CFRelease(cert_array) + + return cert_array + + +def _is_cert(item): + """ + Returns True if a given CFTypeRef is a certificate. + """ + expected = Security.SecCertificateGetTypeID() + return CoreFoundation.CFGetTypeID(item) == expected + + +def _is_identity(item): + """ + Returns True if a given CFTypeRef is an identity. + """ + expected = Security.SecIdentityGetTypeID() + return CoreFoundation.CFGetTypeID(item) == expected + + +def _temporary_keychain(): + """ + This function creates a temporary Mac keychain that we can use to work with + credentials. This keychain uses a one-time password and a temporary file to + store the data. We expect to have one keychain per socket. The returned + SecKeychainRef must be freed by the caller, including calling + SecKeychainDelete. + + Returns a tuple of the SecKeychainRef and the path to the temporary + directory that contains it. + """ + # Unfortunately, SecKeychainCreate requires a path to a keychain. This + # means we cannot use mkstemp to use a generic temporary file. Instead, + # we're going to create a temporary directory and a filename to use there. + # This filename will be 8 random bytes expanded into base64. We also need + # some random bytes to password-protect the keychain we're creating, so we + # ask for 40 random bytes. + random_bytes = os.urandom(40) + filename = base64.b64encode(random_bytes[:8]).decode('utf-8') + password = base64.b64encode(random_bytes[8:]) # Must be valid UTF-8 + tempdirectory = tempfile.mkdtemp() + + keychain_path = os.path.join(tempdirectory, filename).encode('utf-8') + + # We now want to create the keychain itself. + keychain = Security.SecKeychainRef() + status = Security.SecKeychainCreate( + keychain_path, + len(password), + password, + False, + None, + ctypes.byref(keychain) + ) + _assert_no_error(status) + + # Having created the keychain, we want to pass it off to the caller. + return keychain, tempdirectory + + +def _load_items_from_file(keychain, path): + """ + Given a single file, loads all the trust objects from it into arrays and + the keychain. + Returns a tuple of lists: the first list is a list of identities, the + second a list of certs. + """ + certificates = [] + identities = [] + result_array = None + + with open(path, 'rb') as f: + raw_filedata = f.read() + + try: + filedata = CoreFoundation.CFDataCreate( + CoreFoundation.kCFAllocatorDefault, + raw_filedata, + len(raw_filedata) + ) + result_array = CoreFoundation.CFArrayRef() + result = Security.SecItemImport( + filedata, # cert data + None, # Filename, leaving it out for now + None, # What the type of the file is, we don't care + None, # what's in the file, we don't care + 0, # import flags + None, # key params, can include passphrase in the future + keychain, # The keychain to insert into + ctypes.byref(result_array) # Results + ) + _assert_no_error(result) + + # A CFArray is not very useful to us as an intermediary + # representation, so we are going to extract the objects we want + # and then free the array. We don't need to keep hold of keys: the + # keychain already has them! + result_count = CoreFoundation.CFArrayGetCount(result_array) + for index in range(result_count): + item = CoreFoundation.CFArrayGetValueAtIndex( + result_array, index + ) + item = ctypes.cast(item, CoreFoundation.CFTypeRef) + + if _is_cert(item): + CoreFoundation.CFRetain(item) + certificates.append(item) + elif _is_identity(item): + CoreFoundation.CFRetain(item) + identities.append(item) + finally: + if result_array: + CoreFoundation.CFRelease(result_array) + + CoreFoundation.CFRelease(filedata) + + return (identities, certificates) + + +def _load_client_cert_chain(keychain, *paths): + """ + Load certificates and maybe keys from a number of files. Has the end goal + of returning a CFArray containing one SecIdentityRef, and then zero or more + SecCertificateRef objects, suitable for use as a client certificate trust + chain. + """ + # Ok, the strategy. + # + # This relies on knowing that macOS will not give you a SecIdentityRef + # unless you have imported a key into a keychain. This is a somewhat + # artificial limitation of macOS (for example, it doesn't necessarily + # affect iOS), but there is nothing inside Security.framework that lets you + # get a SecIdentityRef without having a key in a keychain. + # + # So the policy here is we take all the files and iterate them in order. + # Each one will use SecItemImport to have one or more objects loaded from + # it. We will also point at a keychain that macOS can use to work with the + # private key. + # + # Once we have all the objects, we'll check what we actually have. If we + # already have a SecIdentityRef in hand, fab: we'll use that. Otherwise, + # we'll take the first certificate (which we assume to be our leaf) and + # ask the keychain to give us a SecIdentityRef with that cert's associated + # key. + # + # We'll then return a CFArray containing the trust chain: one + # SecIdentityRef and then zero-or-more SecCertificateRef objects. The + # responsibility for freeing this CFArray will be with the caller. This + # CFArray must remain alive for the entire connection, so in practice it + # will be stored with a single SSLSocket, along with the reference to the + # keychain. + certificates = [] + identities = [] + + # Filter out bad paths. + paths = (path for path in paths if path) + + try: + for file_path in paths: + new_identities, new_certs = _load_items_from_file( + keychain, file_path + ) + identities.extend(new_identities) + certificates.extend(new_certs) + + # Ok, we have everything. The question is: do we have an identity? If + # not, we want to grab one from the first cert we have. + if not identities: + new_identity = Security.SecIdentityRef() + status = Security.SecIdentityCreateWithCertificate( + keychain, + certificates[0], + ctypes.byref(new_identity) + ) + _assert_no_error(status) + identities.append(new_identity) + + # We now want to release the original certificate, as we no longer + # need it. + CoreFoundation.CFRelease(certificates.pop(0)) + + # We now need to build a new CFArray that holds the trust chain. + trust_chain = CoreFoundation.CFArrayCreateMutable( + CoreFoundation.kCFAllocatorDefault, + 0, + ctypes.byref(CoreFoundation.kCFTypeArrayCallBacks), + ) + for item in itertools.chain(identities, certificates): + # ArrayAppendValue does a CFRetain on the item. That's fine, + # because the finally block will release our other refs to them. + CoreFoundation.CFArrayAppendValue(trust_chain, item) + + return trust_chain + finally: + for obj in itertools.chain(identities, certificates): + CoreFoundation.CFRelease(obj) -- cgit v1.2.3