// SPDX-License-Identifier: GPL-3.0-or-later #include "ebpf.h" #include "ebpf_hardirq.h" struct config hardirq_config = { .first_section = NULL, .last_section = NULL, .mutex = NETDATA_MUTEX_INITIALIZER, .index = { .avl_tree = { .root = NULL, .compar = appconfig_section_compare }, .rwlock = AVL_LOCK_INITIALIZER } }; #define HARDIRQ_MAP_LATENCY 0 #define HARDIRQ_MAP_LATENCY_STATIC 1 static ebpf_local_maps_t hardirq_maps[] = { { .name = "tbl_hardirq", .internal_input = NETDATA_HARDIRQ_MAX_IRQS, .user_input = 0, .type = NETDATA_EBPF_MAP_STATIC, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED }, { .name = "tbl_hardirq_static", .internal_input = HARDIRQ_EBPF_STATIC_END, .user_input = 0, .type = NETDATA_EBPF_MAP_STATIC, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED }, /* end */ { .name = NULL, .internal_input = 0, .user_input = 0, .type = NETDATA_EBPF_MAP_CONTROLLER, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED } }; #define HARDIRQ_TP_CLASS_IRQ "irq" #define HARDIRQ_TP_CLASS_IRQ_VECTORS "irq_vectors" static ebpf_tracepoint_t hardirq_tracepoints[] = { {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ, .event = "irq_handler_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ, .event = "irq_handler_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "thermal_apic_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "thermal_apic_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "threshold_apic_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "threshold_apic_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "error_apic_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "error_apic_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "deferred_error_apic_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "deferred_error_apic_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "spurious_apic_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "spurious_apic_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "call_function_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "call_function_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "call_function_single_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "call_function_single_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "reschedule_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "reschedule_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "local_timer_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "local_timer_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "irq_work_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "irq_work_exit"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "x86_platform_ipi_entry"}, {.enabled = false, .class = HARDIRQ_TP_CLASS_IRQ_VECTORS, .event = "x86_platform_ipi_exit"}, /* end */ {.enabled = false, .class = NULL, .event = NULL} }; static hardirq_static_val_t hardirq_static_vals[] = { { .idx = HARDIRQ_EBPF_STATIC_APIC_THERMAL, .name = "apic_thermal", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_APIC_THRESHOLD, .name = "apic_threshold", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_APIC_ERROR, .name = "apic_error", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_APIC_DEFERRED_ERROR, .name = "apic_deferred_error", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_APIC_SPURIOUS, .name = "apic_spurious", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_FUNC_CALL, .name = "func_call", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_FUNC_CALL_SINGLE, .name = "func_call_single", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_RESCHEDULE, .name = "reschedule", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_LOCAL_TIMER, .name = "local_timer", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_IRQ_WORK, .name = "irq_work", .latency = 0 }, { .idx = HARDIRQ_EBPF_STATIC_X86_PLATFORM_IPI, .name = "x86_platform_ipi", .latency = 0 }, }; // store for "published" data from the reader thread, which the collector // thread will write to netdata agent. static avl_tree_lock hardirq_pub; // tmp store for dynamic hard IRQ values we get from a per-CPU eBPF map. static hardirq_ebpf_val_t *hardirq_ebpf_vals = NULL; // tmp store for static hard IRQ values we get from a per-CPU eBPF map. static hardirq_ebpf_static_val_t *hardirq_ebpf_static_vals = NULL; static struct netdata_static_thread hardirq_threads = {"HARDIRQ KERNEL", NULL, NULL, 1, NULL, NULL, NULL }; static enum ebpf_threads_status ebpf_hardirq_exited = NETDATA_THREAD_EBPF_RUNNING; /** * Hardirq Exit * * Cancel child and exit. * * @param ptr thread data. */ static void hardirq_exit(void *ptr) { ebpf_module_t *em = (ebpf_module_t *)ptr; if (!em->enabled) { em->enabled = NETDATA_MAIN_THREAD_EXITED; return; } ebpf_hardirq_exited = NETDATA_THREAD_EBPF_STOPPING; } /** * Hardirq clean up * * Clean up allocated memory. * * @param ptr thread data. */ static void hardirq_cleanup(void *ptr) { ebpf_module_t *em = (ebpf_module_t *)ptr; if (ebpf_hardirq_exited != NETDATA_THREAD_EBPF_STOPPED) return; freez(hardirq_threads.thread); for (int i = 0; hardirq_tracepoints[i].class != NULL; i++) { ebpf_disable_tracepoint(&hardirq_tracepoints[i]); } freez(hardirq_ebpf_vals); freez(hardirq_ebpf_static_vals); hardirq_threads.enabled = NETDATA_MAIN_THREAD_EXITED; em->enabled = NETDATA_MAIN_THREAD_EXITED; } /***************************************************************** * MAIN LOOP *****************************************************************/ /** * Compare hard IRQ values. * * @param a `hardirq_val_t *`. * @param b `hardirq_val_t *`. * * @return 0 if a==b, 1 if a>b, -1 if airq > ptr2->irq) { return 1; } else if (ptr1->irq < ptr2->irq) { return -1; } else { return 0; } } static void hardirq_read_latency_map(int mapfd) { hardirq_ebpf_key_t key = {}; hardirq_ebpf_key_t next_key = {}; hardirq_val_t search_v = {}; hardirq_val_t *v = NULL; while (bpf_map_get_next_key(mapfd, &key, &next_key) == 0) { // get val for this key. int test = bpf_map_lookup_elem(mapfd, &key, hardirq_ebpf_vals); if (unlikely(test < 0)) { key = next_key; continue; } // is this IRQ saved yet? // // if not, make a new one, mark it as unsaved for now, and continue; we // will insert it at the end after all of its values are correctly set, // so that we can safely publish it to the collector within a single, // short locked operation. // // otherwise simply continue; we will only update the latency, which // can be republished safely without a lock. // // NOTE: lock isn't strictly necessary for this initial search, as only // this thread does writing, but the AVL is using a read-write lock so // there is no congestion. bool v_is_new = false; search_v.irq = key.irq; v = (hardirq_val_t *)avl_search_lock(&hardirq_pub, (avl_t *)&search_v); if (unlikely(v == NULL)) { // latency/name can only be added reliably at a later time. // when they're added, only then will we AVL insert. v = callocz(1, sizeof(hardirq_val_t)); v->irq = key.irq; v->dim_exists = false; v_is_new = true; } // note two things: // 1. we must add up latency value for this IRQ across all CPUs. // 2. the name is unfortunately *not* available on all CPU maps - only // a single map contains the name, so we must find it. we only need // to copy it though if the IRQ is new for us. bool name_saved = false; uint64_t total_latency = 0; int i; int end = (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs; for (i = 0; i < end; i++) { total_latency += hardirq_ebpf_vals[i].latency/1000; // copy name for new IRQs. if (v_is_new && !name_saved && hardirq_ebpf_vals[i].name[0] != '\0') { strncpyz( v->name, hardirq_ebpf_vals[i].name, NETDATA_HARDIRQ_NAME_LEN ); name_saved = true; } } // can now safely publish latency for existing IRQs. v->latency = total_latency; // can now safely publish new IRQ. if (v_is_new) { avl_t *check = avl_insert_lock(&hardirq_pub, (avl_t *)v); if (check != (avl_t *)v) { error("Internal error, cannot insert the AVL tree."); } } key = next_key; } } static void hardirq_read_latency_static_map(int mapfd) { uint32_t i; for (i = 0; i < HARDIRQ_EBPF_STATIC_END; i++) { uint32_t map_i = hardirq_static_vals[i].idx; int test = bpf_map_lookup_elem(mapfd, &map_i, hardirq_ebpf_static_vals); if (unlikely(test < 0)) { continue; } uint64_t total_latency = 0; int cpu_i; int end = (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs; for (cpu_i = 0; cpu_i < end; cpu_i++) { total_latency += hardirq_ebpf_static_vals[cpu_i].latency/1000; } hardirq_static_vals[i].latency = total_latency; } } /** * Read eBPF maps for hard IRQ. */ static void *hardirq_reader(void *ptr) { netdata_thread_cleanup_push(hardirq_cleanup, ptr); heartbeat_t hb; heartbeat_init(&hb); ebpf_module_t *em = (ebpf_module_t *)ptr; usec_t step = NETDATA_HARDIRQ_SLEEP_MS * em->update_every; while (ebpf_hardirq_exited == NETDATA_THREAD_EBPF_RUNNING) { usec_t dt = heartbeat_next(&hb, step); UNUSED(dt); if (ebpf_hardirq_exited == NETDATA_THREAD_EBPF_STOPPING) break; hardirq_read_latency_map(hardirq_maps[HARDIRQ_MAP_LATENCY].map_fd); hardirq_read_latency_static_map(hardirq_maps[HARDIRQ_MAP_LATENCY_STATIC].map_fd); } ebpf_hardirq_exited = NETDATA_THREAD_EBPF_STOPPED; netdata_thread_cleanup_pop(1); return NULL; } static void hardirq_create_charts(int update_every) { ebpf_create_chart( NETDATA_EBPF_SYSTEM_GROUP, "hardirq_latency", "Hardware IRQ latency", EBPF_COMMON_DIMENSION_MILLISECONDS, "interrupts", NULL, NETDATA_EBPF_CHART_TYPE_STACKED, NETDATA_CHART_PRIO_HARDIRQ_LATENCY, NULL, NULL, 0, update_every, NETDATA_EBPF_MODULE_NAME_HARDIRQ ); fflush(stdout); } static void hardirq_create_static_dims() { uint32_t i; for (i = 0; i < HARDIRQ_EBPF_STATIC_END; i++) { ebpf_write_global_dimension( hardirq_static_vals[i].name, hardirq_static_vals[i].name, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX] ); } } // callback for avl tree traversal on `hardirq_pub`. static int hardirq_write_dims(void *entry, void *data) { UNUSED(data); hardirq_val_t *v = entry; // IRQs get dynamically added in, so add the dimension if we haven't yet. if (!v->dim_exists) { ebpf_write_global_dimension( v->name, v->name, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX] ); v->dim_exists = true; } write_chart_dimension(v->name, v->latency); return 1; } static inline void hardirq_write_static_dims() { uint32_t i; for (i = 0; i < HARDIRQ_EBPF_STATIC_END; i++) { write_chart_dimension( hardirq_static_vals[i].name, hardirq_static_vals[i].latency ); } } /** * Main loop for this collector. */ static void hardirq_collector(ebpf_module_t *em) { hardirq_ebpf_vals = callocz( (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs, sizeof(hardirq_ebpf_val_t) ); hardirq_ebpf_static_vals = callocz( (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs, sizeof(hardirq_ebpf_static_val_t) ); avl_init_lock(&hardirq_pub, hardirq_val_cmp); // create reader thread. hardirq_threads.thread = mallocz(sizeof(netdata_thread_t)); hardirq_threads.start_routine = hardirq_reader; netdata_thread_create( hardirq_threads.thread, hardirq_threads.name, NETDATA_THREAD_OPTION_DEFAULT, hardirq_reader, em ); // create chart and static dims. pthread_mutex_lock(&lock); hardirq_create_charts(em->update_every); hardirq_create_static_dims(); ebpf_update_stats(&plugin_statistics, em); pthread_mutex_unlock(&lock); // loop and read from published data until ebpf plugin is closed. heartbeat_t hb; heartbeat_init(&hb); usec_t step = em->update_every * USEC_PER_SEC; //This will be cancelled by its parent while (!ebpf_exit_plugin) { (void)heartbeat_next(&hb, step); if (ebpf_exit_plugin) break; pthread_mutex_lock(&lock); // write dims now for all hitherto discovered IRQs. write_begin_chart(NETDATA_EBPF_SYSTEM_GROUP, "hardirq_latency"); avl_traverse_lock(&hardirq_pub, hardirq_write_dims, NULL); hardirq_write_static_dims(); write_end_chart(); pthread_mutex_unlock(&lock); } } /***************************************************************** * EBPF HARDIRQ THREAD *****************************************************************/ /** * Hard IRQ latency thread. * * @param ptr a `ebpf_module_t *`. * @return always NULL. */ void *ebpf_hardirq_thread(void *ptr) { netdata_thread_cleanup_push(hardirq_exit, ptr); ebpf_module_t *em = (ebpf_module_t *)ptr; em->maps = hardirq_maps; if (!em->enabled) { goto endhardirq; } if (ebpf_enable_tracepoints(hardirq_tracepoints) == 0) { em->enabled = CONFIG_BOOLEAN_NO; goto endhardirq; } em->probe_links = ebpf_load_program(ebpf_plugin_dir, em, running_on_kernel, isrh, &em->objects); if (!em->probe_links) { em->enabled = CONFIG_BOOLEAN_NO; goto endhardirq; } hardirq_collector(em); endhardirq: if (!em->enabled) ebpf_update_disabled_plugin_stats(em); netdata_thread_cleanup_pop(1); return NULL; }