// SPDX-License-Identifier: GPL-3.0-or-later /* * netdata apps.plugin * (C) Copyright 2023 Netdata Inc. * Released under GPL v3+ */ #include "collectors/all.h" #include "libnetdata/libnetdata.h" #include "libnetdata/required_dummies.h" #define APPS_PLUGIN_PROCESSES_FUNCTION_DESCRIPTION "Detailed information on the currently running processes." #define APPS_PLUGIN_FUNCTIONS() do { \ fprintf(stdout, PLUGINSD_KEYWORD_FUNCTION " \"processes\" %d \"%s\"\n", PLUGINS_FUNCTIONS_TIMEOUT_DEFAULT, APPS_PLUGIN_PROCESSES_FUNCTION_DESCRIPTION); \ } while(0) #define APPS_PLUGIN_GLOBAL_FUNCTIONS() do { \ fprintf(stdout, PLUGINSD_KEYWORD_FUNCTION " GLOBAL \"processes\" %d \"%s\"\n", PLUGINS_FUNCTIONS_TIMEOUT_DEFAULT, APPS_PLUGIN_PROCESSES_FUNCTION_DESCRIPTION); \ } while(0) // ---------------------------------------------------------------------------- // debugging static int debug_enabled = 0; static inline void debug_log_int(const char *fmt, ... ) { va_list args; fprintf( stderr, "apps.plugin: "); va_start( args, fmt ); vfprintf( stderr, fmt, args ); va_end( args ); fputc('\n', stderr); } #ifdef NETDATA_INTERNAL_CHECKS #define debug_log(fmt, args...) do { if(unlikely(debug_enabled)) debug_log_int(fmt, ##args); } while(0) #else static inline void debug_log_dummy(void) {} #define debug_log(fmt, args...) debug_log_dummy() #endif // ---------------------------------------------------------------------------- #ifdef __FreeBSD__ #include #endif // ---------------------------------------------------------------------------- // per O/S configuration // the minimum PID of the system // this is also the pid of the init process #define INIT_PID 1 // if the way apps.plugin will work, will read the entire process list, // including the resource utilization of each process, instantly // set this to 1 // when set to 0, apps.plugin builds a sort list of processes, in order // to process children processes, before parent processes #ifdef __FreeBSD__ #define ALL_PIDS_ARE_READ_INSTANTLY 1 #else #define ALL_PIDS_ARE_READ_INSTANTLY 0 #endif // ---------------------------------------------------------------------------- // string lengths #define MAX_COMPARE_NAME 100 #define MAX_NAME 100 #define MAX_CMDLINE 16384 // ---------------------------------------------------------------------------- // the rates we are going to send to netdata will have this detail a value of: // - 1 will send just integer parts to netdata // - 100 will send 2 decimal points // - 1000 will send 3 decimal points // etc. #define RATES_DETAIL 10000ULL // ---------------------------------------------------------------------------- // factor for calculating correct CPU time values depending on units of raw data static unsigned int time_factor = 0; // ---------------------------------------------------------------------------- // to avoid reallocating too frequently, we can increase the number of spare // file descriptors used by processes. // IMPORTANT: // having a lot of spares, increases the CPU utilization of the plugin. #define MAX_SPARE_FDS 1 // ---------------------------------------------------------------------------- // command line options static int update_every = 1, enable_guest_charts = 0, #ifdef __FreeBSD__ enable_file_charts = 0, #else enable_file_charts = 1, max_fds_cache_seconds = 60, #endif enable_function_cmdline = 0, enable_detailed_uptime_charts = 0, enable_users_charts = 1, enable_groups_charts = 1, include_exited_childs = 1; // will be changed to getenv(NETDATA_USER_CONFIG_DIR) if it exists static char *user_config_dir = CONFIG_DIR; static char *stock_config_dir = LIBCONFIG_DIR; // some variables for keeping track of processes count by states typedef enum { PROC_STATUS_RUNNING = 0, PROC_STATUS_SLEEPING_D, // uninterruptible sleep PROC_STATUS_SLEEPING, // interruptible sleep PROC_STATUS_ZOMBIE, PROC_STATUS_STOPPED, PROC_STATUS_END, //place holder for ending enum fields } proc_state; #ifndef __FreeBSD__ static proc_state proc_state_count[PROC_STATUS_END]; static const char *proc_states[] = { [PROC_STATUS_RUNNING] = "running", [PROC_STATUS_SLEEPING] = "sleeping_interruptible", [PROC_STATUS_SLEEPING_D] = "sleeping_uninterruptible", [PROC_STATUS_ZOMBIE] = "zombie", [PROC_STATUS_STOPPED] = "stopped", }; #endif // ---------------------------------------------------------------------------- // internal flags // handled in code (automatically set) // log each problem once per process // log flood protection flags (log_thrown) typedef enum __attribute__((packed)) { PID_LOG_IO = (1 << 0), PID_LOG_STATUS = (1 << 1), PID_LOG_CMDLINE = (1 << 2), PID_LOG_FDS = (1 << 3), PID_LOG_STAT = (1 << 4), PID_LOG_LIMITS = (1 << 5), PID_LOG_LIMITS_DETAIL = (1 << 6), } PID_LOG; static int show_guest_time = 0, // 1 when guest values are collected show_guest_time_old = 0, proc_pid_cmdline_is_needed = 0; // 1 when we need to read /proc/cmdline // ---------------------------------------------------------------------------- // internal counters static size_t global_iterations_counter = 1, calls_counter = 0, file_counter = 0, filenames_allocated_counter = 0, inodes_changed_counter = 0, links_changed_counter = 0, targets_assignment_counter = 0; // ---------------------------------------------------------------------------- // Normalization // // With normalization we lower the collected metrics by a factor to make them // match the total utilization of the system. // The discrepancy exists because apps.plugin needs some time to collect all // the metrics. This results in utilization that exceeds the total utilization // of the system. // // During normalization, we align the per-process utilization, to the total of // the system. We first consume the exited children utilization and it the // collected values is above the total, we proportionally scale each reported // metric. // the total system time, as reported by /proc/stat static kernel_uint_t global_utime = 0, global_stime = 0, global_gtime = 0; // the normalization ratios, as calculated by normalize_utilization() NETDATA_DOUBLE utime_fix_ratio = 1.0, stime_fix_ratio = 1.0, gtime_fix_ratio = 1.0, minflt_fix_ratio = 1.0, majflt_fix_ratio = 1.0, cutime_fix_ratio = 1.0, cstime_fix_ratio = 1.0, cgtime_fix_ratio = 1.0, cminflt_fix_ratio = 1.0, cmajflt_fix_ratio = 1.0; struct pid_on_target { int32_t pid; struct pid_on_target *next; }; struct openfds { kernel_uint_t files; kernel_uint_t pipes; kernel_uint_t sockets; kernel_uint_t inotifies; kernel_uint_t eventfds; kernel_uint_t timerfds; kernel_uint_t signalfds; kernel_uint_t eventpolls; kernel_uint_t other; }; #define pid_openfds_sum(p) ((p)->openfds.files + (p)->openfds.pipes + (p)->openfds.sockets + (p)->openfds.inotifies + (p)->openfds.eventfds + (p)->openfds.timerfds + (p)->openfds.signalfds + (p)->openfds.eventpolls + (p)->openfds.other) struct pid_limits { // kernel_uint_t max_cpu_time; // kernel_uint_t max_file_size; // kernel_uint_t max_data_size; // kernel_uint_t max_stack_size; // kernel_uint_t max_core_file_size; // kernel_uint_t max_resident_set; // kernel_uint_t max_processes; kernel_uint_t max_open_files; // kernel_uint_t max_locked_memory; // kernel_uint_t max_address_space; // kernel_uint_t max_file_locks; // kernel_uint_t max_pending_signals; // kernel_uint_t max_msgqueue_size; // kernel_uint_t max_nice_priority; // kernel_uint_t max_realtime_priority; // kernel_uint_t max_realtime_timeout; }; // ---------------------------------------------------------------------------- // target // // target is the structure that processes are aggregated to be reported // to netdata. // // - Each entry in /etc/apps_groups.conf creates a target. // - Each user and group used by a process in the system, creates a target. struct target { char compare[MAX_COMPARE_NAME + 1]; uint32_t comparehash; size_t comparelen; char id[MAX_NAME + 1]; uint32_t idhash; char name[MAX_NAME + 1]; char clean_name[MAX_NAME + 1]; // sanitized name used in chart id (need to replace at least dots) uid_t uid; gid_t gid; bool is_other; kernel_uint_t minflt; kernel_uint_t cminflt; kernel_uint_t majflt; kernel_uint_t cmajflt; kernel_uint_t utime; kernel_uint_t stime; kernel_uint_t gtime; kernel_uint_t cutime; kernel_uint_t cstime; kernel_uint_t cgtime; kernel_uint_t num_threads; // kernel_uint_t rss; kernel_uint_t status_vmsize; kernel_uint_t status_vmrss; kernel_uint_t status_vmshared; kernel_uint_t status_rssfile; kernel_uint_t status_rssshmem; kernel_uint_t status_vmswap; kernel_uint_t status_voluntary_ctxt_switches; kernel_uint_t status_nonvoluntary_ctxt_switches; kernel_uint_t io_logical_bytes_read; kernel_uint_t io_logical_bytes_written; kernel_uint_t io_read_calls; kernel_uint_t io_write_calls; kernel_uint_t io_storage_bytes_read; kernel_uint_t io_storage_bytes_written; kernel_uint_t io_cancelled_write_bytes; int *target_fds; int target_fds_size; struct openfds openfds; NETDATA_DOUBLE max_open_files_percent; kernel_uint_t starttime; kernel_uint_t collected_starttime; kernel_uint_t uptime_min; kernel_uint_t uptime_sum; kernel_uint_t uptime_max; unsigned int processes; // how many processes have been merged to this int exposed; // if set, we have sent this to netdata int hidden; // if set, we set the hidden flag on the dimension int debug_enabled; int ends_with; int starts_with; // if set, the compare string matches only the // beginning of the command struct pid_on_target *root_pid; // list of aggregated pids for target debugging struct target *target; // the one that will be reported to netdata struct target *next; }; struct target *apps_groups_default_target = NULL, // the default target *apps_groups_root_target = NULL, // apps_groups.conf defined *users_root_target = NULL, // users *groups_root_target = NULL; // user groups size_t apps_groups_targets_count = 0; // # of apps_groups.conf targets // ---------------------------------------------------------------------------- // pid_stat // // structure to store data for each process running // see: man proc for the description of the fields struct pid_fd { int fd; #ifndef __FreeBSD__ ino_t inode; char *filename; uint32_t link_hash; size_t cache_iterations_counter; size_t cache_iterations_reset; #endif }; struct pid_stat { int32_t pid; int32_t ppid; // int32_t pgrp; // int32_t session; // int32_t tty_nr; // int32_t tpgid; // uint64_t flags; char state; char comm[MAX_COMPARE_NAME + 1]; char *cmdline; // these are raw values collected kernel_uint_t minflt_raw; kernel_uint_t cminflt_raw; kernel_uint_t majflt_raw; kernel_uint_t cmajflt_raw; kernel_uint_t utime_raw; kernel_uint_t stime_raw; kernel_uint_t gtime_raw; // guest_time kernel_uint_t cutime_raw; kernel_uint_t cstime_raw; kernel_uint_t cgtime_raw; // cguest_time // these are rates kernel_uint_t minflt; kernel_uint_t cminflt; kernel_uint_t majflt; kernel_uint_t cmajflt; kernel_uint_t utime; kernel_uint_t stime; kernel_uint_t gtime; kernel_uint_t cutime; kernel_uint_t cstime; kernel_uint_t cgtime; // int64_t priority; // int64_t nice; int32_t num_threads; // int64_t itrealvalue; kernel_uint_t collected_starttime; // kernel_uint_t vsize; // kernel_uint_t rss; // kernel_uint_t rsslim; // kernel_uint_t starcode; // kernel_uint_t endcode; // kernel_uint_t startstack; // kernel_uint_t kstkesp; // kernel_uint_t kstkeip; // uint64_t signal; // uint64_t blocked; // uint64_t sigignore; // uint64_t sigcatch; // uint64_t wchan; // uint64_t nswap; // uint64_t cnswap; // int32_t exit_signal; // int32_t processor; // uint32_t rt_priority; // uint32_t policy; // kernel_uint_t delayacct_blkio_ticks; uid_t uid; gid_t gid; kernel_uint_t status_voluntary_ctxt_switches_raw; kernel_uint_t status_nonvoluntary_ctxt_switches_raw; kernel_uint_t status_vmsize; kernel_uint_t status_vmrss; kernel_uint_t status_vmshared; kernel_uint_t status_rssfile; kernel_uint_t status_rssshmem; kernel_uint_t status_vmswap; kernel_uint_t status_voluntary_ctxt_switches; kernel_uint_t status_nonvoluntary_ctxt_switches; #ifndef __FreeBSD__ ARL_BASE *status_arl; #endif kernel_uint_t io_logical_bytes_read_raw; kernel_uint_t io_logical_bytes_written_raw; kernel_uint_t io_read_calls_raw; kernel_uint_t io_write_calls_raw; kernel_uint_t io_storage_bytes_read_raw; kernel_uint_t io_storage_bytes_written_raw; kernel_uint_t io_cancelled_write_bytes_raw; kernel_uint_t io_logical_bytes_read; kernel_uint_t io_logical_bytes_written; kernel_uint_t io_read_calls; kernel_uint_t io_write_calls; kernel_uint_t io_storage_bytes_read; kernel_uint_t io_storage_bytes_written; kernel_uint_t io_cancelled_write_bytes; kernel_uint_t uptime; struct pid_fd *fds; // array of fds it uses size_t fds_size; // the size of the fds array struct openfds openfds; struct pid_limits limits; NETDATA_DOUBLE openfds_limits_percent; int sortlist; // higher numbers = top on the process tree // each process gets a unique number int children_count; // number of processes directly referencing this int keeploops; // increases by 1 every time keep is 1 and updated 0 PID_LOG log_thrown; bool keep; // true when we need to keep this process in memory even after it exited bool updated; // true when the process is currently running bool merged; // true when it has been merged to its parent bool read; // true when we have already read this process for this iteration bool matched_by_config; struct target *target; // app_groups.conf targets struct target *user_target; // uid based targets struct target *group_target; // gid based targets usec_t stat_collected_usec; usec_t last_stat_collected_usec; usec_t io_collected_usec; usec_t last_io_collected_usec; usec_t last_limits_collected_usec; char *fds_dirname; // the full directory name in /proc/PID/fd char *stat_filename; char *status_filename; char *io_filename; char *cmdline_filename; char *limits_filename; struct pid_stat *parent; struct pid_stat *prev; struct pid_stat *next; }; size_t pagesize; kernel_uint_t global_uptime; static struct pid_stat *root_of_pids = NULL, // global list of all processes running **all_pids = NULL; // to avoid allocations, we pre-allocate // a pointer for each pid in the entire pid space. static size_t all_pids_count = 0; // the number of processes running #if (ALL_PIDS_ARE_READ_INSTANTLY == 0) // Another pre-allocated list of all possible pids. // We need it to pids and assign them a unique sortlist id, so that we // read parents before children. This is needed to prevent a situation where // a child is found running, but until we read its parent, it has exited and // its parent has accumulated its resources. static pid_t *all_pids_sortlist = NULL; #endif // ---------------------------------------------------------------------------- // file descriptor // // this is used to keep a global list of all open files of the system. // it is needed in order to calculate the unique files processes have open. #define FILE_DESCRIPTORS_INCREASE_STEP 100 // types for struct file_descriptor->type typedef enum fd_filetype { FILETYPE_OTHER, FILETYPE_FILE, FILETYPE_PIPE, FILETYPE_SOCKET, FILETYPE_INOTIFY, FILETYPE_EVENTFD, FILETYPE_EVENTPOLL, FILETYPE_TIMERFD, FILETYPE_SIGNALFD } FD_FILETYPE; struct file_descriptor { avl_t avl; #ifdef NETDATA_INTERNAL_CHECKS uint32_t magic; #endif /* NETDATA_INTERNAL_CHECKS */ const char *name; uint32_t hash; FD_FILETYPE type; int count; int pos; } *all_files = NULL; static int all_files_len = 0, all_files_size = 0; // ---------------------------------------------------------------------------- // read users and groups from files struct user_or_group_id { avl_t avl; union { uid_t uid; gid_t gid; } id; char *name; int updated; struct user_or_group_id * next; }; enum user_or_group_id_type { USER_ID, GROUP_ID }; struct user_or_group_ids{ enum user_or_group_id_type type; avl_tree_type index; struct user_or_group_id *root; char filename[FILENAME_MAX + 1]; }; int user_id_compare(void* a, void* b) { if(((struct user_or_group_id *)a)->id.uid < ((struct user_or_group_id *)b)->id.uid) return -1; else if(((struct user_or_group_id *)a)->id.uid > ((struct user_or_group_id *)b)->id.uid) return 1; else return 0; } struct user_or_group_ids all_user_ids = { .type = USER_ID, .index = { NULL, user_id_compare }, .root = NULL, .filename = "", }; int group_id_compare(void* a, void* b) { if(((struct user_or_group_id *)a)->id.gid < ((struct user_or_group_id *)b)->id.gid) return -1; else if(((struct user_or_group_id *)a)->id.gid > ((struct user_or_group_id *)b)->id.gid) return 1; else return 0; } struct user_or_group_ids all_group_ids = { .type = GROUP_ID, .index = { NULL, group_id_compare }, .root = NULL, .filename = "", }; int file_changed(const struct stat *statbuf, struct timespec *last_modification_time) { if(likely(statbuf->st_mtim.tv_sec == last_modification_time->tv_sec && statbuf->st_mtim.tv_nsec == last_modification_time->tv_nsec)) return 0; last_modification_time->tv_sec = statbuf->st_mtim.tv_sec; last_modification_time->tv_nsec = statbuf->st_mtim.tv_nsec; return 1; } int read_user_or_group_ids(struct user_or_group_ids *ids, struct timespec *last_modification_time) { struct stat statbuf; if(unlikely(stat(ids->filename, &statbuf))) return 1; else if(likely(!file_changed(&statbuf, last_modification_time))) return 0; procfile *ff = procfile_open(ids->filename, " :\t", PROCFILE_FLAG_DEFAULT); if(unlikely(!ff)) return 1; ff = procfile_readall(ff); if(unlikely(!ff)) return 1; size_t line, lines = procfile_lines(ff); for(line = 0; line < lines ;line++) { size_t words = procfile_linewords(ff, line); if(unlikely(words < 3)) continue; char *name = procfile_lineword(ff, line, 0); if(unlikely(!name || !*name)) continue; char *id_string = procfile_lineword(ff, line, 2); if(unlikely(!id_string || !*id_string)) continue; struct user_or_group_id *user_or_group_id = callocz(1, sizeof(struct user_or_group_id)); if(ids->type == USER_ID) user_or_group_id->id.uid = (uid_t) str2ull(id_string, NULL); else user_or_group_id->id.gid = (uid_t) str2ull(id_string, NULL); user_or_group_id->name = strdupz(name); user_or_group_id->updated = 1; struct user_or_group_id *existing_user_id = NULL; if(likely(ids->root)) existing_user_id = (struct user_or_group_id *)avl_search(&ids->index, (avl_t *) user_or_group_id); if(unlikely(existing_user_id)) { freez(existing_user_id->name); existing_user_id->name = user_or_group_id->name; existing_user_id->updated = 1; freez(user_or_group_id); } else { if(unlikely(avl_insert(&ids->index, (avl_t *) user_or_group_id) != (void *) user_or_group_id)) { netdata_log_error("INTERNAL ERROR: duplicate indexing of id during realloc"); }; user_or_group_id->next = ids->root; ids->root = user_or_group_id; } } procfile_close(ff); // remove unused ids struct user_or_group_id *user_or_group_id = ids->root, *prev_user_id = NULL; while(user_or_group_id) { if(unlikely(!user_or_group_id->updated)) { if(unlikely((struct user_or_group_id *)avl_remove(&ids->index, (avl_t *) user_or_group_id) != user_or_group_id)) netdata_log_error("INTERNAL ERROR: removal of unused id from index, removed a different id"); if(prev_user_id) prev_user_id->next = user_or_group_id->next; else ids->root = user_or_group_id->next; freez(user_or_group_id->name); freez(user_or_group_id); if(prev_user_id) user_or_group_id = prev_user_id->next; else user_or_group_id = ids->root; } else { user_or_group_id->updated = 0; prev_user_id = user_or_group_id; user_or_group_id = user_or_group_id->next; } } return 0; } // ---------------------------------------------------------------------------- // apps_groups.conf // aggregate all processes in groups, to have a limited number of dimensions static struct target *get_users_target(uid_t uid) { struct target *w; for(w = users_root_target ; w ; w = w->next) if(w->uid == uid) return w; w = callocz(sizeof(struct target), 1); snprintfz(w->compare, MAX_COMPARE_NAME, "%u", uid); w->comparehash = simple_hash(w->compare); w->comparelen = strlen(w->compare); snprintfz(w->id, MAX_NAME, "%u", uid); w->idhash = simple_hash(w->id); struct user_or_group_id user_id_to_find, *user_or_group_id = NULL; user_id_to_find.id.uid = uid; if(*netdata_configured_host_prefix) { static struct timespec last_passwd_modification_time; int ret = read_user_or_group_ids(&all_user_ids, &last_passwd_modification_time); if(likely(!ret && all_user_ids.index.root)) user_or_group_id = (struct user_or_group_id *)avl_search(&all_user_ids.index, (avl_t *) &user_id_to_find); } if(user_or_group_id && user_or_group_id->name && *user_or_group_id->name) { snprintfz(w->name, MAX_NAME, "%s", user_or_group_id->name); } else { struct passwd *pw = getpwuid(uid); if(!pw || !pw->pw_name || !*pw->pw_name) snprintfz(w->name, MAX_NAME, "%u", uid); else snprintfz(w->name, MAX_NAME, "%s", pw->pw_name); } strncpyz(w->clean_name, w->name, MAX_NAME); netdata_fix_chart_name(w->clean_name); w->uid = uid; w->next = users_root_target; users_root_target = w; debug_log("added uid %u ('%s') target", w->uid, w->name); return w; } struct target *get_groups_target(gid_t gid) { struct target *w; for(w = groups_root_target ; w ; w = w->next) if(w->gid == gid) return w; w = callocz(sizeof(struct target), 1); snprintfz(w->compare, MAX_COMPARE_NAME, "%u", gid); w->comparehash = simple_hash(w->compare); w->comparelen = strlen(w->compare); snprintfz(w->id, MAX_NAME, "%u", gid); w->idhash = simple_hash(w->id); struct user_or_group_id group_id_to_find, *group_id = NULL; group_id_to_find.id.gid = gid; if(*netdata_configured_host_prefix) { static struct timespec last_group_modification_time; int ret = read_user_or_group_ids(&all_group_ids, &last_group_modification_time); if(likely(!ret && all_group_ids.index.root)) group_id = (struct user_or_group_id *)avl_search(&all_group_ids.index, (avl_t *) &group_id_to_find); } if(group_id && group_id->name && *group_id->name) { snprintfz(w->name, MAX_NAME, "%s", group_id->name); } else { struct group *gr = getgrgid(gid); if(!gr || !gr->gr_name || !*gr->gr_name) snprintfz(w->name, MAX_NAME, "%u", gid); else snprintfz(w->name, MAX_NAME, "%s", gr->gr_name); } strncpyz(w->clean_name, w->name, MAX_NAME); netdata_fix_chart_name(w->clean_name); w->gid = gid; w->next = groups_root_target; groups_root_target = w; debug_log("added gid %u ('%s') target", w->gid, w->name); return w; } // find or create a new target // there are targets that are just aggregated to other target (the second argument) static struct target *get_apps_groups_target(const char *id, struct target *target, const char *name) { int tdebug = 0, thidden = target?target->hidden:0, ends_with = 0; const char *nid = id; // extract the options while(nid[0] == '-' || nid[0] == '+' || nid[0] == '*') { if(nid[0] == '-') thidden = 1; if(nid[0] == '+') tdebug = 1; if(nid[0] == '*') ends_with = 1; nid++; } uint32_t hash = simple_hash(id); // find if it already exists struct target *w, *last = apps_groups_root_target; for(w = apps_groups_root_target ; w ; w = w->next) { if(w->idhash == hash && strncmp(nid, w->id, MAX_NAME) == 0) return w; last = w; } // find an existing target if(unlikely(!target)) { while(*name == '-') { if(*name == '-') thidden = 1; name++; } for(target = apps_groups_root_target ; target != NULL ; target = target->next) { if(!target->target && strcmp(name, target->name) == 0) break; } if(unlikely(debug_enabled)) { if(unlikely(target)) debug_log("REUSING TARGET NAME '%s' on ID '%s'", target->name, target->id); else debug_log("NEW TARGET NAME '%s' on ID '%s'", name, id); } } if(target && target->target) fatal("Internal Error: request to link process '%s' to target '%s' which is linked to target '%s'", id, target->id, target->target->id); w = callocz(sizeof(struct target), 1); strncpyz(w->id, nid, MAX_NAME); w->idhash = simple_hash(w->id); if(unlikely(!target)) // copy the name strncpyz(w->name, name, MAX_NAME); else // copy the id strncpyz(w->name, nid, MAX_NAME); // dots are used to distinguish chart type and id in streaming, so we should replace them strncpyz(w->clean_name, w->name, MAX_NAME); netdata_fix_chart_name(w->clean_name); for (char *d = w->clean_name; *d; d++) { if (*d == '.') *d = '_'; } strncpyz(w->compare, nid, MAX_COMPARE_NAME); size_t len = strlen(w->compare); if(w->compare[len - 1] == '*') { w->compare[len - 1] = '\0'; w->starts_with = 1; } w->ends_with = ends_with; if(w->starts_with && w->ends_with) proc_pid_cmdline_is_needed = 1; w->comparehash = simple_hash(w->compare); w->comparelen = strlen(w->compare); w->hidden = thidden; #ifdef NETDATA_INTERNAL_CHECKS w->debug_enabled = tdebug; #else if(tdebug) fprintf(stderr, "apps.plugin has been compiled without debugging\n"); #endif w->target = target; // append it, to maintain the order in apps_groups.conf if(last) last->next = w; else apps_groups_root_target = w; debug_log("ADDING TARGET ID '%s', process name '%s' (%s), aggregated on target '%s', options: %s %s" , w->id , w->compare, (w->starts_with && w->ends_with)?"substring":((w->starts_with)?"prefix":((w->ends_with)?"suffix":"exact")) , w->target?w->target->name:w->name , (w->hidden)?"hidden":"-" , (w->debug_enabled)?"debug":"-" ); return w; } // read the apps_groups.conf file static int read_apps_groups_conf(const char *path, const char *file) { char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s/apps_%s.conf", path, file); debug_log("process groups file: '%s'", filename); // ---------------------------------------- procfile *ff = procfile_open(filename, " :\t", PROCFILE_FLAG_DEFAULT); if(!ff) return 1; procfile_set_quotes(ff, "'\""); ff = procfile_readall(ff); if(!ff) return 1; size_t line, lines = procfile_lines(ff); for(line = 0; line < lines ;line++) { size_t word, words = procfile_linewords(ff, line); if(!words) continue; char *name = procfile_lineword(ff, line, 0); if(!name || !*name) continue; // find a possibly existing target struct target *w = NULL; // loop through all words, skipping the first one (the name) for(word = 0; word < words ;word++) { char *s = procfile_lineword(ff, line, word); if(!s || !*s) continue; if(*s == '#') break; // is this the first word? skip it if(s == name) continue; // add this target struct target *n = get_apps_groups_target(s, w, name); if(!n) { netdata_log_error("Cannot create target '%s' (line %zu, word %zu)", s, line, word); continue; } // just some optimization // to avoid searching for a target for each process if(!w) w = n->target?n->target:n; } } procfile_close(ff); apps_groups_default_target = get_apps_groups_target("p+!o@w#e$i^r&7*5(-i)l-o_", NULL, "other"); // match nothing if(!apps_groups_default_target) fatal("Cannot create default target"); apps_groups_default_target->is_other = true; // allow the user to override group 'other' if(apps_groups_default_target->target) apps_groups_default_target = apps_groups_default_target->target; return 0; } // ---------------------------------------------------------------------------- // struct pid_stat management static inline void init_pid_fds(struct pid_stat *p, size_t first, size_t size); static inline struct pid_stat *get_pid_entry(pid_t pid) { if(unlikely(all_pids[pid])) return all_pids[pid]; struct pid_stat *p = callocz(sizeof(struct pid_stat), 1); p->fds = mallocz(sizeof(struct pid_fd) * MAX_SPARE_FDS); p->fds_size = MAX_SPARE_FDS; init_pid_fds(p, 0, p->fds_size); p->pid = pid; DOUBLE_LINKED_LIST_APPEND_ITEM_UNSAFE(root_of_pids, p, prev, next); all_pids[pid] = p; all_pids_count++; return p; } static inline void del_pid_entry(pid_t pid) { struct pid_stat *p = all_pids[pid]; if(unlikely(!p)) { netdata_log_error("attempted to free pid %d that is not allocated.", pid); return; } debug_log("process %d %s exited, deleting it.", pid, p->comm); DOUBLE_LINKED_LIST_REMOVE_ITEM_UNSAFE(root_of_pids, p, prev, next); // free the filename #ifndef __FreeBSD__ { size_t i; for(i = 0; i < p->fds_size; i++) if(p->fds[i].filename) freez(p->fds[i].filename); } #endif freez(p->fds); freez(p->fds_dirname); freez(p->stat_filename); freez(p->status_filename); freez(p->limits_filename); #ifndef __FreeBSD__ arl_free(p->status_arl); #endif freez(p->io_filename); freez(p->cmdline_filename); freez(p->cmdline); freez(p); all_pids[pid] = NULL; all_pids_count--; } // ---------------------------------------------------------------------------- static inline int managed_log(struct pid_stat *p, PID_LOG log, int status) { if(unlikely(!status)) { // netdata_log_error("command failed log %u, errno %d", log, errno); if(unlikely(debug_enabled || errno != ENOENT)) { if(unlikely(debug_enabled || !(p->log_thrown & log))) { p->log_thrown |= log; switch(log) { case PID_LOG_IO: #ifdef __FreeBSD__ netdata_log_error("Cannot fetch process %d I/O info (command '%s')", p->pid, p->comm); #else netdata_log_error("Cannot process %s/proc/%d/io (command '%s')", netdata_configured_host_prefix, p->pid, p->comm); #endif break; case PID_LOG_STATUS: #ifdef __FreeBSD__ netdata_log_error("Cannot fetch process %d status info (command '%s')", p->pid, p->comm); #else netdata_log_error("Cannot process %s/proc/%d/status (command '%s')", netdata_configured_host_prefix, p->pid, p->comm); #endif break; case PID_LOG_CMDLINE: #ifdef __FreeBSD__ netdata_log_error("Cannot fetch process %d command line (command '%s')", p->pid, p->comm); #else netdata_log_error("Cannot process %s/proc/%d/cmdline (command '%s')", netdata_configured_host_prefix, p->pid, p->comm); #endif break; case PID_LOG_FDS: #ifdef __FreeBSD__ netdata_log_error("Cannot fetch process %d files (command '%s')", p->pid, p->comm); #else netdata_log_error("Cannot process entries in %s/proc/%d/fd (command '%s')", netdata_configured_host_prefix, p->pid, p->comm); #endif break; case PID_LOG_LIMITS: #ifdef __FreeBSD__ ; #else netdata_log_error("Cannot process %s/proc/%d/limits (command '%s')", netdata_configured_host_prefix, p->pid, p->comm); #endif case PID_LOG_STAT: break; default: netdata_log_error("unhandled error for pid %d, command '%s'", p->pid, p->comm); break; } } } errno = 0; } else if(unlikely(p->log_thrown & log)) { // netdata_log_error("unsetting log %u on pid %d", log, p->pid); p->log_thrown &= ~log; } return status; } static inline void assign_target_to_pid(struct pid_stat *p) { targets_assignment_counter++; uint32_t hash = simple_hash(p->comm); size_t pclen = strlen(p->comm); struct target *w; for(w = apps_groups_root_target; w ; w = w->next) { // if(debug_enabled || (p->target && p->target->debug_enabled)) debug_log_int("\t\tcomparing '%s' with '%s'", w->compare, p->comm); // find it - 4 cases: // 1. the target is not a pattern // 2. the target has the prefix // 3. the target has the suffix // 4. the target is something inside cmdline if(unlikely(( (!w->starts_with && !w->ends_with && w->comparehash == hash && !strcmp(w->compare, p->comm)) || (w->starts_with && !w->ends_with && !strncmp(w->compare, p->comm, w->comparelen)) || (!w->starts_with && w->ends_with && pclen >= w->comparelen && !strcmp(w->compare, &p->comm[pclen - w->comparelen])) || (proc_pid_cmdline_is_needed && w->starts_with && w->ends_with && p->cmdline && strstr(p->cmdline, w->compare)) ))) { p->matched_by_config = true; if(w->target) p->target = w->target; else p->target = w; if(debug_enabled || (p->target && p->target->debug_enabled)) debug_log_int("%s linked to target %s", p->comm, p->target->name); break; } } } // ---------------------------------------------------------------------------- // update pids from proc static inline int read_proc_pid_cmdline(struct pid_stat *p) { static char cmdline[MAX_CMDLINE + 1]; #ifdef __FreeBSD__ size_t i, bytes = MAX_CMDLINE; int mib[4]; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_ARGS; mib[3] = p->pid; if (unlikely(sysctl(mib, 4, cmdline, &bytes, NULL, 0))) goto cleanup; #else if(unlikely(!p->cmdline_filename)) { char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s/proc/%d/cmdline", netdata_configured_host_prefix, p->pid); p->cmdline_filename = strdupz(filename); } int fd = open(p->cmdline_filename, procfile_open_flags, 0666); if(unlikely(fd == -1)) goto cleanup; ssize_t i, bytes = read(fd, cmdline, MAX_CMDLINE); close(fd); if(unlikely(bytes < 0)) goto cleanup; #endif cmdline[bytes] = '\0'; for(i = 0; i < bytes ; i++) { if(unlikely(!cmdline[i])) cmdline[i] = ' '; } if(p->cmdline) freez(p->cmdline); p->cmdline = strdupz(cmdline); debug_log("Read file '%s' contents: %s", p->cmdline_filename, p->cmdline); return 1; cleanup: // copy the command to the command line if(p->cmdline) freez(p->cmdline); p->cmdline = strdupz(p->comm); return 0; } // ---------------------------------------------------------------------------- // macro to calculate the incremental rate of a value // each parameter is accessed only ONCE - so it is safe to pass function calls // or other macros as parameters #define incremental_rate(rate_variable, last_kernel_variable, new_kernel_value, collected_usec, last_collected_usec) { \ kernel_uint_t _new_tmp = new_kernel_value; \ (rate_variable) = (_new_tmp - (last_kernel_variable)) * (USEC_PER_SEC * RATES_DETAIL) / ((collected_usec) - (last_collected_usec)); \ (last_kernel_variable) = _new_tmp; \ } // the same macro for struct pid members #define pid_incremental_rate(type, var, value) \ incremental_rate(var, var##_raw, value, p->type##_collected_usec, p->last_##type##_collected_usec) // ---------------------------------------------------------------------------- #ifndef __FreeBSD__ struct arl_callback_ptr { struct pid_stat *p; procfile *ff; size_t line; }; void arl_callback_status_uid(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 5)) return; //const char *real_uid = procfile_lineword(aptr->ff, aptr->line, 1); const char *effective_uid = procfile_lineword(aptr->ff, aptr->line, 2); //const char *saved_uid = procfile_lineword(aptr->ff, aptr->line, 3); //const char *filesystem_uid = procfile_lineword(aptr->ff, aptr->line, 4); if(likely(effective_uid && *effective_uid)) aptr->p->uid = (uid_t)str2l(effective_uid); } void arl_callback_status_gid(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 5)) return; //const char *real_gid = procfile_lineword(aptr->ff, aptr->line, 1); const char *effective_gid = procfile_lineword(aptr->ff, aptr->line, 2); //const char *saved_gid = procfile_lineword(aptr->ff, aptr->line, 3); //const char *filesystem_gid = procfile_lineword(aptr->ff, aptr->line, 4); if(likely(effective_gid && *effective_gid)) aptr->p->gid = (uid_t)str2l(effective_gid); } void arl_callback_status_vmsize(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return; aptr->p->status_vmsize = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1)); } void arl_callback_status_vmswap(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return; aptr->p->status_vmswap = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1)); } void arl_callback_status_vmrss(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return; aptr->p->status_vmrss = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1)); } void arl_callback_status_rssfile(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return; aptr->p->status_rssfile = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1)); } void arl_callback_status_rssshmem(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return; aptr->p->status_rssshmem = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1)); } void arl_callback_status_voluntary_ctxt_switches(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 2)) return; struct pid_stat *p = aptr->p; pid_incremental_rate(stat, p->status_voluntary_ctxt_switches, str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1))); } void arl_callback_status_nonvoluntary_ctxt_switches(const char *name, uint32_t hash, const char *value, void *dst) { (void)name; (void)hash; (void)value; struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst; if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 2)) return; struct pid_stat *p = aptr->p; pid_incremental_rate(stat, p->status_nonvoluntary_ctxt_switches, str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1))); } static void update_proc_state_count(char proc_state) { switch (proc_state) { case 'S': proc_state_count[PROC_STATUS_SLEEPING] += 1; break; case 'R': proc_state_count[PROC_STATUS_RUNNING] += 1; break; case 'D': proc_state_count[PROC_STATUS_SLEEPING_D] += 1; break; case 'Z': proc_state_count[PROC_STATUS_ZOMBIE] += 1; break; case 'T': proc_state_count[PROC_STATUS_STOPPED] += 1; break; default: break; } } #endif // !__FreeBSD__ #define MAX_PROC_PID_LIMITS 8192 #define PROC_PID_LIMITS_MAX_OPEN_FILES_KEY "\nMax open files " static inline kernel_uint_t get_proc_pid_limits_limit(char *buf, const char *key, size_t key_len, kernel_uint_t def) { char *line = strstr(buf, key); if(!line) return def; char *v = &line[key_len]; while(isspace(*v)) v++; if(strcmp(v, "unlimited") == 0) return 0; return str2ull(v, NULL); } static inline int read_proc_pid_limits(struct pid_stat *p, void *ptr) { (void)ptr; #ifdef __FreeBSD__ return 0; #else static char proc_pid_limits_buffer[MAX_PROC_PID_LIMITS + 1]; int ret = 0; bool read_limits = false; errno = 0; proc_pid_limits_buffer[0] = '\0'; kernel_uint_t all_fds = pid_openfds_sum(p); if(all_fds < p->limits.max_open_files / 2 && p->io_collected_usec > p->last_limits_collected_usec && p->io_collected_usec - p->last_limits_collected_usec <= 60 * USEC_PER_SEC) { // too frequent, we want to collect limits once per minute ret = 1; goto cleanup; } if(unlikely(!p->limits_filename)) { char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s/proc/%d/limits", netdata_configured_host_prefix, p->pid); p->limits_filename = strdupz(filename); } int fd = open(p->limits_filename, procfile_open_flags, 0666); if(unlikely(fd == -1)) goto cleanup; ssize_t bytes = read(fd, proc_pid_limits_buffer, MAX_PROC_PID_LIMITS); close(fd); if(bytes <= 0) goto cleanup; // make it '\0' terminated if(bytes < MAX_PROC_PID_LIMITS) proc_pid_limits_buffer[bytes] = '\0'; else proc_pid_limits_buffer[MAX_PROC_PID_LIMITS - 1] = '\0'; p->limits.max_open_files = get_proc_pid_limits_limit(proc_pid_limits_buffer, PROC_PID_LIMITS_MAX_OPEN_FILES_KEY, sizeof(PROC_PID_LIMITS_MAX_OPEN_FILES_KEY) - 1, 0); if(p->limits.max_open_files == 1) { // it seems a bug in the kernel or something similar // it sets max open files to 1 but the number of files // the process has open are more than 1... // https://github.com/netdata/netdata/issues/15443 p->limits.max_open_files = 0; ret = 1; goto cleanup; } p->last_limits_collected_usec = p->io_collected_usec; read_limits = true; ret = 1; cleanup: if(p->limits.max_open_files) p->openfds_limits_percent = (NETDATA_DOUBLE)all_fds * 100.0 / (NETDATA_DOUBLE)p->limits.max_open_files; else p->openfds_limits_percent = 0.0; if(p->openfds_limits_percent > 100.0) { if(!(p->log_thrown & PID_LOG_LIMITS_DETAIL)) { char *line; if(!read_limits) { proc_pid_limits_buffer[0] = '\0'; line = "NOT READ"; } else { line = strstr(proc_pid_limits_buffer, PROC_PID_LIMITS_MAX_OPEN_FILES_KEY); if (line) { line++; // skip the initial newline char *end = strchr(line, '\n'); if (end) *end = '\0'; } } netdata_log_info( "FDS_LIMITS: PID %d (%s) is using " "%0.2f %% of its fds limits, " "open fds = %"PRIu64 "(" "files = %"PRIu64 ", " "pipes = %"PRIu64 ", " "sockets = %"PRIu64", " "inotifies = %"PRIu64", " "eventfds = %"PRIu64", " "timerfds = %"PRIu64", " "signalfds = %"PRIu64", " "eventpolls = %"PRIu64" " "other = %"PRIu64" " "), open fds limit = %"PRIu64", " "%s, " "original line [%s]", p->pid, p->comm, p->openfds_limits_percent, all_fds, p->openfds.files, p->openfds.pipes, p->openfds.sockets, p->openfds.inotifies, p->openfds.eventfds, p->openfds.timerfds, p->openfds.signalfds, p->openfds.eventpolls, p->openfds.other, p->limits.max_open_files, read_limits ? "and we have read the limits AFTER counting the fds" : "but we have read the limits BEFORE counting the fds", line); p->log_thrown |= PID_LOG_LIMITS_DETAIL; } } else p->log_thrown &= ~PID_LOG_LIMITS_DETAIL; return ret; #endif } static inline int read_proc_pid_status(struct pid_stat *p, void *ptr) { p->status_vmsize = 0; p->status_vmrss = 0; p->status_vmshared = 0; p->status_rssfile = 0; p->status_rssshmem = 0; p->status_vmswap = 0; p->status_voluntary_ctxt_switches = 0; p->status_nonvoluntary_ctxt_switches = 0; #ifdef __FreeBSD__ struct kinfo_proc *proc_info = (struct kinfo_proc *)ptr; p->uid = proc_info->ki_uid; p->gid = proc_info->ki_groups[0]; p->status_vmsize = proc_info->ki_size / 1024; // in KiB p->status_vmrss = proc_info->ki_rssize * pagesize / 1024; // in KiB // TODO: what about shared and swap memory on FreeBSD? return 1; #else (void)ptr; static struct arl_callback_ptr arl_ptr; static procfile *ff = NULL; if(unlikely(!p->status_arl)) { p->status_arl = arl_create("/proc/pid/status", NULL, 60); arl_expect_custom(p->status_arl, "Uid", arl_callback_status_uid, &arl_ptr); arl_expect_custom(p->status_arl, "Gid", arl_callback_status_gid, &arl_ptr); arl_expect_custom(p->status_arl, "VmSize", arl_callback_status_vmsize, &arl_ptr); arl_expect_custom(p->status_arl, "VmRSS", arl_callback_status_vmrss, &arl_ptr); arl_expect_custom(p->status_arl, "RssFile", arl_callback_status_rssfile, &arl_ptr); arl_expect_custom(p->status_arl, "RssShmem", arl_callback_status_rssshmem, &arl_ptr); arl_expect_custom(p->status_arl, "VmSwap", arl_callback_status_vmswap, &arl_ptr); arl_expect_custom(p->status_arl, "voluntary_ctxt_switches", arl_callback_status_voluntary_ctxt_switches, &arl_ptr); arl_expect_custom(p->status_arl, "nonvoluntary_ctxt_switches", arl_callback_status_nonvoluntary_ctxt_switches, &arl_ptr); } if(unlikely(!p->status_filename)) { char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s/proc/%d/status", netdata_configured_host_prefix, p->pid); p->status_filename = strdupz(filename); } ff = procfile_reopen(ff, p->status_filename, (!ff)?" \t:,-()/":NULL, PROCFILE_FLAG_NO_ERROR_ON_FILE_IO); if(unlikely(!ff)) return 0; ff = procfile_readall(ff); if(unlikely(!ff)) return 0; calls_counter++; // let ARL use this pid arl_ptr.p = p; arl_ptr.ff = ff; size_t lines = procfile_lines(ff), l; arl_begin(p->status_arl); for(l = 0; l < lines ;l++) { // debug_log("CHECK: line %zu of %zu, key '%s' = '%s'", l, lines, procfile_lineword(ff, l, 0), procfile_lineword(ff, l, 1)); arl_ptr.line = l; if(unlikely(arl_check(p->status_arl, procfile_lineword(ff, l, 0), procfile_lineword(ff, l, 1)))) break; } p->status_vmshared = p->status_rssfile + p->status_rssshmem; // debug_log("%s uid %d, gid %d, VmSize %zu, VmRSS %zu, RssFile %zu, RssShmem %zu, shared %zu", p->comm, (int)p->uid, (int)p->gid, p->status_vmsize, p->status_vmrss, p->status_rssfile, p->status_rssshmem, p->status_vmshared); return 1; #endif } // ---------------------------------------------------------------------------- static inline int read_proc_pid_stat(struct pid_stat *p, void *ptr) { (void)ptr; #ifdef __FreeBSD__ struct kinfo_proc *proc_info = (struct kinfo_proc *)ptr; if (unlikely(proc_info->ki_tdflags & TDF_IDLETD)) goto cleanup; #else static procfile *ff = NULL; if(unlikely(!p->stat_filename)) { char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s/proc/%d/stat", netdata_configured_host_prefix, p->pid); p->stat_filename = strdupz(filename); } int set_quotes = (!ff)?1:0; ff = procfile_reopen(ff, p->stat_filename, NULL, PROCFILE_FLAG_NO_ERROR_ON_FILE_IO); if(unlikely(!ff)) goto cleanup; // if(set_quotes) procfile_set_quotes(ff, "()"); if(unlikely(set_quotes)) procfile_set_open_close(ff, "(", ")"); ff = procfile_readall(ff); if(unlikely(!ff)) goto cleanup; #endif p->last_stat_collected_usec = p->stat_collected_usec; p->stat_collected_usec = now_monotonic_usec(); calls_counter++; #ifdef __FreeBSD__ char *comm = proc_info->ki_comm; p->ppid = proc_info->ki_ppid; #else // p->pid = str2pid_t(procfile_lineword(ff, 0, 0)); char *comm = procfile_lineword(ff, 0, 1); p->state = *(procfile_lineword(ff, 0, 2)); p->ppid = (int32_t)str2pid_t(procfile_lineword(ff, 0, 3)); // p->pgrp = (int32_t)str2pid_t(procfile_lineword(ff, 0, 4)); // p->session = (int32_t)str2pid_t(procfile_lineword(ff, 0, 5)); // p->tty_nr = (int32_t)str2pid_t(procfile_lineword(ff, 0, 6)); // p->tpgid = (int32_t)str2pid_t(procfile_lineword(ff, 0, 7)); // p->flags = str2uint64_t(procfile_lineword(ff, 0, 8)); #endif if(strcmp(p->comm, comm) != 0) { if(unlikely(debug_enabled)) { if(p->comm[0]) debug_log("\tpid %d (%s) changed name to '%s'", p->pid, p->comm, comm); else debug_log("\tJust added %d (%s)", p->pid, comm); } strncpyz(p->comm, comm, MAX_COMPARE_NAME); // /proc//cmdline if(likely(proc_pid_cmdline_is_needed)) managed_log(p, PID_LOG_CMDLINE, read_proc_pid_cmdline(p)); assign_target_to_pid(p); } #ifdef __FreeBSD__ pid_incremental_rate(stat, p->minflt, (kernel_uint_t)proc_info->ki_rusage.ru_minflt); pid_incremental_rate(stat, p->cminflt, (kernel_uint_t)proc_info->ki_rusage_ch.ru_minflt); pid_incremental_rate(stat, p->majflt, (kernel_uint_t)proc_info->ki_rusage.ru_majflt); pid_incremental_rate(stat, p->cmajflt, (kernel_uint_t)proc_info->ki_rusage_ch.ru_majflt); pid_incremental_rate(stat, p->utime, (kernel_uint_t)proc_info->ki_rusage.ru_utime.tv_sec * 100 + proc_info->ki_rusage.ru_utime.tv_usec / 10000); pid_incremental_rate(stat, p->stime, (kernel_uint_t)proc_info->ki_rusage.ru_stime.tv_sec * 100 + proc_info->ki_rusage.ru_stime.tv_usec / 10000); pid_incremental_rate(stat, p->cutime, (kernel_uint_t)proc_info->ki_rusage_ch.ru_utime.tv_sec * 100 + proc_info->ki_rusage_ch.ru_utime.tv_usec / 10000); pid_incremental_rate(stat, p->cstime, (kernel_uint_t)proc_info->ki_rusage_ch.ru_stime.tv_sec * 100 + proc_info->ki_rusage_ch.ru_stime.tv_usec / 10000); p->num_threads = proc_info->ki_numthreads; if(enable_guest_charts) { enable_guest_charts = 0; netdata_log_info("Guest charts aren't supported by FreeBSD"); } #else pid_incremental_rate(stat, p->minflt, str2kernel_uint_t(procfile_lineword(ff, 0, 9))); pid_incremental_rate(stat, p->cminflt, str2kernel_uint_t(procfile_lineword(ff, 0, 10))); pid_incremental_rate(stat, p->majflt, str2kernel_uint_t(procfile_lineword(ff, 0, 11))); pid_incremental_rate(stat, p->cmajflt, str2kernel_uint_t(procfile_lineword(ff, 0, 12))); pid_incremental_rate(stat, p->utime, str2kernel_uint_t(procfile_lineword(ff, 0, 13))); pid_incremental_rate(stat, p->stime, str2kernel_uint_t(procfile_lineword(ff, 0, 14))); pid_incremental_rate(stat, p->cutime, str2kernel_uint_t(procfile_lineword(ff, 0, 15))); pid_incremental_rate(stat, p->cstime, str2kernel_uint_t(procfile_lineword(ff, 0, 16))); // p->priority = str2kernel_uint_t(procfile_lineword(ff, 0, 17)); // p->nice = str2kernel_uint_t(procfile_lineword(ff, 0, 18)); p->num_threads = (int32_t) str2uint32_t(procfile_lineword(ff, 0, 19), NULL); // p->itrealvalue = str2kernel_uint_t(procfile_lineword(ff, 0, 20)); p->collected_starttime = str2kernel_uint_t(procfile_lineword(ff, 0, 21)) / system_hz; p->uptime = (global_uptime > p->collected_starttime)?(global_uptime - p->collected_starttime):0; // p->vsize = str2kernel_uint_t(procfile_lineword(ff, 0, 22)); // p->rss = str2kernel_uint_t(procfile_lineword(ff, 0, 23)); // p->rsslim = str2kernel_uint_t(procfile_lineword(ff, 0, 24)); // p->starcode = str2kernel_uint_t(procfile_lineword(ff, 0, 25)); // p->endcode = str2kernel_uint_t(procfile_lineword(ff, 0, 26)); // p->startstack = str2kernel_uint_t(procfile_lineword(ff, 0, 27)); // p->kstkesp = str2kernel_uint_t(procfile_lineword(ff, 0, 28)); // p->kstkeip = str2kernel_uint_t(procfile_lineword(ff, 0, 29)); // p->signal = str2kernel_uint_t(procfile_lineword(ff, 0, 30)); // p->blocked = str2kernel_uint_t(procfile_lineword(ff, 0, 31)); // p->sigignore = str2kernel_uint_t(procfile_lineword(ff, 0, 32)); // p->sigcatch = str2kernel_uint_t(procfile_lineword(ff, 0, 33)); // p->wchan = str2kernel_uint_t(procfile_lineword(ff, 0, 34)); // p->nswap = str2kernel_uint_t(procfile_lineword(ff, 0, 35)); // p->cnswap = str2kernel_uint_t(procfile_lineword(ff, 0, 36)); // p->exit_signal = str2kernel_uint_t(procfile_lineword(ff, 0, 37)); // p->processor = str2kernel_uint_t(procfile_lineword(ff, 0, 38)); // p->rt_priority = str2kernel_uint_t(procfile_lineword(ff, 0, 39)); // p->policy = str2kernel_uint_t(procfile_lineword(ff, 0, 40)); // p->delayacct_blkio_ticks = str2kernel_uint_t(procfile_lineword(ff, 0, 41)); if(enable_guest_charts) { pid_incremental_rate(stat, p->gtime, str2kernel_uint_t(procfile_lineword(ff, 0, 42))); pid_incremental_rate(stat, p->cgtime, str2kernel_uint_t(procfile_lineword(ff, 0, 43))); if (show_guest_time || p->gtime || p->cgtime) { p->utime -= (p->utime >= p->gtime) ? p->gtime : p->utime; p->cutime -= (p->cutime >= p->cgtime) ? p->cgtime : p->cutime; show_guest_time = 1; } } #endif if(unlikely(debug_enabled || (p->target && p->target->debug_enabled))) debug_log_int("READ PROC/PID/STAT: %s/proc/%d/stat, process: '%s' on target '%s' (dt=%llu) VALUES: utime=" KERNEL_UINT_FORMAT ", stime=" KERNEL_UINT_FORMAT ", cutime=" KERNEL_UINT_FORMAT ", cstime=" KERNEL_UINT_FORMAT ", minflt=" KERNEL_UINT_FORMAT ", majflt=" KERNEL_UINT_FORMAT ", cminflt=" KERNEL_UINT_FORMAT ", cmajflt=" KERNEL_UINT_FORMAT ", threads=%d", netdata_configured_host_prefix, p->pid, p->comm, (p->target)?p->target->name:"UNSET", p->stat_collected_usec - p->last_stat_collected_usec, p->utime, p->stime, p->cutime, p->cstime, p->minflt, p->majflt, p->cminflt, p->cmajflt, p->num_threads); if(unlikely(global_iterations_counter == 1)) { p->minflt = 0; p->cminflt = 0; p->majflt = 0; p->cmajflt = 0; p->utime = 0; p->stime = 0; p->gtime = 0; p->cutime = 0; p->cstime = 0; p->cgtime = 0; } #ifndef __FreeBSD__ update_proc_state_count(p->state); #endif return 1; cleanup: p->minflt = 0; p->cminflt = 0; p->majflt = 0; p->cmajflt = 0; p->utime = 0; p->stime = 0; p->gtime = 0; p->cutime = 0; p->cstime = 0; p->cgtime = 0; p->num_threads = 0; // p->rss = 0; return 0; } // ---------------------------------------------------------------------------- static inline int read_proc_pid_io(struct pid_stat *p, void *ptr) { (void)ptr; #ifdef __FreeBSD__ struct kinfo_proc *proc_info = (struct kinfo_proc *)ptr; #else static procfile *ff = NULL; if(unlikely(!p->io_filename)) { char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s/proc/%d/io", netdata_configured_host_prefix, p->pid); p->io_filename = strdupz(filename); } // open the file ff = procfile_reopen(ff, p->io_filename, NULL, PROCFILE_FLAG_NO_ERROR_ON_FILE_IO); if(unlikely(!ff)) goto cleanup; ff = procfile_readall(ff); if(unlikely(!ff)) goto cleanup; #endif calls_counter++; p->last_io_collected_usec = p->io_collected_usec; p->io_collected_usec = now_monotonic_usec(); #ifdef __FreeBSD__ pid_incremental_rate(io, p->io_storage_bytes_read, proc_info->ki_rusage.ru_inblock); pid_incremental_rate(io, p->io_storage_bytes_written, proc_info->ki_rusage.ru_oublock); #else pid_incremental_rate(io, p->io_logical_bytes_read, str2kernel_uint_t(procfile_lineword(ff, 0, 1))); pid_incremental_rate(io, p->io_logical_bytes_written, str2kernel_uint_t(procfile_lineword(ff, 1, 1))); pid_incremental_rate(io, p->io_read_calls, str2kernel_uint_t(procfile_lineword(ff, 2, 1))); pid_incremental_rate(io, p->io_write_calls, str2kernel_uint_t(procfile_lineword(ff, 3, 1))); pid_incremental_rate(io, p->io_storage_bytes_read, str2kernel_uint_t(procfile_lineword(ff, 4, 1))); pid_incremental_rate(io, p->io_storage_bytes_written, str2kernel_uint_t(procfile_lineword(ff, 5, 1))); pid_incremental_rate(io, p->io_cancelled_write_bytes, str2kernel_uint_t(procfile_lineword(ff, 6, 1))); #endif if(unlikely(global_iterations_counter == 1)) { p->io_logical_bytes_read = 0; p->io_logical_bytes_written = 0; p->io_read_calls = 0; p->io_write_calls = 0; p->io_storage_bytes_read = 0; p->io_storage_bytes_written = 0; p->io_cancelled_write_bytes = 0; } return 1; #ifndef __FreeBSD__ cleanup: p->io_logical_bytes_read = 0; p->io_logical_bytes_written = 0; p->io_read_calls = 0; p->io_write_calls = 0; p->io_storage_bytes_read = 0; p->io_storage_bytes_written = 0; p->io_cancelled_write_bytes = 0; return 0; #endif } #ifndef __FreeBSD__ static inline int read_global_time() { static char filename[FILENAME_MAX + 1] = ""; static procfile *ff = NULL; static kernel_uint_t utime_raw = 0, stime_raw = 0, gtime_raw = 0, gntime_raw = 0, ntime_raw = 0; static usec_t collected_usec = 0, last_collected_usec = 0; if(unlikely(!ff)) { snprintfz(filename, FILENAME_MAX, "%s/proc/stat", netdata_configured_host_prefix); ff = procfile_open(filename, " \t:", PROCFILE_FLAG_DEFAULT); if(unlikely(!ff)) goto cleanup; } ff = procfile_readall(ff); if(unlikely(!ff)) goto cleanup; last_collected_usec = collected_usec; collected_usec = now_monotonic_usec(); calls_counter++; // temporary - it is added global_ntime; kernel_uint_t global_ntime = 0; incremental_rate(global_utime, utime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 1)), collected_usec, last_collected_usec); incremental_rate(global_ntime, ntime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 2)), collected_usec, last_collected_usec); incremental_rate(global_stime, stime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 3)), collected_usec, last_collected_usec); incremental_rate(global_gtime, gtime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 10)), collected_usec, last_collected_usec); global_utime += global_ntime; if(enable_guest_charts) { // temporary - it is added global_ntime; kernel_uint_t global_gntime = 0; // guest nice time, on guest time incremental_rate(global_gntime, gntime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 11)), collected_usec, last_collected_usec); global_gtime += global_gntime; // remove guest time from user time global_utime -= (global_utime > global_gtime) ? global_gtime : global_utime; } if(unlikely(global_iterations_counter == 1)) { global_utime = 0; global_stime = 0; global_gtime = 0; } return 1; cleanup: global_utime = 0; global_stime = 0; global_gtime = 0; return 0; } #else static inline int read_global_time() { static kernel_uint_t utime_raw = 0, stime_raw = 0, ntime_raw = 0; static usec_t collected_usec = 0, last_collected_usec = 0; long cp_time[CPUSTATES]; if (unlikely(CPUSTATES != 5)) { goto cleanup; } else { static int mib[2] = {0, 0}; if (unlikely(GETSYSCTL_SIMPLE("kern.cp_time", mib, cp_time))) { goto cleanup; } } last_collected_usec = collected_usec; collected_usec = now_monotonic_usec(); calls_counter++; // temporary - it is added global_ntime; kernel_uint_t global_ntime = 0; incremental_rate(global_utime, utime_raw, cp_time[0] * 100LLU / system_hz, collected_usec, last_collected_usec); incremental_rate(global_ntime, ntime_raw, cp_time[1] * 100LLU / system_hz, collected_usec, last_collected_usec); incremental_rate(global_stime, stime_raw, cp_time[2] * 100LLU / system_hz, collected_usec, last_collected_usec); global_utime += global_ntime; if(unlikely(global_iterations_counter == 1)) { global_utime = 0; global_stime = 0; global_gtime = 0; } return 1; cleanup: global_utime = 0; global_stime = 0; global_gtime = 0; return 0; } #endif /* !__FreeBSD__ */ // ---------------------------------------------------------------------------- int file_descriptor_compare(void* a, void* b) { #ifdef NETDATA_INTERNAL_CHECKS if(((struct file_descriptor *)a)->magic != 0x0BADCAFE || ((struct file_descriptor *)b)->magic != 0x0BADCAFE) netdata_log_error("Corrupted index data detected. Please report this."); #endif /* NETDATA_INTERNAL_CHECKS */ if(((struct file_descriptor *)a)->hash < ((struct file_descriptor *)b)->hash) return -1; else if(((struct file_descriptor *)a)->hash > ((struct file_descriptor *)b)->hash) return 1; else return strcmp(((struct file_descriptor *)a)->name, ((struct file_descriptor *)b)->name); } // int file_descriptor_iterator(avl_t *a) { if(a) {}; return 0; } avl_tree_type all_files_index = { NULL, file_descriptor_compare }; static struct file_descriptor *file_descriptor_find(const char *name, uint32_t hash) { struct file_descriptor tmp; tmp.hash = (hash)?hash:simple_hash(name); tmp.name = name; tmp.count = 0; tmp.pos = 0; #ifdef NETDATA_INTERNAL_CHECKS tmp.magic = 0x0BADCAFE; #endif /* NETDATA_INTERNAL_CHECKS */ return (struct file_descriptor *)avl_search(&all_files_index, (avl_t *) &tmp); } #define file_descriptor_add(fd) avl_insert(&all_files_index, (avl_t *)(fd)) #define file_descriptor_remove(fd) avl_remove(&all_files_index, (avl_t *)(fd)) // ---------------------------------------------------------------------------- static inline void file_descriptor_not_used(int id) { if(id > 0 && id < all_files_size) { #ifdef NETDATA_INTERNAL_CHECKS if(all_files[id].magic != 0x0BADCAFE) { netdata_log_error("Ignoring request to remove empty file id %d.", id); return; } #endif /* NETDATA_INTERNAL_CHECKS */ debug_log("decreasing slot %d (count = %d).", id, all_files[id].count); if(all_files[id].count > 0) { all_files[id].count--; if(!all_files[id].count) { debug_log(" >> slot %d is empty.", id); if(unlikely(file_descriptor_remove(&all_files[id]) != (void *)&all_files[id])) netdata_log_error("INTERNAL ERROR: removal of unused fd from index, removed a different fd"); #ifdef NETDATA_INTERNAL_CHECKS all_files[id].magic = 0x00000000; #endif /* NETDATA_INTERNAL_CHECKS */ all_files_len--; } } else netdata_log_error("Request to decrease counter of fd %d (%s), while the use counter is 0", id, all_files[id].name); } else netdata_log_error("Request to decrease counter of fd %d, which is outside the array size (1 to %d)", id, all_files_size); } static inline void all_files_grow() { void *old = all_files; int i; // there is no empty slot debug_log("extending fd array to %d entries", all_files_size + FILE_DESCRIPTORS_INCREASE_STEP); all_files = reallocz(all_files, (all_files_size + FILE_DESCRIPTORS_INCREASE_STEP) * sizeof(struct file_descriptor)); // if the address changed, we have to rebuild the index // since all pointers are now invalid if(unlikely(old && old != (void *)all_files)) { debug_log(" >> re-indexing."); all_files_index.root = NULL; for(i = 0; i < all_files_size; i++) { if(!all_files[i].count) continue; if(unlikely(file_descriptor_add(&all_files[i]) != (void *)&all_files[i])) netdata_log_error("INTERNAL ERROR: duplicate indexing of fd during realloc."); } debug_log(" >> re-indexing done."); } // initialize the newly added entries for(i = all_files_size; i < (all_files_size + FILE_DESCRIPTORS_INCREASE_STEP); i++) { all_files[i].count = 0; all_files[i].name = NULL; #ifdef NETDATA_INTERNAL_CHECKS all_files[i].magic = 0x00000000; #endif /* NETDATA_INTERNAL_CHECKS */ all_files[i].pos = i; } if(unlikely(!all_files_size)) all_files_len = 1; all_files_size += FILE_DESCRIPTORS_INCREASE_STEP; } static inline int file_descriptor_set_on_empty_slot(const char *name, uint32_t hash, FD_FILETYPE type) { // check we have enough memory to add it if(!all_files || all_files_len == all_files_size) all_files_grow(); debug_log(" >> searching for empty slot."); // search for an empty slot static int last_pos = 0; int i, c; for(i = 0, c = last_pos ; i < all_files_size ; i++, c++) { if(c >= all_files_size) c = 0; if(c == 0) continue; if(!all_files[c].count) { debug_log(" >> Examining slot %d.", c); #ifdef NETDATA_INTERNAL_CHECKS if(all_files[c].magic == 0x0BADCAFE && all_files[c].name && file_descriptor_find(all_files[c].name, all_files[c].hash)) netdata_log_error("fd on position %d is not cleared properly. It still has %s in it.", c, all_files[c].name); #endif /* NETDATA_INTERNAL_CHECKS */ debug_log(" >> %s fd position %d for %s (last name: %s)", all_files[c].name?"re-using":"using", c, name, all_files[c].name); freez((void *)all_files[c].name); all_files[c].name = NULL; last_pos = c; break; } } all_files_len++; if(i == all_files_size) { fatal("We should find an empty slot, but there isn't any"); exit(1); } // else we have an empty slot in 'c' debug_log(" >> updating slot %d.", c); all_files[c].name = strdupz(name); all_files[c].hash = hash; all_files[c].type = type; all_files[c].pos = c; all_files[c].count = 1; #ifdef NETDATA_INTERNAL_CHECKS all_files[c].magic = 0x0BADCAFE; #endif /* NETDATA_INTERNAL_CHECKS */ if(unlikely(file_descriptor_add(&all_files[c]) != (void *)&all_files[c])) netdata_log_error("INTERNAL ERROR: duplicate indexing of fd."); debug_log("using fd position %d (name: %s)", c, all_files[c].name); return c; } static inline int file_descriptor_find_or_add(const char *name, uint32_t hash) { if(unlikely(!hash)) hash = simple_hash(name); debug_log("adding or finding name '%s' with hash %u", name, hash); struct file_descriptor *fd = file_descriptor_find(name, hash); if(fd) { // found debug_log(" >> found on slot %d", fd->pos); fd->count++; return fd->pos; } // not found FD_FILETYPE type; if(likely(name[0] == '/')) type = FILETYPE_FILE; else if(likely(strncmp(name, "pipe:", 5) == 0)) type = FILETYPE_PIPE; else if(likely(strncmp(name, "socket:", 7) == 0)) type = FILETYPE_SOCKET; else if(likely(strncmp(name, "anon_inode:", 11) == 0)) { const char *t = &name[11]; if(strcmp(t, "inotify") == 0) type = FILETYPE_INOTIFY; else if(strcmp(t, "[eventfd]") == 0) type = FILETYPE_EVENTFD; else if(strcmp(t, "[eventpoll]") == 0) type = FILETYPE_EVENTPOLL; else if(strcmp(t, "[timerfd]") == 0) type = FILETYPE_TIMERFD; else if(strcmp(t, "[signalfd]") == 0) type = FILETYPE_SIGNALFD; else { debug_log("UNKNOWN anonymous inode: %s", name); type = FILETYPE_OTHER; } } else if(likely(strcmp(name, "inotify") == 0)) type = FILETYPE_INOTIFY; else { debug_log("UNKNOWN linkname: %s", name); type = FILETYPE_OTHER; } return file_descriptor_set_on_empty_slot(name, hash, type); } static inline void clear_pid_fd(struct pid_fd *pfd) { pfd->fd = 0; #ifndef __FreeBSD__ pfd->link_hash = 0; pfd->inode = 0; pfd->cache_iterations_counter = 0; pfd->cache_iterations_reset = 0; #endif } static inline void make_all_pid_fds_negative(struct pid_stat *p) { struct pid_fd *pfd = p->fds, *pfdend = &p->fds[p->fds_size]; while(pfd < pfdend) { pfd->fd = -(pfd->fd); pfd++; } } static inline void cleanup_negative_pid_fds(struct pid_stat *p) { struct pid_fd *pfd = p->fds, *pfdend = &p->fds[p->fds_size]; while(pfd < pfdend) { int fd = pfd->fd; if(unlikely(fd < 0)) { file_descriptor_not_used(-(fd)); clear_pid_fd(pfd); } pfd++; } } static inline void init_pid_fds(struct pid_stat *p, size_t first, size_t size) { struct pid_fd *pfd = &p->fds[first], *pfdend = &p->fds[first + size]; while(pfd < pfdend) { #ifndef __FreeBSD__ pfd->filename = NULL; #endif clear_pid_fd(pfd); pfd++; } } static inline int read_pid_file_descriptors(struct pid_stat *p, void *ptr) { (void)ptr; #ifdef __FreeBSD__ int mib[4]; size_t size; struct kinfo_file *fds; static char *fdsbuf; char *bfdsbuf, *efdsbuf; char fdsname[FILENAME_MAX + 1]; #define SHM_FORMAT_LEN 31 // format: 21 + size: 10 char shm_name[FILENAME_MAX - SHM_FORMAT_LEN + 1]; // we make all pid fds negative, so that // we can detect unused file descriptors // at the end, to free them make_all_pid_fds_negative(p); mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_FILEDESC; mib[3] = p->pid; if (unlikely(sysctl(mib, 4, NULL, &size, NULL, 0))) { netdata_log_error("sysctl error: Can't get file descriptors data size for pid %d", p->pid); return 0; } if (likely(size > 0)) fdsbuf = reallocz(fdsbuf, size); if (unlikely(sysctl(mib, 4, fdsbuf, &size, NULL, 0))) { netdata_log_error("sysctl error: Can't get file descriptors data for pid %d", p->pid); return 0; } bfdsbuf = fdsbuf; efdsbuf = fdsbuf + size; while (bfdsbuf < efdsbuf) { fds = (struct kinfo_file *)(uintptr_t)bfdsbuf; if (unlikely(fds->kf_structsize == 0)) break; // do not process file descriptors for current working directory, root directory, // jail directory, ktrace vnode, text vnode and controlling terminal if (unlikely(fds->kf_fd < 0)) { bfdsbuf += fds->kf_structsize; continue; } // get file descriptors array index size_t fdid = fds->kf_fd; // check if the fds array is small if (unlikely(fdid >= p->fds_size)) { // it is small, extend it debug_log("extending fd memory slots for %s from %d to %d", p->comm, p->fds_size, fdid + MAX_SPARE_FDS); p->fds = reallocz(p->fds, (fdid + MAX_SPARE_FDS) * sizeof(struct pid_fd)); // and initialize it init_pid_fds(p, p->fds_size, (fdid + MAX_SPARE_FDS) - p->fds_size); p->fds_size = fdid + MAX_SPARE_FDS; } if (unlikely(p->fds[fdid].fd == 0)) { // we don't know this fd, get it switch (fds->kf_type) { case KF_TYPE_FIFO: case KF_TYPE_VNODE: if (unlikely(!fds->kf_path[0])) { sprintf(fdsname, "other: inode: %lu", fds->kf_un.kf_file.kf_file_fileid); break; } sprintf(fdsname, "%s", fds->kf_path); break; case KF_TYPE_SOCKET: switch (fds->kf_sock_domain) { case AF_INET: case AF_INET6: if (fds->kf_sock_protocol == IPPROTO_TCP) sprintf(fdsname, "socket: %d %lx", fds->kf_sock_protocol, fds->kf_un.kf_sock.kf_sock_inpcb); else sprintf(fdsname, "socket: %d %lx", fds->kf_sock_protocol, fds->kf_un.kf_sock.kf_sock_pcb); break; case AF_UNIX: /* print address of pcb and connected pcb */ sprintf(fdsname, "socket: %lx %lx", fds->kf_un.kf_sock.kf_sock_pcb, fds->kf_un.kf_sock.kf_sock_unpconn); break; default: /* print protocol number and socket address */ #if __FreeBSD_version < 1200031 sprintf(fdsname, "socket: other: %d %s %s", fds->kf_sock_protocol, fds->kf_sa_local.__ss_pad1, fds->kf_sa_local.__ss_pad2); #else sprintf(fdsname, "socket: other: %d %s %s", fds->kf_sock_protocol, fds->kf_un.kf_sock.kf_sa_local.__ss_pad1, fds->kf_un.kf_sock.kf_sa_local.__ss_pad2); #endif } break; case KF_TYPE_PIPE: sprintf(fdsname, "pipe: %lu %lu", fds->kf_un.kf_pipe.kf_pipe_addr, fds->kf_un.kf_pipe.kf_pipe_peer); break; case KF_TYPE_PTS: #if __FreeBSD_version < 1200031 sprintf(fdsname, "other: pts: %u", fds->kf_un.kf_pts.kf_pts_dev); #else sprintf(fdsname, "other: pts: %lu", fds->kf_un.kf_pts.kf_pts_dev); #endif break; case KF_TYPE_SHM: strncpyz(shm_name, fds->kf_path, FILENAME_MAX - SHM_FORMAT_LEN); sprintf(fdsname, "other: shm: %s size: %lu", shm_name, fds->kf_un.kf_file.kf_file_size); break; case KF_TYPE_SEM: sprintf(fdsname, "other: sem: %u", fds->kf_un.kf_sem.kf_sem_value); break; default: sprintf(fdsname, "other: pid: %d fd: %d", fds->kf_un.kf_proc.kf_pid, fds->kf_fd); } // if another process already has this, we will get // the same id p->fds[fdid].fd = file_descriptor_find_or_add(fdsname, 0); } // else make it positive again, we need it // of course, the actual file may have changed else p->fds[fdid].fd = -p->fds[fdid].fd; bfdsbuf += fds->kf_structsize; } #else if(unlikely(!p->fds_dirname)) { char dirname[FILENAME_MAX+1]; snprintfz(dirname, FILENAME_MAX, "%s/proc/%d/fd", netdata_configured_host_prefix, p->pid); p->fds_dirname = strdupz(dirname); } DIR *fds = opendir(p->fds_dirname); if(unlikely(!fds)) return 0; struct dirent *de; char linkname[FILENAME_MAX + 1]; // we make all pid fds negative, so that // we can detect unused file descriptors // at the end, to free them make_all_pid_fds_negative(p); while((de = readdir(fds))) { // we need only files with numeric names if(unlikely(de->d_name[0] < '0' || de->d_name[0] > '9')) continue; // get its number int fdid = (int) str2l(de->d_name); if(unlikely(fdid < 0)) continue; // check if the fds array is small if(unlikely((size_t)fdid >= p->fds_size)) { // it is small, extend it debug_log("extending fd memory slots for %s from %d to %d" , p->comm , p->fds_size , fdid + MAX_SPARE_FDS ); p->fds = reallocz(p->fds, (fdid + MAX_SPARE_FDS) * sizeof(struct pid_fd)); // and initialize it init_pid_fds(p, p->fds_size, (fdid + MAX_SPARE_FDS) - p->fds_size); p->fds_size = (size_t)fdid + MAX_SPARE_FDS; } if(unlikely(p->fds[fdid].fd < 0 && de->d_ino != p->fds[fdid].inode)) { // inodes do not match, clear the previous entry inodes_changed_counter++; file_descriptor_not_used(-p->fds[fdid].fd); clear_pid_fd(&p->fds[fdid]); } if(p->fds[fdid].fd < 0 && p->fds[fdid].cache_iterations_counter > 0) { p->fds[fdid].fd = -p->fds[fdid].fd; p->fds[fdid].cache_iterations_counter--; continue; } if(unlikely(!p->fds[fdid].filename)) { filenames_allocated_counter++; char fdname[FILENAME_MAX + 1]; snprintfz(fdname, FILENAME_MAX, "%s/proc/%d/fd/%s", netdata_configured_host_prefix, p->pid, de->d_name); p->fds[fdid].filename = strdupz(fdname); } file_counter++; ssize_t l = readlink(p->fds[fdid].filename, linkname, FILENAME_MAX); if(unlikely(l == -1)) { // cannot read the link if(debug_enabled || (p->target && p->target->debug_enabled)) netdata_log_error("Cannot read link %s", p->fds[fdid].filename); if(unlikely(p->fds[fdid].fd < 0)) { file_descriptor_not_used(-p->fds[fdid].fd); clear_pid_fd(&p->fds[fdid]); } continue; } else linkname[l] = '\0'; uint32_t link_hash = simple_hash(linkname); if(unlikely(p->fds[fdid].fd < 0 && p->fds[fdid].link_hash != link_hash)) { // the link changed links_changed_counter++; file_descriptor_not_used(-p->fds[fdid].fd); clear_pid_fd(&p->fds[fdid]); } if(unlikely(p->fds[fdid].fd == 0)) { // we don't know this fd, get it // if another process already has this, we will get // the same id p->fds[fdid].fd = file_descriptor_find_or_add(linkname, link_hash); p->fds[fdid].inode = de->d_ino; p->fds[fdid].link_hash = link_hash; } else { // else make it positive again, we need it p->fds[fdid].fd = -p->fds[fdid].fd; } // caching control // without this we read all the files on every iteration if(max_fds_cache_seconds > 0) { size_t spread = ((size_t)max_fds_cache_seconds > 10) ? 10 : (size_t)max_fds_cache_seconds; // cache it for a few iterations size_t max = ((size_t) max_fds_cache_seconds + (fdid % spread)) / (size_t) update_every; p->fds[fdid].cache_iterations_reset++; if(unlikely(p->fds[fdid].cache_iterations_reset % spread == (size_t) fdid % spread)) p->fds[fdid].cache_iterations_reset++; if(unlikely((fdid <= 2 && p->fds[fdid].cache_iterations_reset > 5) || p->fds[fdid].cache_iterations_reset > max)) { // for stdin, stdout, stderr (fdid <= 2) we have checked a few times, or if it goes above the max, goto max p->fds[fdid].cache_iterations_reset = max; } p->fds[fdid].cache_iterations_counter = p->fds[fdid].cache_iterations_reset; } } closedir(fds); #endif cleanup_negative_pid_fds(p); return 1; } // ---------------------------------------------------------------------------- static inline int debug_print_process_and_parents(struct pid_stat *p, usec_t time) { char *prefix = "\\_ "; int indent = 0; if(p->parent) indent = debug_print_process_and_parents(p->parent, p->stat_collected_usec); else prefix = " > "; char buffer[indent + 1]; int i; for(i = 0; i < indent ;i++) buffer[i] = ' '; buffer[i] = '\0'; fprintf(stderr, " %s %s%s (%d %s %"PRIu64"" , buffer , prefix , p->comm , p->pid , p->updated?"running":"exited" , p->stat_collected_usec - time ); if(p->utime) fprintf(stderr, " utime=" KERNEL_UINT_FORMAT, p->utime); if(p->stime) fprintf(stderr, " stime=" KERNEL_UINT_FORMAT, p->stime); if(p->gtime) fprintf(stderr, " gtime=" KERNEL_UINT_FORMAT, p->gtime); if(p->cutime) fprintf(stderr, " cutime=" KERNEL_UINT_FORMAT, p->cutime); if(p->cstime) fprintf(stderr, " cstime=" KERNEL_UINT_FORMAT, p->cstime); if(p->cgtime) fprintf(stderr, " cgtime=" KERNEL_UINT_FORMAT, p->cgtime); if(p->minflt) fprintf(stderr, " minflt=" KERNEL_UINT_FORMAT, p->minflt); if(p->cminflt) fprintf(stderr, " cminflt=" KERNEL_UINT_FORMAT, p->cminflt); if(p->majflt) fprintf(stderr, " majflt=" KERNEL_UINT_FORMAT, p->majflt); if(p->cmajflt) fprintf(stderr, " cmajflt=" KERNEL_UINT_FORMAT, p->cmajflt); fprintf(stderr, ")\n"); return indent + 1; } static inline void debug_print_process_tree(struct pid_stat *p, char *msg __maybe_unused) { debug_log("%s: process %s (%d, %s) with parents:", msg, p->comm, p->pid, p->updated?"running":"exited"); debug_print_process_and_parents(p, p->stat_collected_usec); } static inline void debug_find_lost_child(struct pid_stat *pe, kernel_uint_t lost, int type) { int found = 0; struct pid_stat *p = NULL; for(p = root_of_pids; p ; p = p->next) { if(p == pe) continue; switch(type) { case 1: if(p->cminflt > lost) { fprintf(stderr, " > process %d (%s) could use the lost exited child minflt " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm); found++; } break; case 2: if(p->cmajflt > lost) { fprintf(stderr, " > process %d (%s) could use the lost exited child majflt " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm); found++; } break; case 3: if(p->cutime > lost) { fprintf(stderr, " > process %d (%s) could use the lost exited child utime " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm); found++; } break; case 4: if(p->cstime > lost) { fprintf(stderr, " > process %d (%s) could use the lost exited child stime " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm); found++; } break; case 5: if(p->cgtime > lost) { fprintf(stderr, " > process %d (%s) could use the lost exited child gtime " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm); found++; } break; } } if(!found) { switch(type) { case 1: fprintf(stderr, " > cannot find any process to use the lost exited child minflt " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm); break; case 2: fprintf(stderr, " > cannot find any process to use the lost exited child majflt " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm); break; case 3: fprintf(stderr, " > cannot find any process to use the lost exited child utime " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm); break; case 4: fprintf(stderr, " > cannot find any process to use the lost exited child stime " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm); break; case 5: fprintf(stderr, " > cannot find any process to use the lost exited child gtime " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm); break; } } } static inline kernel_uint_t remove_exited_child_from_parent(kernel_uint_t *field, kernel_uint_t *pfield) { kernel_uint_t absorbed = 0; if(*field > *pfield) { absorbed += *pfield; *field -= *pfield; *pfield = 0; } else { absorbed += *field; *pfield -= *field; *field = 0; } return absorbed; } static inline void process_exited_processes() { struct pid_stat *p; for(p = root_of_pids; p ; p = p->next) { if(p->updated || !p->stat_collected_usec) continue; kernel_uint_t utime = (p->utime_raw + p->cutime_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec); kernel_uint_t stime = (p->stime_raw + p->cstime_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec); kernel_uint_t gtime = (p->gtime_raw + p->cgtime_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec); kernel_uint_t minflt = (p->minflt_raw + p->cminflt_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec); kernel_uint_t majflt = (p->majflt_raw + p->cmajflt_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec); if(utime + stime + gtime + minflt + majflt == 0) continue; if(unlikely(debug_enabled)) { debug_log("Absorb %s (%d %s total resources: utime=" KERNEL_UINT_FORMAT " stime=" KERNEL_UINT_FORMAT " gtime=" KERNEL_UINT_FORMAT " minflt=" KERNEL_UINT_FORMAT " majflt=" KERNEL_UINT_FORMAT ")" , p->comm , p->pid , p->updated?"running":"exited" , utime , stime , gtime , minflt , majflt ); debug_print_process_tree(p, "Searching parents"); } struct pid_stat *pp; for(pp = p->parent; pp ; pp = pp->parent) { if(!pp->updated) continue; kernel_uint_t absorbed; absorbed = remove_exited_child_from_parent(&utime, &pp->cutime); if(unlikely(debug_enabled && absorbed)) debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " utime (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, utime); absorbed = remove_exited_child_from_parent(&stime, &pp->cstime); if(unlikely(debug_enabled && absorbed)) debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " stime (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, stime); absorbed = remove_exited_child_from_parent(>ime, &pp->cgtime); if(unlikely(debug_enabled && absorbed)) debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " gtime (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, gtime); absorbed = remove_exited_child_from_parent(&minflt, &pp->cminflt); if(unlikely(debug_enabled && absorbed)) debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " minflt (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, minflt); absorbed = remove_exited_child_from_parent(&majflt, &pp->cmajflt); if(unlikely(debug_enabled && absorbed)) debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " majflt (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, majflt); } if(unlikely(utime + stime + gtime + minflt + majflt > 0)) { if(unlikely(debug_enabled)) { if(utime) debug_find_lost_child(p, utime, 3); if(stime) debug_find_lost_child(p, stime, 4); if(gtime) debug_find_lost_child(p, gtime, 5); if(minflt) debug_find_lost_child(p, minflt, 1); if(majflt) debug_find_lost_child(p, majflt, 2); } p->keep = true; debug_log(" > remaining resources - KEEP - for another loop: %s (%d %s total resources: utime=" KERNEL_UINT_FORMAT " stime=" KERNEL_UINT_FORMAT " gtime=" KERNEL_UINT_FORMAT " minflt=" KERNEL_UINT_FORMAT " majflt=" KERNEL_UINT_FORMAT ")" , p->comm , p->pid , p->updated?"running":"exited" , utime , stime , gtime , minflt , majflt ); for(pp = p->parent; pp ; pp = pp->parent) { if(pp->updated) break; pp->keep = true; debug_log(" > - KEEP - parent for another loop: %s (%d %s)" , pp->comm , pp->pid , pp->updated?"running":"exited" ); } p->utime_raw = utime * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL); p->stime_raw = stime * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL); p->gtime_raw = gtime * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL); p->minflt_raw = minflt * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL); p->majflt_raw = majflt * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL); p->cutime_raw = p->cstime_raw = p->cgtime_raw = p->cminflt_raw = p->cmajflt_raw = 0; debug_log(" "); } else debug_log(" > totally absorbed - DONE - %s (%d %s)" , p->comm , p->pid , p->updated?"running":"exited" ); } } static inline void link_all_processes_to_their_parents(void) { struct pid_stat *p, *pp; // link all children to their parents // and update children count on parents for(p = root_of_pids; p ; p = p->next) { // for each process found p->sortlist = 0; p->parent = NULL; if(unlikely(!p->ppid)) { //unnecessary code from apps_plugin.c //p->parent = NULL; continue; } pp = all_pids[p->ppid]; if(likely(pp)) { p->parent = pp; pp->children_count++; if(unlikely(debug_enabled || (p->target && p->target->debug_enabled))) debug_log_int("child %d (%s, %s) on target '%s' has parent %d (%s, %s). Parent: utime=" KERNEL_UINT_FORMAT ", stime=" KERNEL_UINT_FORMAT ", gtime=" KERNEL_UINT_FORMAT ", minflt=" KERNEL_UINT_FORMAT ", majflt=" KERNEL_UINT_FORMAT ", cutime=" KERNEL_UINT_FORMAT ", cstime=" KERNEL_UINT_FORMAT ", cgtime=" KERNEL_UINT_FORMAT ", cminflt=" KERNEL_UINT_FORMAT ", cmajflt=" KERNEL_UINT_FORMAT "", p->pid, p->comm, p->updated?"running":"exited", (p->target)?p->target->name:"UNSET", pp->pid, pp->comm, pp->updated?"running":"exited", pp->utime, pp->stime, pp->gtime, pp->minflt, pp->majflt, pp->cutime, pp->cstime, pp->cgtime, pp->cminflt, pp->cmajflt); } else { p->parent = NULL; netdata_log_error("pid %d %s states parent %d, but the later does not exist.", p->pid, p->comm, p->ppid); } } } // ---------------------------------------------------------------------------- // 1. read all files in /proc // 2. for each numeric directory: // i. read /proc/pid/stat // ii. read /proc/pid/status // iii. read /proc/pid/io (requires root access) // iii. read the entries in directory /proc/pid/fd (requires root access) // for each entry: // a. find or create a struct file_descriptor // b. cleanup any old/unused file_descriptors // after all these, some pids may be linked to targets, while others may not // in case of errors, only 1 every 1000 errors is printed // to avoid filling up all disk space // if debug is enabled, all errors are printed #if (ALL_PIDS_ARE_READ_INSTANTLY == 0) static int compar_pid(const void *pid1, const void *pid2) { struct pid_stat *p1 = all_pids[*((pid_t *)pid1)]; struct pid_stat *p2 = all_pids[*((pid_t *)pid2)]; if(p1->sortlist > p2->sortlist) return -1; else return 1; } #endif static inline int collect_data_for_pid(pid_t pid, void *ptr) { if(unlikely(pid < 0 || pid > pid_max)) { netdata_log_error("Invalid pid %d read (expected %d to %d). Ignoring process.", pid, 0, pid_max); return 0; } struct pid_stat *p = get_pid_entry(pid); if(unlikely(!p || p->read)) return 0; p->read = true; // debug_log("Reading process %d (%s), sortlist %d", p->pid, p->comm, p->sortlist); // -------------------------------------------------------------------- // /proc//stat if(unlikely(!managed_log(p, PID_LOG_STAT, read_proc_pid_stat(p, ptr)))) // there is no reason to proceed if we cannot get its status return 0; // check its parent pid if(unlikely(p->ppid < 0 || p->ppid > pid_max)) { netdata_log_error("Pid %d (command '%s') states invalid parent pid %d. Using 0.", pid, p->comm, p->ppid); p->ppid = 0; } // -------------------------------------------------------------------- // /proc//io managed_log(p, PID_LOG_IO, read_proc_pid_io(p, ptr)); // -------------------------------------------------------------------- // /proc//status if(unlikely(!managed_log(p, PID_LOG_STATUS, read_proc_pid_status(p, ptr)))) // there is no reason to proceed if we cannot get its status return 0; // -------------------------------------------------------------------- // /proc//fd if(enable_file_charts) { managed_log(p, PID_LOG_FDS, read_pid_file_descriptors(p, ptr)); managed_log(p, PID_LOG_LIMITS, read_proc_pid_limits(p, ptr)); } // -------------------------------------------------------------------- // done! if(unlikely(debug_enabled && include_exited_childs && all_pids_count && p->ppid && all_pids[p->ppid] && !all_pids[p->ppid]->read)) debug_log("Read process %d (%s) sortlisted %d, but its parent %d (%s) sortlisted %d, is not read", p->pid, p->comm, p->sortlist, all_pids[p->ppid]->pid, all_pids[p->ppid]->comm, all_pids[p->ppid]->sortlist); // mark it as updated p->updated = true; p->keep = false; p->keeploops = 0; return 1; } static int collect_data_for_all_processes(void) { struct pid_stat *p = NULL; #ifndef __FreeBSD__ // clear process state counter memset(proc_state_count, 0, sizeof proc_state_count); #else int i, procnum; static size_t procbase_size = 0; static struct kinfo_proc *procbase = NULL; size_t new_procbase_size; int mib[3] = { CTL_KERN, KERN_PROC, KERN_PROC_PROC }; if (unlikely(sysctl(mib, 3, NULL, &new_procbase_size, NULL, 0))) { netdata_log_error("sysctl error: Can't get processes data size"); return 0; } // give it some air for processes that may be started // during this little time. new_procbase_size += 100 * sizeof(struct kinfo_proc); // increase the buffer if needed if(new_procbase_size > procbase_size) { procbase_size = new_procbase_size; procbase = reallocz(procbase, procbase_size); } // sysctl() gets from new_procbase_size the buffer size // and also returns to it the amount of data filled in new_procbase_size = procbase_size; // get the processes from the system if (unlikely(sysctl(mib, 3, procbase, &new_procbase_size, NULL, 0))) { netdata_log_error("sysctl error: Can't get processes data"); return 0; } // based on the amount of data filled in // calculate the number of processes we got procnum = new_procbase_size / sizeof(struct kinfo_proc); #endif if(all_pids_count) { #if (ALL_PIDS_ARE_READ_INSTANTLY == 0) size_t slc = 0; #endif for(p = root_of_pids; p ; p = p->next) { p->read = false; // mark it as not read, so that collect_data_for_pid() will read it p->updated = false; p->merged = false; p->children_count = 0; p->parent = NULL; #if (ALL_PIDS_ARE_READ_INSTANTLY == 0) all_pids_sortlist[slc++] = p->pid; #endif } #if (ALL_PIDS_ARE_READ_INSTANTLY == 0) if(unlikely(slc != all_pids_count)) { netdata_log_error("Internal error: I was thinking I had %zu processes in my arrays, but it seems there are %zu.", all_pids_count, slc); all_pids_count = slc; } if(include_exited_childs) { // Read parents before childs // This is needed to prevent a situation where // a child is found running, but until we read // its parent, it has exited and its parent // has accumulated its resources. qsort((void *)all_pids_sortlist, (size_t)all_pids_count, sizeof(pid_t), compar_pid); // we forward read all running processes // collect_data_for_pid() is smart enough, // not to read the same pid twice per iteration for(slc = 0; slc < all_pids_count; slc++) { collect_data_for_pid(all_pids_sortlist[slc], NULL); } } #endif } #ifdef __FreeBSD__ for (i = 0 ; i < procnum ; ++i) { pid_t pid = procbase[i].ki_pid; collect_data_for_pid(pid, &procbase[i]); } #else static char uptime_filename[FILENAME_MAX + 1] = ""; if(*uptime_filename == '\0') snprintfz(uptime_filename, FILENAME_MAX, "%s/proc/uptime", netdata_configured_host_prefix); global_uptime = (kernel_uint_t)(uptime_msec(uptime_filename) / MSEC_PER_SEC); char dirname[FILENAME_MAX + 1]; snprintfz(dirname, FILENAME_MAX, "%s/proc", netdata_configured_host_prefix); DIR *dir = opendir(dirname); if(!dir) return 0; struct dirent *de = NULL; while((de = readdir(dir))) { char *endptr = de->d_name; if(unlikely(de->d_type != DT_DIR || de->d_name[0] < '0' || de->d_name[0] > '9')) continue; pid_t pid = (pid_t) strtoul(de->d_name, &endptr, 10); // make sure we read a valid number if(unlikely(endptr == de->d_name || *endptr != '\0')) continue; collect_data_for_pid(pid, NULL); } closedir(dir); #endif if(!all_pids_count) return 0; // we need /proc/stat to normalize the cpu consumption of the exited childs read_global_time(); // build the process tree link_all_processes_to_their_parents(); // normally this is done // however we may have processes exited while we collected values // so let's find the exited ones // we do this by collecting the ownership of process // if we manage to get the ownership, the process still runs process_exited_processes(); return 1; } // ---------------------------------------------------------------------------- // update statistics on the targets // 1. link all childs to their parents // 2. go from bottom to top, marking as merged all childs to their parents // this step links all parents without a target to the child target, if any // 3. link all top level processes (the ones not merged) to the default target // 4. go from top to bottom, linking all childs without a target, to their parent target // after this step, all processes have a target // [5. for each killed pid (updated = 0), remove its usage from its target] // 6. zero all apps_groups_targets // 7. concentrate all values on the apps_groups_targets // 8. remove all killed processes // 9. find the unique file count for each target // check: update_apps_groups_statistics() static void cleanup_exited_pids(void) { size_t c; struct pid_stat *p = NULL; for(p = root_of_pids; p ;) { if(!p->updated && (!p->keep || p->keeploops > 0)) { if(unlikely(debug_enabled && (p->keep || p->keeploops))) debug_log(" > CLEANUP cannot keep exited process %d (%s) anymore - removing it.", p->pid, p->comm); for(c = 0; c < p->fds_size; c++) if(p->fds[c].fd > 0) { file_descriptor_not_used(p->fds[c].fd); clear_pid_fd(&p->fds[c]); } pid_t r = p->pid; p = p->next; del_pid_entry(r); } else { if(unlikely(p->keep)) p->keeploops++; p->keep = false; p = p->next; } } } static void apply_apps_groups_targets_inheritance(void) { struct pid_stat *p = NULL; // children that do not have a target // inherit their target from their parent int found = 1, loops = 0; while(found) { if(unlikely(debug_enabled)) loops++; found = 0; for(p = root_of_pids; p ; p = p->next) { // if this process does not have a target, // and it has a parent // and its parent has a target // then, set the parent's target to this process if(unlikely(!p->target && p->parent && p->parent->target)) { p->target = p->parent->target; found++; if(debug_enabled || (p->target && p->target->debug_enabled)) debug_log_int("TARGET INHERITANCE: %s is inherited by %d (%s) from its parent %d (%s).", p->target->name, p->pid, p->comm, p->parent->pid, p->parent->comm); } } } // find all the procs with 0 childs and merge them to their parents // repeat, until nothing more can be done. int sortlist = 1; found = 1; while(found) { if(unlikely(debug_enabled)) loops++; found = 0; for(p = root_of_pids; p ; p = p->next) { if(unlikely(!p->sortlist && !p->children_count)) p->sortlist = sortlist++; if(unlikely( !p->children_count // if this process does not have any children && !p->merged // and is not already merged && p->parent // and has a parent && p->parent->children_count // and its parent has children // and the target of this process and its parent is the same, // or the parent does not have a target && (p->target == p->parent->target || !p->parent->target) && p->ppid != INIT_PID // and its parent is not init )) { // mark it as merged p->parent->children_count--; p->merged = true; // the parent inherits the child's target, if it does not have a target itself if(unlikely(p->target && !p->parent->target)) { p->parent->target = p->target; if(debug_enabled || (p->target && p->target->debug_enabled)) debug_log_int("TARGET INHERITANCE: %s is inherited by %d (%s) from its child %d (%s).", p->target->name, p->parent->pid, p->parent->comm, p->pid, p->comm); } found++; } } debug_log("TARGET INHERITANCE: merged %d processes", found); } // init goes always to default target if(all_pids[INIT_PID] && !all_pids[INIT_PID]->matched_by_config) all_pids[INIT_PID]->target = apps_groups_default_target; // pid 0 goes always to default target if(all_pids[0] && !all_pids[INIT_PID]->matched_by_config) all_pids[0]->target = apps_groups_default_target; // give a default target on all top level processes if(unlikely(debug_enabled)) loops++; for(p = root_of_pids; p ; p = p->next) { // if the process is not merged itself // then it is a top level process if(unlikely(!p->merged && !p->target)) p->target = apps_groups_default_target; // make sure all processes have a sortlist if(unlikely(!p->sortlist)) p->sortlist = sortlist++; } if(all_pids[1]) all_pids[1]->sortlist = sortlist++; // give a target to all merged child processes found = 1; while(found) { if(unlikely(debug_enabled)) loops++; found = 0; for(p = root_of_pids; p ; p = p->next) { if(unlikely(!p->target && p->merged && p->parent && p->parent->target)) { p->target = p->parent->target; found++; if(debug_enabled || (p->target && p->target->debug_enabled)) debug_log_int("TARGET INHERITANCE: %s is inherited by %d (%s) from its parent %d (%s) at phase 2.", p->target->name, p->pid, p->comm, p->parent->pid, p->parent->comm); } } } debug_log("apply_apps_groups_targets_inheritance() made %d loops on the process tree", loops); } static size_t zero_all_targets(struct target *root) { struct target *w; size_t count = 0; for (w = root; w ; w = w->next) { count++; w->minflt = 0; w->majflt = 0; w->utime = 0; w->stime = 0; w->gtime = 0; w->cminflt = 0; w->cmajflt = 0; w->cutime = 0; w->cstime = 0; w->cgtime = 0; w->num_threads = 0; // w->rss = 0; w->processes = 0; w->status_vmsize = 0; w->status_vmrss = 0; w->status_vmshared = 0; w->status_rssfile = 0; w->status_rssshmem = 0; w->status_vmswap = 0; w->status_voluntary_ctxt_switches = 0; w->status_nonvoluntary_ctxt_switches = 0; w->io_logical_bytes_read = 0; w->io_logical_bytes_written = 0; w->io_read_calls = 0; w->io_write_calls = 0; w->io_storage_bytes_read = 0; w->io_storage_bytes_written = 0; w->io_cancelled_write_bytes = 0; // zero file counters if(w->target_fds) { memset(w->target_fds, 0, sizeof(int) * w->target_fds_size); w->openfds.files = 0; w->openfds.pipes = 0; w->openfds.sockets = 0; w->openfds.inotifies = 0; w->openfds.eventfds = 0; w->openfds.timerfds = 0; w->openfds.signalfds = 0; w->openfds.eventpolls = 0; w->openfds.other = 0; w->max_open_files_percent = 0.0; } w->collected_starttime = 0; w->uptime_min = 0; w->uptime_sum = 0; w->uptime_max = 0; if(unlikely(w->root_pid)) { struct pid_on_target *pid_on_target_to_free, *pid_on_target = w->root_pid; while(pid_on_target) { pid_on_target_to_free = pid_on_target; pid_on_target = pid_on_target->next; freez(pid_on_target_to_free); } w->root_pid = NULL; } } return count; } static inline void reallocate_target_fds(struct target *w) { if(unlikely(!w)) return; if(unlikely(!w->target_fds || w->target_fds_size < all_files_size)) { w->target_fds = reallocz(w->target_fds, sizeof(int) * all_files_size); memset(&w->target_fds[w->target_fds_size], 0, sizeof(int) * (all_files_size - w->target_fds_size)); w->target_fds_size = all_files_size; } } static void aggregage_fd_type_on_openfds(FD_FILETYPE type, struct openfds *openfds) { switch(type) { case FILETYPE_FILE: openfds->files++; break; case FILETYPE_PIPE: openfds->pipes++; break; case FILETYPE_SOCKET: openfds->sockets++; break; case FILETYPE_INOTIFY: openfds->inotifies++; break; case FILETYPE_EVENTFD: openfds->eventfds++; break; case FILETYPE_TIMERFD: openfds->timerfds++; break; case FILETYPE_SIGNALFD: openfds->signalfds++; break; case FILETYPE_EVENTPOLL: openfds->eventpolls++; break; case FILETYPE_OTHER: openfds->other++; break; } } static inline void aggregate_fd_on_target(int fd, struct target *w) { if(unlikely(!w)) return; if(unlikely(w->target_fds[fd])) { // it is already aggregated // just increase its usage counter w->target_fds[fd]++; return; } // increase its usage counter // so that we will not add it again w->target_fds[fd]++; aggregage_fd_type_on_openfds(all_files[fd].type, &w->openfds); } static inline void aggregate_pid_fds_on_targets(struct pid_stat *p) { if(unlikely(!p->updated)) { // the process is not running return; } struct target *w = p->target, *u = p->user_target, *g = p->group_target; reallocate_target_fds(w); reallocate_target_fds(u); reallocate_target_fds(g); p->openfds.files = 0; p->openfds.pipes = 0; p->openfds.sockets = 0; p->openfds.inotifies = 0; p->openfds.eventfds = 0; p->openfds.timerfds = 0; p->openfds.signalfds = 0; p->openfds.eventpolls = 0; p->openfds.other = 0; long currentfds = 0; size_t c, size = p->fds_size; struct pid_fd *fds = p->fds; for(c = 0; c < size ;c++) { int fd = fds[c].fd; if(likely(fd <= 0 || fd >= all_files_size)) continue; currentfds++; aggregage_fd_type_on_openfds(all_files[fd].type, &p->openfds); aggregate_fd_on_target(fd, w); aggregate_fd_on_target(fd, u); aggregate_fd_on_target(fd, g); } } static inline void aggregate_pid_on_target(struct target *w, struct pid_stat *p, struct target *o) { (void)o; if(unlikely(!p->updated)) { // the process is not running return; } if(unlikely(!w)) { netdata_log_error("pid %d %s was left without a target!", p->pid, p->comm); return; } if(p->openfds_limits_percent > w->max_open_files_percent) w->max_open_files_percent = p->openfds_limits_percent; w->cutime += p->cutime; w->cstime += p->cstime; w->cgtime += p->cgtime; w->cminflt += p->cminflt; w->cmajflt += p->cmajflt; w->utime += p->utime; w->stime += p->stime; w->gtime += p->gtime; w->minflt += p->minflt; w->majflt += p->majflt; // w->rss += p->rss; w->status_vmsize += p->status_vmsize; w->status_vmrss += p->status_vmrss; w->status_vmshared += p->status_vmshared; w->status_rssfile += p->status_rssfile; w->status_rssshmem += p->status_rssshmem; w->status_vmswap += p->status_vmswap; w->status_voluntary_ctxt_switches += p->status_voluntary_ctxt_switches; w->status_nonvoluntary_ctxt_switches += p->status_nonvoluntary_ctxt_switches; w->io_logical_bytes_read += p->io_logical_bytes_read; w->io_logical_bytes_written += p->io_logical_bytes_written; w->io_read_calls += p->io_read_calls; w->io_write_calls += p->io_write_calls; w->io_storage_bytes_read += p->io_storage_bytes_read; w->io_storage_bytes_written += p->io_storage_bytes_written; w->io_cancelled_write_bytes += p->io_cancelled_write_bytes; w->processes++; w->num_threads += p->num_threads; if(!w->collected_starttime || p->collected_starttime < w->collected_starttime) w->collected_starttime = p->collected_starttime; if(!w->uptime_min || p->uptime < w->uptime_min) w->uptime_min = p->uptime; w->uptime_sum += p->uptime; if(!w->uptime_max || w->uptime_max < p->uptime) w->uptime_max = p->uptime; if(unlikely(debug_enabled || w->debug_enabled)) { debug_log_int("aggregating '%s' pid %d on target '%s' utime=" KERNEL_UINT_FORMAT ", stime=" KERNEL_UINT_FORMAT ", gtime=" KERNEL_UINT_FORMAT ", cutime=" KERNEL_UINT_FORMAT ", cstime=" KERNEL_UINT_FORMAT ", cgtime=" KERNEL_UINT_FORMAT ", minflt=" KERNEL_UINT_FORMAT ", majflt=" KERNEL_UINT_FORMAT ", cminflt=" KERNEL_UINT_FORMAT ", cmajflt=" KERNEL_UINT_FORMAT "", p->comm, p->pid, w->name, p->utime, p->stime, p->gtime, p->cutime, p->cstime, p->cgtime, p->minflt, p->majflt, p->cminflt, p->cmajflt); struct pid_on_target *pid_on_target = mallocz(sizeof(struct pid_on_target)); pid_on_target->pid = p->pid; pid_on_target->next = w->root_pid; w->root_pid = pid_on_target; } } static inline void post_aggregate_targets(struct target *root) { struct target *w; for (w = root; w ; w = w->next) { if(w->collected_starttime) { if (!w->starttime || w->collected_starttime < w->starttime) { w->starttime = w->collected_starttime; } } else { w->starttime = 0; } } } static void calculate_netdata_statistics(void) { apply_apps_groups_targets_inheritance(); zero_all_targets(users_root_target); zero_all_targets(groups_root_target); apps_groups_targets_count = zero_all_targets(apps_groups_root_target); // this has to be done, before the cleanup struct pid_stat *p = NULL; struct target *w = NULL, *o = NULL; // concentrate everything on the targets for(p = root_of_pids; p ; p = p->next) { // -------------------------------------------------------------------- // apps_groups target aggregate_pid_on_target(p->target, p, NULL); // -------------------------------------------------------------------- // user target o = p->user_target; if(likely(p->user_target && p->user_target->uid == p->uid)) w = p->user_target; else { if(unlikely(debug_enabled && p->user_target)) debug_log("pid %d (%s) switched user from %u (%s) to %u.", p->pid, p->comm, p->user_target->uid, p->user_target->name, p->uid); w = p->user_target = get_users_target(p->uid); } aggregate_pid_on_target(w, p, o); // -------------------------------------------------------------------- // user group target o = p->group_target; if(likely(p->group_target && p->group_target->gid == p->gid)) w = p->group_target; else { if(unlikely(debug_enabled && p->group_target)) debug_log("pid %d (%s) switched group from %u (%s) to %u.", p->pid, p->comm, p->group_target->gid, p->group_target->name, p->gid); w = p->group_target = get_groups_target(p->gid); } aggregate_pid_on_target(w, p, o); // -------------------------------------------------------------------- // aggregate all file descriptors if(enable_file_charts) aggregate_pid_fds_on_targets(p); } post_aggregate_targets(apps_groups_root_target); post_aggregate_targets(users_root_target); post_aggregate_targets(groups_root_target); cleanup_exited_pids(); } // ---------------------------------------------------------------------------- // update chart dimensions static inline void send_BEGIN(const char *type, const char *name,const char *metric, usec_t usec) { fprintf(stdout, "BEGIN %s.%s_%s %" PRIu64 "\n", type, name, metric, usec); } static inline void send_SET(const char *name, kernel_uint_t value) { fprintf(stdout, "SET %s = " KERNEL_UINT_FORMAT "\n", name, value); } static inline void send_END(void) { fprintf(stdout, "END\n\n"); } void send_resource_usage_to_netdata(usec_t dt) { static struct timeval last = { 0, 0 }; static struct rusage me_last; struct timeval now; struct rusage me; usec_t cpuuser; usec_t cpusyst; if(!last.tv_sec) { now_monotonic_timeval(&last); getrusage(RUSAGE_SELF, &me_last); cpuuser = 0; cpusyst = 0; } else { now_monotonic_timeval(&now); getrusage(RUSAGE_SELF, &me); cpuuser = me.ru_utime.tv_sec * USEC_PER_SEC + me.ru_utime.tv_usec; cpusyst = me.ru_stime.tv_sec * USEC_PER_SEC + me.ru_stime.tv_usec; memmove(&last, &now, sizeof(struct timeval)); memmove(&me_last, &me, sizeof(struct rusage)); } static char created_charts = 0; if(unlikely(!created_charts)) { created_charts = 1; fprintf(stdout, "CHART netdata.apps_cpu '' 'Apps Plugin CPU' 'milliseconds/s' apps.plugin netdata.apps_cpu stacked 140000 %1$d\n" "DIMENSION user '' incremental 1 1000\n" "DIMENSION system '' incremental 1 1000\n" "CHART netdata.apps_sizes '' 'Apps Plugin Files' 'files/s' apps.plugin netdata.apps_sizes line 140001 %1$d\n" "DIMENSION calls '' incremental 1 1\n" "DIMENSION files '' incremental 1 1\n" "DIMENSION filenames '' incremental 1 1\n" "DIMENSION inode_changes '' incremental 1 1\n" "DIMENSION link_changes '' incremental 1 1\n" "DIMENSION pids '' absolute 1 1\n" "DIMENSION fds '' absolute 1 1\n" "DIMENSION targets '' absolute 1 1\n" "DIMENSION new_pids 'new pids' incremental 1 1\n" , update_every ); fprintf(stdout, "CHART netdata.apps_fix '' 'Apps Plugin Normalization Ratios' 'percentage' apps.plugin netdata.apps_fix line 140002 %1$d\n" "DIMENSION utime '' absolute 1 %2$llu\n" "DIMENSION stime '' absolute 1 %2$llu\n" "DIMENSION gtime '' absolute 1 %2$llu\n" "DIMENSION minflt '' absolute 1 %2$llu\n" "DIMENSION majflt '' absolute 1 %2$llu\n" , update_every , RATES_DETAIL ); if(include_exited_childs) fprintf(stdout, "CHART netdata.apps_children_fix '' 'Apps Plugin Exited Children Normalization Ratios' 'percentage' apps.plugin netdata.apps_children_fix line 140003 %1$d\n" "DIMENSION cutime '' absolute 1 %2$llu\n" "DIMENSION cstime '' absolute 1 %2$llu\n" "DIMENSION cgtime '' absolute 1 %2$llu\n" "DIMENSION cminflt '' absolute 1 %2$llu\n" "DIMENSION cmajflt '' absolute 1 %2$llu\n" , update_every , RATES_DETAIL ); } fprintf(stdout, "BEGIN netdata.apps_cpu %"PRIu64"\n" "SET user = %"PRIu64"\n" "SET system = %"PRIu64"\n" "END\n" "BEGIN netdata.apps_sizes %"PRIu64"\n" "SET calls = %zu\n" "SET files = %zu\n" "SET filenames = %zu\n" "SET inode_changes = %zu\n" "SET link_changes = %zu\n" "SET pids = %zu\n" "SET fds = %d\n" "SET targets = %zu\n" "SET new_pids = %zu\n" "END\n" , dt , cpuuser , cpusyst , dt , calls_counter , file_counter , filenames_allocated_counter , inodes_changed_counter , links_changed_counter , all_pids_count , all_files_len , apps_groups_targets_count , targets_assignment_counter ); fprintf(stdout, "BEGIN netdata.apps_fix %"PRIu64"\n" "SET utime = %u\n" "SET stime = %u\n" "SET gtime = %u\n" "SET minflt = %u\n" "SET majflt = %u\n" "END\n" , dt , (unsigned int)(utime_fix_ratio * 100 * RATES_DETAIL) , (unsigned int)(stime_fix_ratio * 100 * RATES_DETAIL) , (unsigned int)(gtime_fix_ratio * 100 * RATES_DETAIL) , (unsigned int)(minflt_fix_ratio * 100 * RATES_DETAIL) , (unsigned int)(majflt_fix_ratio * 100 * RATES_DETAIL) ); if(include_exited_childs) fprintf(stdout, "BEGIN netdata.apps_children_fix %"PRIu64"\n" "SET cutime = %u\n" "SET cstime = %u\n" "SET cgtime = %u\n" "SET cminflt = %u\n" "SET cmajflt = %u\n" "END\n" , dt , (unsigned int)(cutime_fix_ratio * 100 * RATES_DETAIL) , (unsigned int)(cstime_fix_ratio * 100 * RATES_DETAIL) , (unsigned int)(cgtime_fix_ratio * 100 * RATES_DETAIL) , (unsigned int)(cminflt_fix_ratio * 100 * RATES_DETAIL) , (unsigned int)(cmajflt_fix_ratio * 100 * RATES_DETAIL) ); } static void normalize_utilization(struct target *root) { struct target *w; // childs processing introduces spikes // here we try to eliminate them by disabling childs processing either for specific dimensions // or entirely. Of course, either way, we disable it just a single iteration. kernel_uint_t max_time = get_system_cpus() * time_factor * RATES_DETAIL; kernel_uint_t utime = 0, cutime = 0, stime = 0, cstime = 0, gtime = 0, cgtime = 0, minflt = 0, cminflt = 0, majflt = 0, cmajflt = 0; if(global_utime > max_time) global_utime = max_time; if(global_stime > max_time) global_stime = max_time; if(global_gtime > max_time) global_gtime = max_time; for(w = root; w ; w = w->next) { if(w->target || (!w->processes && !w->exposed)) continue; utime += w->utime; stime += w->stime; gtime += w->gtime; cutime += w->cutime; cstime += w->cstime; cgtime += w->cgtime; minflt += w->minflt; majflt += w->majflt; cminflt += w->cminflt; cmajflt += w->cmajflt; } if(global_utime || global_stime || global_gtime) { if(global_utime + global_stime + global_gtime > utime + cutime + stime + cstime + gtime + cgtime) { // everything we collected fits utime_fix_ratio = stime_fix_ratio = gtime_fix_ratio = cutime_fix_ratio = cstime_fix_ratio = cgtime_fix_ratio = 1.0; //(NETDATA_DOUBLE)(global_utime + global_stime) / (NETDATA_DOUBLE)(utime + cutime + stime + cstime); } else if((global_utime + global_stime > utime + stime) && (cutime || cstime)) { // children resources are too high // lower only the children resources utime_fix_ratio = stime_fix_ratio = gtime_fix_ratio = 1.0; cutime_fix_ratio = cstime_fix_ratio = cgtime_fix_ratio = (NETDATA_DOUBLE)((global_utime + global_stime) - (utime + stime)) / (NETDATA_DOUBLE)(cutime + cstime); } else if(utime || stime) { // even running processes are unrealistic // zero the children resources // lower the running processes resources utime_fix_ratio = stime_fix_ratio = gtime_fix_ratio = (NETDATA_DOUBLE)(global_utime + global_stime) / (NETDATA_DOUBLE)(utime + stime); cutime_fix_ratio = cstime_fix_ratio = cgtime_fix_ratio = 0.0; } else { utime_fix_ratio = stime_fix_ratio = gtime_fix_ratio = cutime_fix_ratio = cstime_fix_ratio = cgtime_fix_ratio = 0.0; } } else { utime_fix_ratio = stime_fix_ratio = gtime_fix_ratio = cutime_fix_ratio = cstime_fix_ratio = cgtime_fix_ratio = 0.0; } if(utime_fix_ratio > 1.0) utime_fix_ratio = 1.0; if(cutime_fix_ratio > 1.0) cutime_fix_ratio = 1.0; if(stime_fix_ratio > 1.0) stime_fix_ratio = 1.0; if(cstime_fix_ratio > 1.0) cstime_fix_ratio = 1.0; if(gtime_fix_ratio > 1.0) gtime_fix_ratio = 1.0; if(cgtime_fix_ratio > 1.0) cgtime_fix_ratio = 1.0; // if(utime_fix_ratio < 0.0) utime_fix_ratio = 0.0; // if(cutime_fix_ratio < 0.0) cutime_fix_ratio = 0.0; // if(stime_fix_ratio < 0.0) stime_fix_ratio = 0.0; // if(cstime_fix_ratio < 0.0) cstime_fix_ratio = 0.0; // if(gtime_fix_ratio < 0.0) gtime_fix_ratio = 0.0; // if(cgtime_fix_ratio < 0.0) cgtime_fix_ratio = 0.0; // TODO // we use cpu time to normalize page faults // the problem is that to find the proper max values // for page faults we have to parse /proc/vmstat // which is quite big to do it again (netdata does it already) // // a better solution could be to somehow have netdata // do this normalization for us if(utime || stime || gtime) majflt_fix_ratio = minflt_fix_ratio = (NETDATA_DOUBLE)(utime * utime_fix_ratio + stime * stime_fix_ratio + gtime * gtime_fix_ratio) / (NETDATA_DOUBLE)(utime + stime + gtime); else minflt_fix_ratio = majflt_fix_ratio = 1.0; if(cutime || cstime || cgtime) cmajflt_fix_ratio = cminflt_fix_ratio = (NETDATA_DOUBLE)(cutime * cutime_fix_ratio + cstime * cstime_fix_ratio + cgtime * cgtime_fix_ratio) / (NETDATA_DOUBLE)(cutime + cstime + cgtime); else cminflt_fix_ratio = cmajflt_fix_ratio = 1.0; // the report debug_log( "SYSTEM: u=" KERNEL_UINT_FORMAT " s=" KERNEL_UINT_FORMAT " g=" KERNEL_UINT_FORMAT " " "COLLECTED: u=" KERNEL_UINT_FORMAT " s=" KERNEL_UINT_FORMAT " g=" KERNEL_UINT_FORMAT " cu=" KERNEL_UINT_FORMAT " cs=" KERNEL_UINT_FORMAT " cg=" KERNEL_UINT_FORMAT " " "DELTA: u=" KERNEL_UINT_FORMAT " s=" KERNEL_UINT_FORMAT " g=" KERNEL_UINT_FORMAT " " "FIX: u=%0.2f s=%0.2f g=%0.2f cu=%0.2f cs=%0.2f cg=%0.2f " "FINALLY: u=" KERNEL_UINT_FORMAT " s=" KERNEL_UINT_FORMAT " g=" KERNEL_UINT_FORMAT " cu=" KERNEL_UINT_FORMAT " cs=" KERNEL_UINT_FORMAT " cg=" KERNEL_UINT_FORMAT " " , global_utime , global_stime , global_gtime , utime , stime , gtime , cutime , cstime , cgtime , utime + cutime - global_utime , stime + cstime - global_stime , gtime + cgtime - global_gtime , utime_fix_ratio , stime_fix_ratio , gtime_fix_ratio , cutime_fix_ratio , cstime_fix_ratio , cgtime_fix_ratio , (kernel_uint_t)(utime * utime_fix_ratio) , (kernel_uint_t)(stime * stime_fix_ratio) , (kernel_uint_t)(gtime * gtime_fix_ratio) , (kernel_uint_t)(cutime * cutime_fix_ratio) , (kernel_uint_t)(cstime * cstime_fix_ratio) , (kernel_uint_t)(cgtime * cgtime_fix_ratio) ); } static void send_collected_data_to_netdata(struct target *root, const char *type, usec_t dt) { struct target *w; for (w = root; w ; w = w->next) { if (unlikely(!w->exposed && !w->is_other)) continue; send_BEGIN(type, w->clean_name, "processes", dt); send_SET("processes", w->processes); send_END(); send_BEGIN(type, w->clean_name, "threads", dt); send_SET("threads", w->num_threads); send_END(); if (unlikely(!w->processes && !w->is_other)) continue; send_BEGIN(type, w->clean_name, "cpu_utilization", dt); send_SET("user", (kernel_uint_t)(w->utime * utime_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cutime * cutime_fix_ratio)) : 0ULL)); send_SET("system", (kernel_uint_t)(w->stime * stime_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cstime * cstime_fix_ratio)) : 0ULL)); send_END(); #ifndef __FreeBSD__ if (enable_guest_charts) { send_BEGIN(type, w->clean_name, "cpu_guest_utilization", dt); send_SET("guest", (kernel_uint_t)(w->gtime * gtime_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cgtime * cgtime_fix_ratio)) : 0ULL)); send_END(); } send_BEGIN(type, w->clean_name, "cpu_context_switches", dt); send_SET("voluntary", w->status_voluntary_ctxt_switches); send_SET("involuntary", w->status_nonvoluntary_ctxt_switches); send_END(); send_BEGIN(type, w->clean_name, "mem_private_usage", dt); send_SET("mem", (w->status_vmrss > w->status_vmshared)?(w->status_vmrss - w->status_vmshared) : 0ULL); send_END(); #endif send_BEGIN(type, w->clean_name, "mem_usage", dt); send_SET("rss", w->status_vmrss); send_END(); send_BEGIN(type, w->clean_name, "vmem_usage", dt); send_SET("vmem", w->status_vmsize); send_END(); send_BEGIN(type, w->clean_name, "mem_page_faults", dt); send_SET("minor", (kernel_uint_t)(w->minflt * minflt_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cminflt * cminflt_fix_ratio)) : 0ULL)); send_SET("major", (kernel_uint_t)(w->majflt * majflt_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cmajflt * cmajflt_fix_ratio)) : 0ULL)); send_END(); #ifndef __FreeBSD__ send_BEGIN(type, w->clean_name, "swap_usage", dt); send_SET("swap", w->status_vmswap); send_END(); #endif #ifndef __FreeBSD__ send_BEGIN(type, w->clean_name, "uptime", dt); send_SET("uptime", (global_uptime > w->starttime) ? (global_uptime - w->starttime) : 0); send_END(); if (enable_detailed_uptime_charts) { send_BEGIN(type, w->clean_name, "uptime_summary", dt); send_SET("min", w->uptime_min); send_SET("avg", w->processes > 0 ? w->uptime_sum / w->processes : 0); send_SET("max", w->uptime_max); send_END(); } #endif send_BEGIN(type, w->clean_name, "disk_physical_io", dt); send_SET("reads", w->io_storage_bytes_read); send_SET("writes", w->io_storage_bytes_written); send_END(); #ifndef __FreeBSD__ send_BEGIN(type, w->clean_name, "disk_logical_io", dt); send_SET("reads", w->io_logical_bytes_read); send_SET("writes", w->io_logical_bytes_written); send_END(); #endif if (enable_file_charts) { send_BEGIN(type, w->clean_name, "fds_open_limit", dt); send_SET("limit", w->max_open_files_percent * 100.0); send_END(); send_BEGIN(type, w->clean_name, "fds_open", dt); send_SET("files", w->openfds.files); send_SET("sockets", w->openfds.sockets); send_SET("pipes", w->openfds.sockets); send_SET("inotifies", w->openfds.inotifies); send_SET("event", w->openfds.eventfds); send_SET("timer", w->openfds.timerfds); send_SET("signal", w->openfds.signalfds); send_SET("eventpolls", w->openfds.eventpolls); send_SET("other", w->openfds.other); send_END(); } } } // ---------------------------------------------------------------------------- // generate the charts static void send_charts_updates_to_netdata(struct target *root, const char *type, const char *lbl_name, const char *title) { struct target *w; if (debug_enabled) { for (w = root; w; w = w->next) { if (unlikely(w->debug_enabled && !w->target && w->processes)) { struct pid_on_target *pid_on_target; fprintf(stderr, "apps.plugin: target '%s' has aggregated %u process(es):", w->name, w->processes); for (pid_on_target = w->root_pid; pid_on_target; pid_on_target = pid_on_target->next) { fprintf(stderr, " %d", pid_on_target->pid); } fputc('\n', stderr); } } } for (w = root; w; w = w->next) { if (likely(w->exposed || (!w->processes && !w->is_other))) continue; w->exposed = 1; fprintf(stdout, "CHART %s.%s_cpu_utilization '' '%s CPU utilization (100%% = 1 core)' 'percentage' cpu %s.cpu_utilization stacked 20001 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION user '' absolute 1 %llu\n", time_factor * RATES_DETAIL / 100LLU); fprintf(stdout, "DIMENSION system '' absolute 1 %llu\n", time_factor * RATES_DETAIL / 100LLU); #ifndef __FreeBSD__ if (enable_guest_charts) { fprintf(stdout, "CHART %s.%s_cpu_guest_utilization '' '%s CPU guest utlization (100%% = 1 core)' 'percentage' cpu %s.cpu_guest_utilization line 20005 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION guest '' absolute 1 %llu\n", time_factor * RATES_DETAIL / 100LLU); } fprintf(stdout, "CHART %s.%s_cpu_context_switches '' '%s CPU context switches' 'switches/s' cpu %s.cpu_context_switches stacked 20010 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION voluntary '' absolute 1 %llu\n", RATES_DETAIL); fprintf(stdout, "DIMENSION involuntary '' absolute 1 %llu\n", RATES_DETAIL); fprintf(stdout, "CHART %s.%s_mem_private_usage '' '%s memory usage without shared' 'MiB' mem %s.mem_private_usage area 20050 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION mem '' absolute %ld %ld\n", 1L, 1024L); #endif fprintf(stdout, "CHART %s.%s_mem_usage '' '%s memory RSS usage' 'MiB' mem %s.mem_usage area 20055 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION rss '' absolute %ld %ld\n", 1L, 1024L); fprintf(stdout, "CHART %s.%s_mem_page_faults '' '%s memory page faults' 'pgfaults/s' mem %s.mem_page_faults stacked 20060 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION major '' absolute 1 %llu\n", RATES_DETAIL); fprintf(stdout, "DIMENSION minor '' absolute 1 %llu\n", RATES_DETAIL); fprintf(stdout, "CHART %s.%s_vmem_usage '' '%s virtual memory size' 'MiB' mem %s.vmem_usage line 20065 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION vmem '' absolute %ld %ld\n", 1L, 1024L); #ifndef __FreeBSD__ fprintf(stdout, "CHART %s.%s_swap_usage '' '%s swap usage' 'MiB' mem %s.swap_usage area 20065 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION swap '' absolute %ld %ld\n", 1L, 1024L); #endif #ifndef __FreeBSD__ fprintf(stdout, "CHART %s.%s_disk_physical_io '' '%s disk physical IO' 'KiB/s' disk %s.disk_physical_io area 20100 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION reads '' absolute 1 %llu\n", 1024LLU * RATES_DETAIL); fprintf(stdout, "DIMENSION writes '' absolute -1 %llu\n", 1024LLU * RATES_DETAIL); fprintf(stdout, "CHART %s.%s_disk_logical_io '' '%s disk logical IO' 'KiB/s' disk %s.disk_logical_io area 20105 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION reads '' absolute 1 %llu\n", 1024LLU * RATES_DETAIL); fprintf(stdout, "DIMENSION writes '' absolute -1 %llu\n", 1024LLU * RATES_DETAIL); #else fprintf(stdout, "CHART %s.%s_disk_physical_io '' '%s disk physical IO' 'blocks/s' disk %s.disk_physical_block_io area 20100 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION reads '' absolute 1 %llu\n", RATES_DETAIL); fprintf(stdout, "DIMENSION writes '' absolute -1 %llu\n", RATES_DETAIL); #endif fprintf(stdout, "CHART %s.%s_processes '' '%s processes' 'processes' processes %s.processes line 20150 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION processes '' absolute 1 1\n"); fprintf(stdout, "CHART %s.%s_threads '' '%s threads' 'threads' processes %s.threads line 20155 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION threads '' absolute 1 1\n"); if (enable_file_charts) { fprintf(stdout, "CHART %s.%s_fds_open_limit '' '%s open file descriptors limit' '%%' fds %s.fds_open_limit line 20200 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION limit '' absolute 1 100\n"); fprintf(stdout, "CHART %s.%s_fds_open '' '%s open files descriptors' 'fds' fds %s.fds_open stacked 20210 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION files '' absolute 1 1\n"); fprintf(stdout, "DIMENSION sockets '' absolute 1 1\n"); fprintf(stdout, "DIMENSION pipes '' absolute 1 1\n"); fprintf(stdout, "DIMENSION inotifies '' absolute 1 1\n"); fprintf(stdout, "DIMENSION event '' absolute 1 1\n"); fprintf(stdout, "DIMENSION timer '' absolute 1 1\n"); fprintf(stdout, "DIMENSION signal '' absolute 1 1\n"); fprintf(stdout, "DIMENSION eventpolls '' absolute 1 1\n"); fprintf(stdout, "DIMENSION other '' absolute 1 1\n"); } #ifndef __FreeBSD__ fprintf(stdout, "CHART %s.%s_uptime '' '%s uptime' 'seconds' uptime %s.uptime line 20250 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION uptime '' absolute 1 1\n"); if (enable_detailed_uptime_charts) { fprintf(stdout, "CHART %s.%s_uptime_summary '' '%s uptime summary' 'seconds' uptime %s.uptime_summary area 20255 %d\n", type, w->clean_name, title, type, update_every); fprintf(stdout, "CLABEL '%s' '%s' 0\n", lbl_name, w->name); fprintf(stdout, "CLABEL_COMMIT\n"); fprintf(stdout, "DIMENSION min '' absolute 1 1\n"); fprintf(stdout, "DIMENSION avg '' absolute 1 1\n"); fprintf(stdout, "DIMENSION max '' absolute 1 1\n"); } #endif } } #ifndef __FreeBSD__ static void send_proc_states_count(usec_t dt) { static bool chart_added = false; // create chart for count of processes in different states if (!chart_added) { fprintf( stdout, "CHART system.processes_state '' 'System Processes State' 'processes' processes system.processes_state line %d %d\n", NETDATA_CHART_PRIO_SYSTEM_PROCESS_STATES, update_every); for (proc_state i = PROC_STATUS_RUNNING; i < PROC_STATUS_END; i++) { fprintf(stdout, "DIMENSION %s '' absolute 1 1\n", proc_states[i]); } chart_added = true; } // send process state count fprintf(stdout, "BEGIN system.processes_state %" PRIu64 "\n", dt); for (proc_state i = PROC_STATUS_RUNNING; i < PROC_STATUS_END; i++) { send_SET(proc_states[i], proc_state_count[i]); } send_END(); } #endif // ---------------------------------------------------------------------------- // parse command line arguments int check_proc_1_io() { int ret = 0; procfile *ff = procfile_open("/proc/1/io", NULL, PROCFILE_FLAG_NO_ERROR_ON_FILE_IO); if(!ff) goto cleanup; ff = procfile_readall(ff); if(!ff) goto cleanup; ret = 1; cleanup: procfile_close(ff); return ret; } static void parse_args(int argc, char **argv) { int i, freq = 0; for(i = 1; i < argc; i++) { if(!freq) { int n = (int)str2l(argv[i]); if(n > 0) { freq = n; continue; } } if(strcmp("version", argv[i]) == 0 || strcmp("-version", argv[i]) == 0 || strcmp("--version", argv[i]) == 0 || strcmp("-v", argv[i]) == 0 || strcmp("-V", argv[i]) == 0) { printf("apps.plugin %s\n", VERSION); exit(0); } if(strcmp("test-permissions", argv[i]) == 0 || strcmp("-t", argv[i]) == 0) { if(!check_proc_1_io()) { perror("Tried to read /proc/1/io and it failed"); exit(1); } printf("OK\n"); exit(0); } if(strcmp("debug", argv[i]) == 0) { debug_enabled = 1; #ifndef NETDATA_INTERNAL_CHECKS fprintf(stderr, "apps.plugin has been compiled without debugging\n"); #endif continue; } #ifndef __FreeBSD__ if(strcmp("fds-cache-secs", argv[i]) == 0) { if(argc <= i + 1) { fprintf(stderr, "Parameter 'fds-cache-secs' requires a number as argument.\n"); exit(1); } i++; max_fds_cache_seconds = str2i(argv[i]); if(max_fds_cache_seconds < 0) max_fds_cache_seconds = 0; continue; } #endif if(strcmp("no-childs", argv[i]) == 0 || strcmp("without-childs", argv[i]) == 0) { include_exited_childs = 0; continue; } if(strcmp("with-childs", argv[i]) == 0) { include_exited_childs = 1; continue; } if(strcmp("with-guest", argv[i]) == 0) { enable_guest_charts = 1; continue; } if(strcmp("no-guest", argv[i]) == 0 || strcmp("without-guest", argv[i]) == 0) { enable_guest_charts = 0; continue; } if(strcmp("with-files", argv[i]) == 0) { enable_file_charts = 1; continue; } if(strcmp("no-files", argv[i]) == 0 || strcmp("without-files", argv[i]) == 0) { enable_file_charts = 0; continue; } if(strcmp("no-users", argv[i]) == 0 || strcmp("without-users", argv[i]) == 0) { enable_users_charts = 0; continue; } if(strcmp("no-groups", argv[i]) == 0 || strcmp("without-groups", argv[i]) == 0) { enable_groups_charts = 0; continue; } if(strcmp("with-detailed-uptime", argv[i]) == 0) { enable_detailed_uptime_charts = 1; continue; } if(strcmp("with-function-cmdline", argv[i]) == 0) { enable_function_cmdline = 1; continue; } if(strcmp("-h", argv[i]) == 0 || strcmp("--help", argv[i]) == 0) { fprintf(stderr, "\n" " netdata apps.plugin %s\n" " Copyright (C) 2016-2017 Costa Tsaousis \n" " Released under GNU General Public License v3 or later.\n" " All rights reserved.\n" "\n" " This program is a data collector plugin for netdata.\n" "\n" " Available command line options:\n" "\n" " SECONDS set the data collection frequency\n" "\n" " debug enable debugging (lot of output)\n" "\n" " with-function-cmdline enable reporting the complete command line for processes\n" " it includes the command and passed arguments\n" " it may include sensitive data such as passwords and tokens\n" " enabling this could be a security risk\n" "\n" " with-childs\n" " without-childs enable / disable aggregating exited\n" " children resources into parents\n" " (default is enabled)\n" "\n" " with-guest\n" " without-guest enable / disable reporting guest charts\n" " (default is disabled)\n" "\n" " with-files\n" " without-files enable / disable reporting files, sockets, pipes\n" " (default is enabled)\n" "\n" " without-users disable reporting per user charts\n" "\n" " without-groups disable reporting per user group charts\n" "\n" " with-detailed-uptime enable reporting min/avg/max uptime charts\n" "\n" #ifndef __FreeBSD__ " fds-cache-secs N cache the files of processed for N seconds\n" " caching is adaptive per file (when a file\n" " is found, it starts at 0 and while the file\n" " remains open, it is incremented up to the\n" " max given)\n" " (default is %d seconds)\n" "\n" #endif " version or -v or -V print program version and exit\n" "\n" , VERSION #ifndef __FreeBSD__ , max_fds_cache_seconds #endif ); exit(1); } netdata_log_error("Cannot understand option %s", argv[i]); exit(1); } if(freq > 0) update_every = freq; if(read_apps_groups_conf(user_config_dir, "groups")) { netdata_log_info("Cannot read process groups configuration file '%s/apps_groups.conf'. Will try '%s/apps_groups.conf'", user_config_dir, stock_config_dir); if(read_apps_groups_conf(stock_config_dir, "groups")) { netdata_log_error("Cannot read process groups '%s/apps_groups.conf'. There are no internal defaults. Failing.", stock_config_dir); exit(1); } else netdata_log_info("Loaded config file '%s/apps_groups.conf'", stock_config_dir); } else netdata_log_info("Loaded config file '%s/apps_groups.conf'", user_config_dir); } static int am_i_running_as_root() { uid_t uid = getuid(), euid = geteuid(); if(uid == 0 || euid == 0) { if(debug_enabled) netdata_log_info("I am running with escalated privileges, uid = %u, euid = %u.", uid, euid); return 1; } if(debug_enabled) netdata_log_info("I am not running with escalated privileges, uid = %u, euid = %u.", uid, euid); return 0; } #ifdef HAVE_CAPABILITY static int check_capabilities() { cap_t caps = cap_get_proc(); if(!caps) { netdata_log_error("Cannot get current capabilities."); return 0; } else if(debug_enabled) netdata_log_info("Received my capabilities from the system."); int ret = 1; cap_flag_value_t cfv = CAP_CLEAR; if(cap_get_flag(caps, CAP_DAC_READ_SEARCH, CAP_EFFECTIVE, &cfv) == -1) { netdata_log_error("Cannot find if CAP_DAC_READ_SEARCH is effective."); ret = 0; } else { if(cfv != CAP_SET) { netdata_log_error("apps.plugin should run with CAP_DAC_READ_SEARCH."); ret = 0; } else if(debug_enabled) netdata_log_info("apps.plugin runs with CAP_DAC_READ_SEARCH."); } cfv = CAP_CLEAR; if(cap_get_flag(caps, CAP_SYS_PTRACE, CAP_EFFECTIVE, &cfv) == -1) { netdata_log_error("Cannot find if CAP_SYS_PTRACE is effective."); ret = 0; } else { if(cfv != CAP_SET) { netdata_log_error("apps.plugin should run with CAP_SYS_PTRACE."); ret = 0; } else if(debug_enabled) netdata_log_info("apps.plugin runs with CAP_SYS_PTRACE."); } cap_free(caps); return ret; } #else static int check_capabilities() { return 0; } #endif static netdata_mutex_t apps_and_stdout_mutex = NETDATA_MUTEX_INITIALIZER; #define PROCESS_FILTER_CATEGORY "category:" #define PROCESS_FILTER_USER "user:" #define PROCESS_FILTER_GROUP "group:" #define PROCESS_FILTER_PROCESS "process:" #define PROCESS_FILTER_PID "pid:" #define PROCESS_FILTER_UID "uid:" #define PROCESS_FILTER_GID "gid:" static struct target *find_target_by_name(struct target *base, const char *name) { struct target *t; for(t = base; t ; t = t->next) { if (strcmp(t->name, name) == 0) return t; } return NULL; } static kernel_uint_t MemTotal = 0; static void get_MemTotal(void) { #ifdef __FreeBSD__ // TODO - fix this for FreeBSD return; #else char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s/proc/meminfo", netdata_configured_host_prefix); procfile *ff = procfile_open(filename, ": \t", PROCFILE_FLAG_DEFAULT); if(!ff) return; ff = procfile_readall(ff); if(!ff) return; size_t line, lines = procfile_lines(ff); for(line = 0; line < lines ;line++) { size_t words = procfile_linewords(ff, line); if(words == 3 && strcmp(procfile_lineword(ff, line, 0), "MemTotal") == 0 && strcmp(procfile_lineword(ff, line, 2), "kB") == 0) { kernel_uint_t n = str2ull(procfile_lineword(ff, line, 1), NULL); if(n) MemTotal = n; break; } } procfile_close(ff); #endif } static void apps_plugin_function_processes_help(const char *transaction) { BUFFER *wb = buffer_create(0, NULL); buffer_sprintf(wb, "%s", "apps.plugin / processes\n" "\n" "Function `processes` presents all the currently running processes of the system.\n" "\n" "The following filters are supported:\n" "\n" " category:NAME\n" " Shows only processes that are assigned the category `NAME` in apps_groups.conf\n" "\n" " user:NAME\n" " Shows only processes that are running as user name `NAME`.\n" "\n" " group:NAME\n" " Shows only processes that are running as group name `NAME`.\n" "\n" " process:NAME\n" " Shows only processes that their Command is `NAME` or their parent's Command is `NAME`.\n" "\n" " pid:NUMBER\n" " Shows only processes that their PID is `NUMBER` or their parent's PID is `NUMBER`\n" "\n" " uid:NUMBER\n" " Shows only processes that their UID is `NUMBER`\n" "\n" " gid:NUMBER\n" " Shows only processes that their GID is `NUMBER`\n" "\n" "Filters can be combined. Each filter can be given only one time.\n" ); pluginsd_function_result_to_stdout(transaction, HTTP_RESP_OK, "text/plain", now_realtime_sec() + 3600, wb); buffer_free(wb); } #define add_value_field_llu_with_max(wb, key, value) do { \ unsigned long long _tmp = (value); \ key ## _max = (rows == 0) ? (_tmp) : MAX(key ## _max, _tmp); \ buffer_json_add_array_item_uint64(wb, _tmp); \ } while(0) #define add_value_field_ndd_with_max(wb, key, value) do { \ NETDATA_DOUBLE _tmp = (value); \ key ## _max = (rows == 0) ? (_tmp) : MAX(key ## _max, _tmp); \ buffer_json_add_array_item_double(wb, _tmp); \ } while(0) static void function_processes(const char *transaction, char *function __maybe_unused, int timeout __maybe_unused, bool *cancelled __maybe_unused) { struct pid_stat *p; char *words[PLUGINSD_MAX_WORDS] = { NULL }; size_t num_words = quoted_strings_splitter_pluginsd(function, words, PLUGINSD_MAX_WORDS); struct target *category = NULL, *user = NULL, *group = NULL; const char *process_name = NULL; pid_t pid = 0; uid_t uid = 0; gid_t gid = 0; bool filter_pid = false, filter_uid = false, filter_gid = false; for(int i = 1; i < PLUGINSD_MAX_WORDS ;i++) { const char *keyword = get_word(words, num_words, i); if(!keyword) break; if(!category && strncmp(keyword, PROCESS_FILTER_CATEGORY, strlen(PROCESS_FILTER_CATEGORY)) == 0) { category = find_target_by_name(apps_groups_root_target, &keyword[strlen(PROCESS_FILTER_CATEGORY)]); if(!category) { pluginsd_function_json_error_to_stdout(transaction, HTTP_RESP_BAD_REQUEST, "No category with that name found."); return; } } else if(!user && strncmp(keyword, PROCESS_FILTER_USER, strlen(PROCESS_FILTER_USER)) == 0) { user = find_target_by_name(users_root_target, &keyword[strlen(PROCESS_FILTER_USER)]); if(!user) { pluginsd_function_json_error_to_stdout(transaction, HTTP_RESP_BAD_REQUEST, "No user with that name found."); return; } } else if(strncmp(keyword, PROCESS_FILTER_GROUP, strlen(PROCESS_FILTER_GROUP)) == 0) { group = find_target_by_name(groups_root_target, &keyword[strlen(PROCESS_FILTER_GROUP)]); if(!group) { pluginsd_function_json_error_to_stdout(transaction, HTTP_RESP_BAD_REQUEST, "No group with that name found."); return; } } else if(!process_name && strncmp(keyword, PROCESS_FILTER_PROCESS, strlen(PROCESS_FILTER_PROCESS)) == 0) { process_name = &keyword[strlen(PROCESS_FILTER_PROCESS)]; } else if(!pid && strncmp(keyword, PROCESS_FILTER_PID, strlen(PROCESS_FILTER_PID)) == 0) { pid = str2i(&keyword[strlen(PROCESS_FILTER_PID)]); filter_pid = true; } else if(!uid && strncmp(keyword, PROCESS_FILTER_UID, strlen(PROCESS_FILTER_UID)) == 0) { uid = str2i(&keyword[strlen(PROCESS_FILTER_UID)]); filter_uid = true; } else if(!gid && strncmp(keyword, PROCESS_FILTER_GID, strlen(PROCESS_FILTER_GID)) == 0) { gid = str2i(&keyword[strlen(PROCESS_FILTER_GID)]); filter_gid = true; } else if(strcmp(keyword, "help") == 0) { apps_plugin_function_processes_help(transaction); return; } else { char msg[PLUGINSD_LINE_MAX]; snprintfz(msg, PLUGINSD_LINE_MAX, "Invalid parameter '%s'", keyword); pluginsd_function_json_error_to_stdout(transaction, HTTP_RESP_BAD_REQUEST, msg); return; } } time_t expires = now_realtime_sec() + update_every; unsigned int cpu_divisor = time_factor * RATES_DETAIL / 100; unsigned int memory_divisor = 1024; unsigned int io_divisor = 1024 * RATES_DETAIL; BUFFER *wb = buffer_create(PLUGINSD_LINE_MAX, NULL); buffer_json_initialize(wb, "\"", "\"", 0, true, BUFFER_JSON_OPTIONS_NEWLINE_ON_ARRAY_ITEMS); buffer_json_member_add_uint64(wb, "status", HTTP_RESP_OK); buffer_json_member_add_string(wb, "type", "table"); buffer_json_member_add_time_t(wb, "update_every", update_every); buffer_json_member_add_string(wb, "help", APPS_PLUGIN_PROCESSES_FUNCTION_DESCRIPTION); buffer_json_member_add_array(wb, "data"); NETDATA_DOUBLE UserCPU_max = 0.0 , SysCPU_max = 0.0 , GuestCPU_max = 0.0 , CUserCPU_max = 0.0 , CSysCPU_max = 0.0 , CGuestCPU_max = 0.0 , CPU_max = 0.0 , VMSize_max = 0.0 , RSS_max = 0.0 , Shared_max = 0.0 , Swap_max = 0.0 , Memory_max = 0.0 , FDsLimitPercent_max = 0.0 ; unsigned long long Processes_max = 0 , Threads_max = 0 , VoluntaryCtxtSwitches_max = 0 , NonVoluntaryCtxtSwitches_max = 0 , Uptime_max = 0 , MinFlt_max = 0 , CMinFlt_max = 0 , TMinFlt_max = 0 , MajFlt_max = 0 , CMajFlt_max = 0 , TMajFlt_max = 0 , PReads_max = 0 , PWrites_max = 0 , RCalls_max = 0 , WCalls_max = 0 , Files_max = 0 , Pipes_max = 0 , Sockets_max = 0 , iNotiFDs_max = 0 , EventFDs_max = 0 , TimerFDs_max = 0 , SigFDs_max = 0 , EvPollFDs_max = 0 , OtherFDs_max = 0 , FDs_max = 0 ; #ifndef __FreeBSD__ unsigned long long LReads_max = 0 , LWrites_max = 0 ; #endif int rows= 0; for(p = root_of_pids; p ; p = p->next) { if(!p->updated) continue; if(category && p->target != category) continue; if(user && p->user_target != user) continue; if(group && p->group_target != group) continue; if(process_name && ((strcmp(p->comm, process_name) != 0 && !p->parent) || (p->parent && strcmp(p->comm, process_name) != 0 && strcmp(p->parent->comm, process_name) != 0))) continue; if(filter_pid && p->pid != pid && p->ppid != pid) continue; if(filter_uid && p->uid != uid) continue; if(filter_gid && p->gid != gid) continue; rows++; buffer_json_add_array_item_array(wb); // for each pid // IMPORTANT! // THE ORDER SHOULD BE THE SAME WITH THE FIELDS! // pid buffer_json_add_array_item_uint64(wb, p->pid); // cmd buffer_json_add_array_item_string(wb, p->comm); // cmdline if (enable_function_cmdline) { buffer_json_add_array_item_string(wb, (p->cmdline && *p->cmdline) ? p->cmdline : p->comm); } // ppid buffer_json_add_array_item_uint64(wb, p->ppid); // category buffer_json_add_array_item_string(wb, p->target ? p->target->name : "-"); // user buffer_json_add_array_item_string(wb, p->user_target ? p->user_target->name : "-"); // uid buffer_json_add_array_item_uint64(wb, p->uid); // group buffer_json_add_array_item_string(wb, p->group_target ? p->group_target->name : "-"); // gid buffer_json_add_array_item_uint64(wb, p->gid); // CPU utilization % add_value_field_ndd_with_max(wb, CPU, (NETDATA_DOUBLE)(p->utime + p->stime + p->gtime + p->cutime + p->cstime + p->cgtime) / cpu_divisor); add_value_field_ndd_with_max(wb, UserCPU, (NETDATA_DOUBLE)(p->utime) / cpu_divisor); add_value_field_ndd_with_max(wb, SysCPU, (NETDATA_DOUBLE)(p->stime) / cpu_divisor); add_value_field_ndd_with_max(wb, GuestCPU, (NETDATA_DOUBLE)(p->gtime) / cpu_divisor); add_value_field_ndd_with_max(wb, CUserCPU, (NETDATA_DOUBLE)(p->cutime) / cpu_divisor); add_value_field_ndd_with_max(wb, CSysCPU, (NETDATA_DOUBLE)(p->cstime) / cpu_divisor); add_value_field_ndd_with_max(wb, CGuestCPU, (NETDATA_DOUBLE)(p->cgtime) / cpu_divisor); add_value_field_llu_with_max(wb, VoluntaryCtxtSwitches, p->status_voluntary_ctxt_switches / RATES_DETAIL); add_value_field_llu_with_max(wb, NonVoluntaryCtxtSwitches, p->status_nonvoluntary_ctxt_switches / RATES_DETAIL); // memory MiB if(MemTotal) add_value_field_ndd_with_max(wb, Memory, (NETDATA_DOUBLE)p->status_vmrss * 100.0 / (NETDATA_DOUBLE)MemTotal); add_value_field_ndd_with_max(wb, RSS, (NETDATA_DOUBLE)p->status_vmrss / memory_divisor); add_value_field_ndd_with_max(wb, Shared, (NETDATA_DOUBLE)p->status_vmshared / memory_divisor); add_value_field_ndd_with_max(wb, VMSize, (NETDATA_DOUBLE)p->status_vmsize / memory_divisor); add_value_field_ndd_with_max(wb, Swap, (NETDATA_DOUBLE)p->status_vmswap / memory_divisor); // Physical I/O add_value_field_llu_with_max(wb, PReads, p->io_storage_bytes_read / io_divisor); add_value_field_llu_with_max(wb, PWrites, p->io_storage_bytes_written / io_divisor); // Logical I/O #ifndef __FreeBSD__ add_value_field_llu_with_max(wb, LReads, p->io_logical_bytes_read / io_divisor); add_value_field_llu_with_max(wb, LWrites, p->io_logical_bytes_written / io_divisor); #endif // I/O calls add_value_field_llu_with_max(wb, RCalls, p->io_read_calls / RATES_DETAIL); add_value_field_llu_with_max(wb, WCalls, p->io_write_calls / RATES_DETAIL); // minor page faults add_value_field_llu_with_max(wb, MinFlt, p->minflt / RATES_DETAIL); add_value_field_llu_with_max(wb, CMinFlt, p->cminflt / RATES_DETAIL); add_value_field_llu_with_max(wb, TMinFlt, (p->minflt + p->cminflt) / RATES_DETAIL); // major page faults add_value_field_llu_with_max(wb, MajFlt, p->majflt / RATES_DETAIL); add_value_field_llu_with_max(wb, CMajFlt, p->cmajflt / RATES_DETAIL); add_value_field_llu_with_max(wb, TMajFlt, (p->majflt + p->cmajflt) / RATES_DETAIL); // open file descriptors add_value_field_ndd_with_max(wb, FDsLimitPercent, p->openfds_limits_percent); add_value_field_llu_with_max(wb, FDs, pid_openfds_sum(p)); add_value_field_llu_with_max(wb, Files, p->openfds.files); add_value_field_llu_with_max(wb, Pipes, p->openfds.pipes); add_value_field_llu_with_max(wb, Sockets, p->openfds.sockets); add_value_field_llu_with_max(wb, iNotiFDs, p->openfds.inotifies); add_value_field_llu_with_max(wb, EventFDs, p->openfds.eventfds); add_value_field_llu_with_max(wb, TimerFDs, p->openfds.timerfds); add_value_field_llu_with_max(wb, SigFDs, p->openfds.signalfds); add_value_field_llu_with_max(wb, EvPollFDs, p->openfds.eventpolls); add_value_field_llu_with_max(wb, OtherFDs, p->openfds.other); // processes, threads, uptime add_value_field_llu_with_max(wb, Processes, p->children_count); add_value_field_llu_with_max(wb, Threads, p->num_threads); add_value_field_llu_with_max(wb, Uptime, p->uptime); buffer_json_array_close(wb); // for each pid } buffer_json_array_close(wb); // data buffer_json_member_add_object(wb, "columns"); { int field_id = 0; // IMPORTANT! // THE ORDER SHOULD BE THE SAME WITH THE VALUES! // wb, key, name, visible, type, visualization, transform, decimal_points, units, max, sort, sortable, sticky, unique_key, pointer_to, summary, range buffer_rrdf_table_add_field(wb, field_id++, "PID", "Process ID", RRDF_FIELD_TYPE_INTEGER, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NUMBER, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_VISIBLE | RRDF_FIELD_OPTS_STICKY | RRDF_FIELD_OPTS_UNIQUE_KEY, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Cmd", "Process Name", RRDF_FIELD_TYPE_STRING, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_VISIBLE | RRDF_FIELD_OPTS_STICKY, NULL); if (enable_function_cmdline) { buffer_rrdf_table_add_field(wb, field_id++, "CmdLine", "Command Line", RRDF_FIELD_TYPE_STRING, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_NONE, NULL); } buffer_rrdf_table_add_field(wb, field_id++, "PPID", "Parent Process ID", RRDF_FIELD_TYPE_INTEGER, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NUMBER, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, "PID", RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Category", "Category (apps_groups.conf)", RRDF_FIELD_TYPE_STRING, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_VISIBLE | RRDF_FIELD_OPTS_STICKY, NULL); buffer_rrdf_table_add_field(wb, field_id++, "User", "User Owner", RRDF_FIELD_TYPE_STRING, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_VISIBLE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Uid", "User ID", RRDF_FIELD_TYPE_INTEGER, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NUMBER, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Group", "Group Owner", RRDF_FIELD_TYPE_STRING, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Gid", "Group ID", RRDF_FIELD_TYPE_INTEGER, RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NUMBER, 0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT, RRDF_FIELD_FILTER_MULTISELECT, RRDF_FIELD_OPTS_NONE, NULL); // CPU utilization buffer_rrdf_table_add_field(wb, field_id++, "CPU", "Total CPU Time (100% = 1 core)", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", CPU_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_VISIBLE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "UserCPU", "User CPU time (100% = 1 core)", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", UserCPU_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "SysCPU", "System CPU Time (100% = 1 core)", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", SysCPU_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "GuestCPU", "Guest CPU Time (100% = 1 core)", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", GuestCPU_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "CUserCPU", "Children User CPU Time (100% = 1 core)", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", CUserCPU_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "CSysCPU", "Children System CPU Time (100% = 1 core)", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", CSysCPU_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "CGuestCPU", "Children Guest CPU Time (100% = 1 core)", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", CGuestCPU_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); // CPU context switches buffer_rrdf_table_add_field(wb, field_id++, "vCtxSwitch", "Voluntary Context Switches", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "switches/s", VoluntaryCtxtSwitches_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "iCtxSwitch", "Involuntary Context Switches", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "switches/s", NonVoluntaryCtxtSwitches_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); // memory if (MemTotal) buffer_rrdf_table_add_field(wb, field_id++, "Memory", "Memory Percentage", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", 100.0, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_VISIBLE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Resident", "Resident Set Size", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "MiB", RSS_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_VISIBLE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Shared", "Shared Pages", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "MiB", Shared_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_VISIBLE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Virtual", "Virtual Memory Size", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "MiB", VMSize_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_VISIBLE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Swap", "Swap Memory", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "MiB", Swap_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); // Physical I/O buffer_rrdf_table_add_field(wb, field_id++, "PReads", "Physical I/O Reads", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "KiB/s", PReads_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_VISIBLE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "PWrites", "Physical I/O Writes", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "KiB/s", PWrites_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_VISIBLE, NULL); // Logical I/O #ifndef __FreeBSD__ buffer_rrdf_table_add_field(wb, field_id++, "LReads", "Logical I/O Reads", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "KiB/s", LReads_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "LWrites", "Logical I/O Writes", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "KiB/s", LWrites_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); #endif // I/O calls buffer_rrdf_table_add_field(wb, field_id++, "RCalls", "I/O Read Calls", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "calls/s", RCalls_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "WCalls", "I/O Write Calls", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "calls/s", WCalls_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); // minor page faults buffer_rrdf_table_add_field(wb, field_id++, "MinFlt", "Minor Page Faults/s", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", MinFlt_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "CMinFlt", "Children Minor Page Faults/s", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", CMinFlt_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "TMinFlt", "Total Minor Page Faults/s", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", TMinFlt_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); // major page faults buffer_rrdf_table_add_field(wb, field_id++, "MajFlt", "Major Page Faults/s", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", MajFlt_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "CMajFlt", "Children Major Page Faults/s", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", CMajFlt_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "TMajFlt", "Total Major Page Faults/s", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", TMajFlt_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); // open file descriptors buffer_rrdf_table_add_field(wb, field_id++, "FDsLimitPercent", "Percentage of Open Descriptors vs Limits", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", FDsLimitPercent_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_MAX, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "FDs", "All Open File Descriptors", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", FDs_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Files", "Open Files", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", Files_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Pipes", "Open Pipes", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", Pipes_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Sockets", "Open Sockets", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", Sockets_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "iNotiFDs", "Open iNotify Descriptors", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", iNotiFDs_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "EventFDs", "Open Event Descriptors", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", EventFDs_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "TimerFDs", "Open Timer Descriptors", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", TimerFDs_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "SigFDs", "Open Signal Descriptors", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", SigFDs_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "EvPollFDs", "Open Event Poll Descriptors", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", EvPollFDs_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "OtherFDs", "Other Open Descriptors", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", OtherFDs_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); // processes, threads, uptime buffer_rrdf_table_add_field(wb, field_id++, "Processes", "Processes", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "processes", Processes_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Threads", "Threads", RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "threads", Threads_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL); buffer_rrdf_table_add_field(wb, field_id++, "Uptime", "Uptime in seconds", RRDF_FIELD_TYPE_DURATION, RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_DURATION_S, 2, "seconds", Uptime_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_MAX, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_VISIBLE, NULL); } buffer_json_object_close(wb); // columns buffer_json_member_add_string(wb, "default_sort_column", "CPU"); buffer_json_member_add_object(wb, "charts"); { // CPU chart buffer_json_member_add_object(wb, "CPU"); { buffer_json_member_add_string(wb, "name", "CPU Utilization"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "UserCPU"); buffer_json_add_array_item_string(wb, "SysCPU"); buffer_json_add_array_item_string(wb, "GuestCPU"); buffer_json_add_array_item_string(wb, "CUserCPU"); buffer_json_add_array_item_string(wb, "CSysCPU"); buffer_json_add_array_item_string(wb, "CGuestCPU"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); buffer_json_member_add_object(wb, "CPUCtxSwitches"); { buffer_json_member_add_string(wb, "name", "CPU Context Switches"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "vCtxSwitch"); buffer_json_add_array_item_string(wb, "iCtxSwitch"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // Memory chart buffer_json_member_add_object(wb, "Memory"); { buffer_json_member_add_string(wb, "name", "Memory"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "Virtual"); buffer_json_add_array_item_string(wb, "Resident"); buffer_json_add_array_item_string(wb, "Shared"); buffer_json_add_array_item_string(wb, "Swap"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); if(MemTotal) { // Memory chart buffer_json_member_add_object(wb, "MemoryPercent"); { buffer_json_member_add_string(wb, "name", "Memory Percentage"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "Memory"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); } #ifndef __FreeBSD__ // I/O Reads chart buffer_json_member_add_object(wb, "Reads"); { buffer_json_member_add_string(wb, "name", "I/O Reads"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "LReads"); buffer_json_add_array_item_string(wb, "PReads"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // I/O Writes chart buffer_json_member_add_object(wb, "Writes"); { buffer_json_member_add_string(wb, "name", "I/O Writes"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "LWrites"); buffer_json_add_array_item_string(wb, "PWrites"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // Logical I/O chart buffer_json_member_add_object(wb, "LogicalIO"); { buffer_json_member_add_string(wb, "name", "Logical I/O"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "LReads"); buffer_json_add_array_item_string(wb, "LWrites"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); #endif // Physical I/O chart buffer_json_member_add_object(wb, "PhysicalIO"); { buffer_json_member_add_string(wb, "name", "Physical I/O"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "PReads"); buffer_json_add_array_item_string(wb, "PWrites"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // I/O Calls chart buffer_json_member_add_object(wb, "IOCalls"); { buffer_json_member_add_string(wb, "name", "I/O Calls"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "RCalls"); buffer_json_add_array_item_string(wb, "WCalls"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // Minor Page Faults chart buffer_json_member_add_object(wb, "MinFlt"); { buffer_json_member_add_string(wb, "name", "Minor Page Faults"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "MinFlt"); buffer_json_add_array_item_string(wb, "CMinFlt"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // Major Page Faults chart buffer_json_member_add_object(wb, "MajFlt"); { buffer_json_member_add_string(wb, "name", "Major Page Faults"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "MajFlt"); buffer_json_add_array_item_string(wb, "CMajFlt"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // Threads chart buffer_json_member_add_object(wb, "Threads"); { buffer_json_member_add_string(wb, "name", "Threads"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "Threads"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // Processes chart buffer_json_member_add_object(wb, "Processes"); { buffer_json_member_add_string(wb, "name", "Processes"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "Processes"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // FDs chart buffer_json_member_add_object(wb, "FDs"); { buffer_json_member_add_string(wb, "name", "File Descriptors"); buffer_json_member_add_string(wb, "type", "stacked-bar"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "Files"); buffer_json_add_array_item_string(wb, "Pipes"); buffer_json_add_array_item_string(wb, "Sockets"); buffer_json_add_array_item_string(wb, "iNotiFDs"); buffer_json_add_array_item_string(wb, "EventFDs"); buffer_json_add_array_item_string(wb, "TimerFDs"); buffer_json_add_array_item_string(wb, "SigFDs"); buffer_json_add_array_item_string(wb, "EvPollFDs"); buffer_json_add_array_item_string(wb, "OtherFDs"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); } buffer_json_object_close(wb); // charts buffer_json_member_add_array(wb, "default_charts"); { buffer_json_add_array_item_array(wb); buffer_json_add_array_item_string(wb, "CPU"); buffer_json_add_array_item_string(wb, "Category"); buffer_json_array_close(wb); buffer_json_add_array_item_array(wb); buffer_json_add_array_item_string(wb, "Memory"); buffer_json_add_array_item_string(wb, "Category"); buffer_json_array_close(wb); } buffer_json_array_close(wb); buffer_json_member_add_object(wb, "group_by"); { // group by PID buffer_json_member_add_object(wb, "PID"); { buffer_json_member_add_string(wb, "name", "Process Tree by PID"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "PPID"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // group by Category buffer_json_member_add_object(wb, "Category"); { buffer_json_member_add_string(wb, "name", "Process Tree by Category"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "Category"); buffer_json_add_array_item_string(wb, "PPID"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // group by User buffer_json_member_add_object(wb, "User"); { buffer_json_member_add_string(wb, "name", "Process Tree by User"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "User"); buffer_json_add_array_item_string(wb, "PPID"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); // group by Group buffer_json_member_add_object(wb, "Group"); { buffer_json_member_add_string(wb, "name", "Process Tree by Group"); buffer_json_member_add_array(wb, "columns"); { buffer_json_add_array_item_string(wb, "Group"); buffer_json_add_array_item_string(wb, "PPID"); } buffer_json_array_close(wb); } buffer_json_object_close(wb); } buffer_json_object_close(wb); // group_by buffer_json_member_add_time_t(wb, "expires", expires); buffer_json_finalize(wb); pluginsd_function_result_to_stdout(transaction, HTTP_RESP_OK, "application/json", expires, wb); buffer_free(wb); } static bool apps_plugin_exit = false; int main(int argc, char **argv) { // debug_flags = D_PROCFILE; stderror = stderr; clocks_init(); pagesize = (size_t)sysconf(_SC_PAGESIZE); // set the name for logging program_name = "apps.plugin"; // disable syslog for apps.plugin error_log_syslog = 0; // set errors flood protection to 100 logs per hour error_log_errors_per_period = 100; error_log_throttle_period = 3600; log_set_global_severity_for_external_plugins(); bool send_resource_usage = true; { const char *s = getenv("NETDATA_INTERNALS_MONITORING"); if(s && *s && strcmp(s, "NO") == 0) send_resource_usage = false; } // since apps.plugin runs as root, prevent it from opening symbolic links procfile_open_flags = O_RDONLY|O_NOFOLLOW; netdata_configured_host_prefix = getenv("NETDATA_HOST_PREFIX"); if(verify_netdata_host_prefix() == -1) exit(1); user_config_dir = getenv("NETDATA_USER_CONFIG_DIR"); if(user_config_dir == NULL) { // netdata_log_info("NETDATA_CONFIG_DIR is not passed from netdata"); user_config_dir = CONFIG_DIR; } // else netdata_log_info("Found NETDATA_USER_CONFIG_DIR='%s'", user_config_dir); stock_config_dir = getenv("NETDATA_STOCK_CONFIG_DIR"); if(stock_config_dir == NULL) { // netdata_log_info("NETDATA_CONFIG_DIR is not passed from netdata"); stock_config_dir = LIBCONFIG_DIR; } // else netdata_log_info("Found NETDATA_USER_CONFIG_DIR='%s'", user_config_dir); #ifdef NETDATA_INTERNAL_CHECKS if(debug_flags != 0) { struct rlimit rl = { RLIM_INFINITY, RLIM_INFINITY }; if(setrlimit(RLIMIT_CORE, &rl) != 0) netdata_log_info("Cannot request unlimited core dumps for debugging... Proceeding anyway..."); #ifdef HAVE_SYS_PRCTL_H prctl(PR_SET_DUMPABLE, 1, 0, 0, 0); #endif } #endif /* NETDATA_INTERNAL_CHECKS */ procfile_adaptive_initial_allocation = 1; get_system_HZ(); #ifdef __FreeBSD__ time_factor = 1000000ULL / RATES_DETAIL; // FreeBSD uses usecs #else time_factor = system_hz; // Linux uses clock ticks #endif get_system_pid_max(); get_system_cpus_uncached(); parse_args(argc, argv); if(!check_capabilities() && !am_i_running_as_root() && !check_proc_1_io()) { uid_t uid = getuid(), euid = geteuid(); #ifdef HAVE_CAPABILITY netdata_log_error("apps.plugin should either run as root (now running with uid %u, euid %u) or have special capabilities. " "Without these, apps.plugin cannot report disk I/O utilization of other processes. " "To enable capabilities run: sudo setcap cap_dac_read_search,cap_sys_ptrace+ep %s; " "To enable setuid to root run: sudo chown root:netdata %s; sudo chmod 4750 %s; " , uid, euid, argv[0], argv[0], argv[0] ); #else netdata_log_error("apps.plugin should either run as root (now running with uid %u, euid %u) or have special capabilities. " "Without these, apps.plugin cannot report disk I/O utilization of other processes. " "Your system does not support capabilities. " "To enable setuid to root run: sudo chown root:netdata %s; sudo chmod 4750 %s; " , uid, euid, argv[0], argv[0] ); #endif } netdata_log_info("started on pid %d", getpid()); snprintfz(all_user_ids.filename, FILENAME_MAX, "%s/etc/passwd", netdata_configured_host_prefix); debug_log("passwd file: '%s'", all_user_ids.filename); snprintfz(all_group_ids.filename, FILENAME_MAX, "%s/etc/group", netdata_configured_host_prefix); debug_log("group file: '%s'", all_group_ids.filename); #if (ALL_PIDS_ARE_READ_INSTANTLY == 0) all_pids_sortlist = callocz(sizeof(pid_t), (size_t)pid_max + 1); #endif all_pids = callocz(sizeof(struct pid_stat *), (size_t) pid_max + 1); // ------------------------------------------------------------------------ // the event loop for functions struct functions_evloop_globals *wg = functions_evloop_init(1, "APPS", &apps_and_stdout_mutex, &apps_plugin_exit); functions_evloop_add_function(wg, "processes", function_processes, PLUGINS_FUNCTIONS_TIMEOUT_DEFAULT); // ------------------------------------------------------------------------ netdata_mutex_lock(&apps_and_stdout_mutex); APPS_PLUGIN_GLOBAL_FUNCTIONS(); usec_t step = update_every * USEC_PER_SEC; global_iterations_counter = 1; heartbeat_t hb; heartbeat_init(&hb); for(; !apps_plugin_exit ; global_iterations_counter++) { netdata_mutex_unlock(&apps_and_stdout_mutex); #ifdef NETDATA_PROFILING #warning "compiling for profiling" static int profiling_count=0; profiling_count++; if(unlikely(profiling_count > 2000)) exit(0); usec_t dt = update_every * USEC_PER_SEC; #else usec_t dt = heartbeat_next(&hb, step); #endif netdata_mutex_lock(&apps_and_stdout_mutex); struct pollfd pollfd = { .fd = fileno(stdout), .events = POLLERR }; if (unlikely(poll(&pollfd, 1, 0) < 0)) { netdata_mutex_unlock(&apps_and_stdout_mutex); fatal("Cannot check if a pipe is available"); } if (unlikely(pollfd.revents & POLLERR)) { netdata_mutex_unlock(&apps_and_stdout_mutex); fatal("Received error on read pipe."); } if(global_iterations_counter % 10 == 0) get_MemTotal(); if(!collect_data_for_all_processes()) { netdata_log_error("Cannot collect /proc data for running processes. Disabling apps.plugin..."); printf("DISABLE\n"); netdata_mutex_unlock(&apps_and_stdout_mutex); exit(1); } calculate_netdata_statistics(); normalize_utilization(apps_groups_root_target); if(send_resource_usage) send_resource_usage_to_netdata(dt); #ifndef __FreeBSD__ send_proc_states_count(dt); #endif send_charts_updates_to_netdata(apps_groups_root_target, "app", "app_group", "Apps"); send_collected_data_to_netdata(apps_groups_root_target, "app", dt); if (enable_users_charts) { send_charts_updates_to_netdata(users_root_target, "user", "user", "Users"); send_collected_data_to_netdata(users_root_target, "user", dt); } if (enable_groups_charts) { send_charts_updates_to_netdata(groups_root_target, "usergroup", "user_group", "User Groups"); send_collected_data_to_netdata(groups_root_target, "usergroup", dt); } fflush(stdout); show_guest_time_old = show_guest_time; debug_log("done Loop No %zu", global_iterations_counter); } netdata_mutex_unlock(&apps_and_stdout_mutex); }