// SPDX-License-Identifier: GPL-3.0-or-later #include #include "ebpf.h" #include "ebpf_socket.h" /***************************************************************** * * GLOBAL VARIABLES * *****************************************************************/ static char *socket_dimension_names[NETDATA_MAX_SOCKET_VECTOR] = { "received", "sent", "close", "received", "sent", "retransmitted", "connected_V4", "connected_V6", "connected_tcp", "connected_udp"}; static char *socket_id_names[NETDATA_MAX_SOCKET_VECTOR] = { "tcp_cleanup_rbuf", "tcp_sendmsg", "tcp_close", "udp_recvmsg", "udp_sendmsg", "tcp_retransmit_skb", "tcp_connect_v4", "tcp_connect_v6", "inet_csk_accept_tcp", "inet_csk_accept_udp" }; static ebpf_local_maps_t socket_maps[] = {{.name = "tbl_bandwidth", .internal_input = NETDATA_COMPILED_CONNECTIONS_ALLOWED, .user_input = NETDATA_MAXIMUM_CONNECTIONS_ALLOWED, .type = NETDATA_EBPF_MAP_STATIC, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED}, {.name = "tbl_global_sock", .internal_input = NETDATA_SOCKET_COUNTER, .user_input = 0, .type = NETDATA_EBPF_MAP_STATIC, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED}, {.name = "tbl_lports", .internal_input = NETDATA_SOCKET_COUNTER, .user_input = 0, .type = NETDATA_EBPF_MAP_STATIC, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED}, {.name = "tbl_conn_ipv4", .internal_input = NETDATA_COMPILED_CONNECTIONS_ALLOWED, .user_input = NETDATA_MAXIMUM_CONNECTIONS_ALLOWED, .type = NETDATA_EBPF_MAP_STATIC, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED}, {.name = "tbl_conn_ipv6", .internal_input = NETDATA_COMPILED_CONNECTIONS_ALLOWED, .user_input = NETDATA_MAXIMUM_CONNECTIONS_ALLOWED, .type = NETDATA_EBPF_MAP_STATIC, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED}, {.name = "tbl_nv_udp", .internal_input = NETDATA_COMPILED_UDP_CONNECTIONS_ALLOWED, .user_input = NETDATA_MAXIMUM_UDP_CONNECTIONS_ALLOWED, .type = NETDATA_EBPF_MAP_STATIC, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED}, {.name = "socket_ctrl", .internal_input = NETDATA_CONTROLLER_END, .user_input = 0, .type = NETDATA_EBPF_MAP_CONTROLLER, .map_fd = ND_EBPF_MAP_FD_NOT_INITIALIZED}, {.name = NULL, .internal_input = 0, .user_input = 0}}; static netdata_idx_t *socket_hash_values = NULL; static netdata_syscall_stat_t socket_aggregated_data[NETDATA_MAX_SOCKET_VECTOR]; static netdata_publish_syscall_t socket_publish_aggregated[NETDATA_MAX_SOCKET_VECTOR]; ebpf_socket_publish_apps_t **socket_bandwidth_curr = NULL; static ebpf_bandwidth_t *bandwidth_vector = NULL; static int socket_apps_created = 0; pthread_mutex_t nv_mutex; int wait_to_plot = 0; int read_thread_closed = 1; netdata_vector_plot_t inbound_vectors = { .plot = NULL, .next = 0, .last = 0 }; netdata_vector_plot_t outbound_vectors = { .plot = NULL, .next = 0, .last = 0 }; netdata_socket_t *socket_values; ebpf_network_viewer_port_list_t *listen_ports = NULL; static struct bpf_object *objects = NULL; static struct bpf_link **probe_links = NULL; struct config socket_config = { .first_section = NULL, .last_section = NULL, .mutex = NETDATA_MUTEX_INITIALIZER, .index = { .avl_tree = { .root = NULL, .compar = appconfig_section_compare }, .rwlock = AVL_LOCK_INITIALIZER } }; netdata_ebpf_targets_t socket_targets[] = { {.name = "inet_csk_accept", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = "tcp_retransmit_skb", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = "tcp_cleanup_rbuf", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = "tcp_close", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = "udp_recvmsg", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = "tcp_sendmsg", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = "udp_sendmsg", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = "tcp_v4_connect", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = "tcp_v6_connect", .mode = EBPF_LOAD_TRAMPOLINE}, {.name = NULL, .mode = EBPF_LOAD_TRAMPOLINE}}; #ifdef LIBBPF_MAJOR_VERSION #include "includes/socket.skel.h" // BTF code static struct socket_bpf *bpf_obj = NULL; /** * Disable Probe * * Disable probes to use trampoline. * * @param obj is the main structure for bpf objects. */ static void ebpf_socket_disable_probes(struct socket_bpf *obj) { bpf_program__set_autoload(obj->progs.netdata_inet_csk_accept_kretprobe, false); bpf_program__set_autoload(obj->progs.netdata_tcp_v4_connect_kretprobe, false); bpf_program__set_autoload(obj->progs.netdata_tcp_v6_connect_kretprobe, false); bpf_program__set_autoload(obj->progs.netdata_tcp_retransmit_skb_kprobe, false); bpf_program__set_autoload(obj->progs.netdata_tcp_cleanup_rbuf_kprobe, false); bpf_program__set_autoload(obj->progs.netdata_tcp_close_kprobe, false); bpf_program__set_autoload(obj->progs.netdata_udp_recvmsg_kprobe, false); bpf_program__set_autoload(obj->progs.netdata_udp_recvmsg_kretprobe, false); bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_kretprobe, false); bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_kprobe, false); bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_kretprobe, false); bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_kprobe, false); bpf_program__set_autoload(obj->progs.netdata_socket_release_task_kprobe, false); } /** * Disable Trampoline * * Disable trampoline to use probes. * * @param obj is the main structure for bpf objects. */ static void ebpf_socket_disable_trampoline(struct socket_bpf *obj) { bpf_program__set_autoload(obj->progs.netdata_inet_csk_accept_fentry, false); bpf_program__set_autoload(obj->progs.netdata_tcp_v4_connect_fexit, false); bpf_program__set_autoload(obj->progs.netdata_tcp_v6_connect_fexit, false); bpf_program__set_autoload(obj->progs.netdata_tcp_retransmit_skb_fentry, false); bpf_program__set_autoload(obj->progs.netdata_tcp_cleanup_rbuf_fentry, false); bpf_program__set_autoload(obj->progs.netdata_tcp_close_fentry, false); bpf_program__set_autoload(obj->progs.netdata_udp_recvmsg_fentry, false); bpf_program__set_autoload(obj->progs.netdata_udp_recvmsg_fexit, false); bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_fentry, false); bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_fexit, false); bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_fentry, false); bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_fexit, false); bpf_program__set_autoload(obj->progs.netdata_socket_release_task_fentry, false); } /** * Set trampoline target. * * @param obj is the main structure for bpf objects. */ static void ebpf_set_trampoline_target(struct socket_bpf *obj) { bpf_program__set_attach_target(obj->progs.netdata_inet_csk_accept_fentry, 0, socket_targets[NETDATA_FCNT_INET_CSK_ACCEPT].name); bpf_program__set_attach_target(obj->progs.netdata_tcp_v4_connect_fexit, 0, socket_targets[NETDATA_FCNT_TCP_V4_CONNECT].name); bpf_program__set_attach_target(obj->progs.netdata_tcp_v6_connect_fexit, 0, socket_targets[NETDATA_FCNT_TCP_V6_CONNECT].name); bpf_program__set_attach_target(obj->progs.netdata_tcp_retransmit_skb_fentry, 0, socket_targets[NETDATA_FCNT_TCP_RETRANSMIT].name); bpf_program__set_attach_target(obj->progs.netdata_tcp_cleanup_rbuf_fentry, 0, socket_targets[NETDATA_FCNT_CLEANUP_RBUF].name); bpf_program__set_attach_target(obj->progs.netdata_tcp_close_fentry, 0, socket_targets[NETDATA_FCNT_TCP_CLOSE].name); bpf_program__set_attach_target(obj->progs.netdata_udp_recvmsg_fentry, 0, socket_targets[NETDATA_FCNT_UDP_RECEVMSG].name); bpf_program__set_attach_target(obj->progs.netdata_udp_recvmsg_fexit, 0, socket_targets[NETDATA_FCNT_UDP_RECEVMSG].name); bpf_program__set_attach_target(obj->progs.netdata_tcp_sendmsg_fentry, 0, socket_targets[NETDATA_FCNT_TCP_SENDMSG].name); bpf_program__set_attach_target(obj->progs.netdata_tcp_sendmsg_fexit, 0, socket_targets[NETDATA_FCNT_TCP_SENDMSG].name); bpf_program__set_attach_target(obj->progs.netdata_udp_sendmsg_fentry, 0, socket_targets[NETDATA_FCNT_UDP_SENDMSG].name); bpf_program__set_attach_target(obj->progs.netdata_udp_sendmsg_fexit, 0, socket_targets[NETDATA_FCNT_UDP_SENDMSG].name); bpf_program__set_attach_target(obj->progs.netdata_socket_release_task_fentry, 0, EBPF_COMMON_FNCT_CLEAN_UP); } /** * Disable specific trampoline * * Disable specific trampoline to match user selection. * * @param obj is the main structure for bpf objects. * @param sel option selected by user. */ static inline void ebpf_socket_disable_specific_trampoline(struct socket_bpf *obj, netdata_run_mode_t sel) { if (sel == MODE_RETURN) { bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_fentry, false); bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_fentry, false); } else { bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_fexit, false); bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_fexit, false); } } /** * Disable specific probe * * Disable specific probe to match user selection. * * @param obj is the main structure for bpf objects. * @param sel option selected by user. */ static inline void ebpf_socket_disable_specific_probe(struct socket_bpf *obj, netdata_run_mode_t sel) { if (sel == MODE_RETURN) { bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_kprobe, false); bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_kprobe, false); } else { bpf_program__set_autoload(obj->progs.netdata_tcp_sendmsg_kretprobe, false); bpf_program__set_autoload(obj->progs.netdata_udp_sendmsg_kretprobe, false); } } /** * Attach probes * * Attach probes to targets. * * @param obj is the main structure for bpf objects. * @param sel option selected by user. */ static int ebpf_socket_attach_probes(struct socket_bpf *obj, netdata_run_mode_t sel) { obj->links.netdata_inet_csk_accept_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_inet_csk_accept_kretprobe, true, socket_targets[NETDATA_FCNT_INET_CSK_ACCEPT].name); int ret = libbpf_get_error(obj->links.netdata_inet_csk_accept_kretprobe); if (ret) return -1; obj->links.netdata_tcp_v4_connect_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_v4_connect_kretprobe, true, socket_targets[NETDATA_FCNT_TCP_V4_CONNECT].name); ret = libbpf_get_error(obj->links.netdata_tcp_v4_connect_kretprobe); if (ret) return -1; obj->links.netdata_tcp_v6_connect_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_v6_connect_kretprobe, true, socket_targets[NETDATA_FCNT_TCP_V6_CONNECT].name); ret = libbpf_get_error(obj->links.netdata_tcp_v6_connect_kretprobe); if (ret) return -1; obj->links.netdata_tcp_retransmit_skb_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_retransmit_skb_kprobe, false, socket_targets[NETDATA_FCNT_TCP_RETRANSMIT].name); ret = libbpf_get_error(obj->links.netdata_tcp_retransmit_skb_kprobe); if (ret) return -1; obj->links.netdata_tcp_cleanup_rbuf_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_cleanup_rbuf_kprobe, false, socket_targets[NETDATA_FCNT_CLEANUP_RBUF].name); ret = libbpf_get_error(obj->links.netdata_tcp_cleanup_rbuf_kprobe); if (ret) return -1; obj->links.netdata_tcp_close_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_close_kprobe, false, socket_targets[NETDATA_FCNT_TCP_CLOSE].name); ret = libbpf_get_error(obj->links.netdata_tcp_close_kprobe); if (ret) return -1; obj->links.netdata_udp_recvmsg_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_udp_recvmsg_kprobe, false, socket_targets[NETDATA_FCNT_UDP_RECEVMSG].name); ret = libbpf_get_error(obj->links.netdata_udp_recvmsg_kprobe); if (ret) return -1; obj->links.netdata_udp_recvmsg_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_udp_recvmsg_kretprobe, true, socket_targets[NETDATA_FCNT_UDP_RECEVMSG].name); ret = libbpf_get_error(obj->links.netdata_udp_recvmsg_kretprobe); if (ret) return -1; if (sel == MODE_RETURN) { obj->links.netdata_tcp_sendmsg_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_sendmsg_kretprobe, true, socket_targets[NETDATA_FCNT_TCP_SENDMSG].name); ret = libbpf_get_error(obj->links.netdata_tcp_sendmsg_kretprobe); if (ret) return -1; obj->links.netdata_udp_sendmsg_kretprobe = bpf_program__attach_kprobe(obj->progs.netdata_udp_sendmsg_kretprobe, true, socket_targets[NETDATA_FCNT_UDP_SENDMSG].name); ret = libbpf_get_error(obj->links.netdata_udp_sendmsg_kretprobe); if (ret) return -1; } else { obj->links.netdata_tcp_sendmsg_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_tcp_sendmsg_kprobe, false, socket_targets[NETDATA_FCNT_TCP_SENDMSG].name); ret = libbpf_get_error(obj->links.netdata_tcp_sendmsg_kprobe); if (ret) return -1; obj->links.netdata_udp_sendmsg_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_udp_sendmsg_kprobe, false, socket_targets[NETDATA_FCNT_UDP_SENDMSG].name); ret = libbpf_get_error(obj->links.netdata_udp_sendmsg_kprobe); if (ret) return -1; } obj->links.netdata_socket_release_task_kprobe = bpf_program__attach_kprobe(obj->progs.netdata_socket_release_task_kprobe, false, EBPF_COMMON_FNCT_CLEAN_UP); ret = libbpf_get_error(obj->links.netdata_socket_release_task_kprobe); if (ret) return -1; return 0; } /** * Set hash tables * * Set the values for maps according the value given by kernel. * * @param obj is the main structure for bpf objects. */ static void ebpf_socket_set_hash_tables(struct socket_bpf *obj) { socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH].map_fd = bpf_map__fd(obj->maps.tbl_bandwidth); socket_maps[NETDATA_SOCKET_GLOBAL].map_fd = bpf_map__fd(obj->maps.tbl_global_sock); socket_maps[NETDATA_SOCKET_LPORTS].map_fd = bpf_map__fd(obj->maps.tbl_lports); socket_maps[NETDATA_SOCKET_TABLE_IPV4].map_fd = bpf_map__fd(obj->maps.tbl_conn_ipv4); socket_maps[NETDATA_SOCKET_TABLE_IPV6].map_fd = bpf_map__fd(obj->maps.tbl_conn_ipv6); socket_maps[NETDATA_SOCKET_TABLE_UDP].map_fd = bpf_map__fd(obj->maps.tbl_nv_udp); socket_maps[NETDATA_SOCKET_TABLE_CTRL].map_fd = bpf_map__fd(obj->maps.socket_ctrl); } /** * Adjust Map Size * * Resize maps according input from users. * * @param obj is the main structure for bpf objects. * @param em structure with configuration */ static void ebpf_socket_adjust_map_size(struct socket_bpf *obj, ebpf_module_t *em) { ebpf_update_map_size(obj->maps.tbl_bandwidth, &socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH], em, bpf_map__name(obj->maps.tbl_bandwidth)); ebpf_update_map_size(obj->maps.tbl_conn_ipv4, &socket_maps[NETDATA_SOCKET_TABLE_IPV4], em, bpf_map__name(obj->maps.tbl_conn_ipv4)); ebpf_update_map_size(obj->maps.tbl_conn_ipv6, &socket_maps[NETDATA_SOCKET_TABLE_IPV6], em, bpf_map__name(obj->maps.tbl_conn_ipv6)); ebpf_update_map_size(obj->maps.tbl_nv_udp, &socket_maps[NETDATA_SOCKET_TABLE_UDP], em, bpf_map__name(obj->maps.tbl_nv_udp)); } /** * Load and attach * * Load and attach the eBPF code in kernel. * * @param obj is the main structure for bpf objects. * @param em structure with configuration * * @return it returns 0 on succes and -1 otherwise */ static inline int ebpf_socket_load_and_attach(struct socket_bpf *obj, ebpf_module_t *em) { netdata_ebpf_targets_t *mt = em->targets; netdata_ebpf_program_loaded_t test = mt[NETDATA_FCNT_INET_CSK_ACCEPT].mode; if (test == EBPF_LOAD_TRAMPOLINE) { ebpf_socket_disable_probes(obj); ebpf_set_trampoline_target(obj); ebpf_socket_disable_specific_trampoline(obj, em->mode); } else { // We are not using tracepoints for this thread. ebpf_socket_disable_trampoline(obj); ebpf_socket_disable_specific_probe(obj, em->mode); } int ret = socket_bpf__load(obj); if (ret) { fprintf(stderr, "failed to load BPF object: %d\n", ret); return ret; } ebpf_socket_adjust_map_size(obj, em); if (test == EBPF_LOAD_TRAMPOLINE) { ret = socket_bpf__attach(obj); } else { ret = ebpf_socket_attach_probes(obj, em->mode); } if (!ret) { ebpf_socket_set_hash_tables(obj); ebpf_update_controller(socket_maps[NETDATA_SOCKET_TABLE_CTRL].map_fd, em); } return ret; } #endif /***************************************************************** * * PROCESS DATA AND SEND TO NETDATA * *****************************************************************/ /** * Update publish structure before to send data to Netdata. * * @param publish the first output structure with independent dimensions * @param tcp structure to store IO from tcp sockets * @param udp structure to store IO from udp sockets * @param input the structure with the input data. */ static void ebpf_update_global_publish( netdata_publish_syscall_t *publish, netdata_publish_vfs_common_t *tcp, netdata_publish_vfs_common_t *udp, netdata_syscall_stat_t *input) { netdata_publish_syscall_t *move = publish; while (move) { if (input->call != move->pcall) { // This condition happens to avoid initial values with dimensions higher than normal values. if (move->pcall) { move->ncall = (input->call > move->pcall) ? input->call - move->pcall : move->pcall - input->call; move->nbyte = (input->bytes > move->pbyte) ? input->bytes - move->pbyte : move->pbyte - input->bytes; move->nerr = (input->ecall > move->nerr) ? input->ecall - move->perr : move->perr - input->ecall; } else { move->ncall = 0; move->nbyte = 0; move->nerr = 0; } move->pcall = input->call; move->pbyte = input->bytes; move->perr = input->ecall; } else { move->ncall = 0; move->nbyte = 0; move->nerr = 0; } input = input->next; move = move->next; } tcp->write = -(long)publish[0].nbyte; tcp->read = (long)publish[1].nbyte; udp->write = -(long)publish[3].nbyte; udp->read = (long)publish[4].nbyte; } /** * Update Network Viewer plot data * * @param plot the structure where the data will be stored * @param sock the last update from the socket */ static inline void update_nv_plot_data(netdata_plot_values_t *plot, netdata_socket_t *sock) { if (sock->ct > plot->last_time) { plot->last_time = sock->ct; plot->plot_recv_packets = sock->recv_packets; plot->plot_sent_packets = sock->sent_packets; plot->plot_recv_bytes = sock->recv_bytes; plot->plot_sent_bytes = sock->sent_bytes; plot->plot_retransmit = sock->retransmit; } sock->recv_packets = 0; sock->sent_packets = 0; sock->recv_bytes = 0; sock->sent_bytes = 0; sock->retransmit = 0; } /** * Calculate Network Viewer Plot * * Do math with collected values before to plot data. */ static inline void calculate_nv_plot() { uint32_t i; uint32_t end = inbound_vectors.next; for (i = 0; i < end; i++) { update_nv_plot_data(&inbound_vectors.plot[i].plot, &inbound_vectors.plot[i].sock); } inbound_vectors.max_plot = end; // The 'Other' dimension is always calculated for the chart to have at least one dimension update_nv_plot_data(&inbound_vectors.plot[inbound_vectors.last].plot, &inbound_vectors.plot[inbound_vectors.last].sock); end = outbound_vectors.next; for (i = 0; i < end; i++) { update_nv_plot_data(&outbound_vectors.plot[i].plot, &outbound_vectors.plot[i].sock); } outbound_vectors.max_plot = end; // The 'Other' dimension is always calculated for the chart to have at least one dimension update_nv_plot_data(&outbound_vectors.plot[outbound_vectors.last].plot, &outbound_vectors.plot[outbound_vectors.last].sock); } /** * Network viewer send bytes * * @param ptr the structure with values to plot * @param chart the chart name. */ static inline void ebpf_socket_nv_send_bytes(netdata_vector_plot_t *ptr, char *chart) { uint32_t i; uint32_t end = ptr->last_plot; netdata_socket_plot_t *w = ptr->plot; collected_number value; write_begin_chart(NETDATA_EBPF_FAMILY, chart); for (i = 0; i < end; i++) { value = ((collected_number) w[i].plot.plot_sent_bytes); write_chart_dimension(w[i].dimension_sent, value); value = (collected_number) w[i].plot.plot_recv_bytes; write_chart_dimension(w[i].dimension_recv, value); } i = ptr->last; value = ((collected_number) w[i].plot.plot_sent_bytes); write_chart_dimension(w[i].dimension_sent, value); value = (collected_number) w[i].plot.plot_recv_bytes; write_chart_dimension(w[i].dimension_recv, value); write_end_chart(); } /** * Network Viewer Send packets * * @param ptr the structure with values to plot * @param chart the chart name. */ static inline void ebpf_socket_nv_send_packets(netdata_vector_plot_t *ptr, char *chart) { uint32_t i; uint32_t end = ptr->last_plot; netdata_socket_plot_t *w = ptr->plot; collected_number value; write_begin_chart(NETDATA_EBPF_FAMILY, chart); for (i = 0; i < end; i++) { value = ((collected_number)w[i].plot.plot_sent_packets); write_chart_dimension(w[i].dimension_sent, value); value = (collected_number) w[i].plot.plot_recv_packets; write_chart_dimension(w[i].dimension_recv, value); } i = ptr->last; value = ((collected_number)w[i].plot.plot_sent_packets); write_chart_dimension(w[i].dimension_sent, value); value = (collected_number)w[i].plot.plot_recv_packets; write_chart_dimension(w[i].dimension_recv, value); write_end_chart(); } /** * Network Viewer Send Retransmit * * @param ptr the structure with values to plot * @param chart the chart name. */ static inline void ebpf_socket_nv_send_retransmit(netdata_vector_plot_t *ptr, char *chart) { uint32_t i; uint32_t end = ptr->last_plot; netdata_socket_plot_t *w = ptr->plot; collected_number value; write_begin_chart(NETDATA_EBPF_FAMILY, chart); for (i = 0; i < end; i++) { value = (collected_number) w[i].plot.plot_retransmit; write_chart_dimension(w[i].dimension_retransmit, value); } i = ptr->last; value = (collected_number)w[i].plot.plot_retransmit; write_chart_dimension(w[i].dimension_retransmit, value); write_end_chart(); } /** * Send network viewer data * * @param ptr the pointer to plot data */ static void ebpf_socket_send_nv_data(netdata_vector_plot_t *ptr) { if (!ptr->flags) return; if (ptr == (netdata_vector_plot_t *)&outbound_vectors) { ebpf_socket_nv_send_bytes(ptr, NETDATA_NV_OUTBOUND_BYTES); fflush(stdout); ebpf_socket_nv_send_packets(ptr, NETDATA_NV_OUTBOUND_PACKETS); fflush(stdout); ebpf_socket_nv_send_retransmit(ptr, NETDATA_NV_OUTBOUND_RETRANSMIT); fflush(stdout); } else { ebpf_socket_nv_send_bytes(ptr, NETDATA_NV_INBOUND_BYTES); fflush(stdout); ebpf_socket_nv_send_packets(ptr, NETDATA_NV_INBOUND_PACKETS); fflush(stdout); } } /** * Send Global Inbound connection * * Send number of connections read per protocol. */ static void ebpf_socket_send_global_inbound_conn() { uint64_t udp_conn = 0; uint64_t tcp_conn = 0; ebpf_network_viewer_port_list_t *move = listen_ports; while (move) { if (move->protocol == IPPROTO_TCP) tcp_conn += move->connections; else udp_conn += move->connections; move = move->next; } write_begin_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_INBOUND_CONNECTIONS); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_INCOMING_CONNECTION_TCP].name, (long long) tcp_conn); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_INCOMING_CONNECTION_UDP].name, (long long) udp_conn); write_end_chart(); } /** * Send data to Netdata calling auxiliary functions. * * @param em the structure with thread information */ static void ebpf_socket_send_data(ebpf_module_t *em) { netdata_publish_vfs_common_t common_tcp; netdata_publish_vfs_common_t common_udp; ebpf_update_global_publish(socket_publish_aggregated, &common_tcp, &common_udp, socket_aggregated_data); ebpf_socket_send_global_inbound_conn(); write_count_chart(NETDATA_TCP_OUTBOUND_CONNECTIONS, NETDATA_EBPF_IP_FAMILY, &socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V4], 2); // We read bytes from function arguments, but bandwidth is given in bits, // so we need to multiply by 8 to convert for the final value. write_count_chart(NETDATA_TCP_FUNCTION_COUNT, NETDATA_EBPF_IP_FAMILY, socket_publish_aggregated, 3); write_io_chart(NETDATA_TCP_FUNCTION_BITS, NETDATA_EBPF_IP_FAMILY, socket_id_names[0], common_tcp.read * 8/BITS_IN_A_KILOBIT, socket_id_names[1], common_tcp.write * 8/BITS_IN_A_KILOBIT); if (em->mode < MODE_ENTRY) { write_err_chart(NETDATA_TCP_FUNCTION_ERROR, NETDATA_EBPF_IP_FAMILY, socket_publish_aggregated, 2); } write_count_chart(NETDATA_TCP_RETRANSMIT, NETDATA_EBPF_IP_FAMILY, &socket_publish_aggregated[NETDATA_IDX_TCP_RETRANSMIT],1); write_count_chart(NETDATA_UDP_FUNCTION_COUNT, NETDATA_EBPF_IP_FAMILY, &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF],2); write_io_chart(NETDATA_UDP_FUNCTION_BITS, NETDATA_EBPF_IP_FAMILY, socket_id_names[3], (long long)common_udp.read * 8/BITS_IN_A_KILOBIT, socket_id_names[4], (long long)common_udp.write * 8/BITS_IN_A_KILOBIT); if (em->mode < MODE_ENTRY) { write_err_chart(NETDATA_UDP_FUNCTION_ERROR, NETDATA_EBPF_IP_FAMILY, &socket_publish_aggregated[NETDATA_UDP_START], 2); } } /** * Sum values for pid * * @param root the structure with all available PIDs * * @param offset the address that we are reading * * @return it returns the sum of all PIDs */ long long ebpf_socket_sum_values_for_pids(struct pid_on_target *root, size_t offset) { long long ret = 0; while (root) { int32_t pid = root->pid; ebpf_socket_publish_apps_t *w = socket_bandwidth_curr[pid]; if (w) { ret += get_value_from_structure((char *)w, offset); } root = root->next; } return ret; } /** * Send data to Netdata calling auxiliary functions. * * @param em the structure with thread information * @param root the target list. */ void ebpf_socket_send_apps_data(ebpf_module_t *em, struct target *root) { UNUSED(em); if (!socket_apps_created) return; struct target *w; collected_number value; write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_CONNECTION_TCP_V4); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, call_tcp_v4_connection)); write_chart_dimension(w->name, value); } } write_end_chart(); write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_CONNECTION_TCP_V6); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, call_tcp_v6_connection)); write_chart_dimension(w->name, value); } } write_end_chart(); write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_SENT); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, bytes_sent)); // We multiply by 0.008, because we read bytes, but we display bits write_chart_dimension(w->name, ((value)*8)/1000); } } write_end_chart(); write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_RECV); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, bytes_received)); // We multiply by 0.008, because we read bytes, but we display bits write_chart_dimension(w->name, ((value)*8)/1000); } } write_end_chart(); write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, call_tcp_sent)); write_chart_dimension(w->name, value); } } write_end_chart(); write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, call_tcp_received)); write_chart_dimension(w->name, value); } } write_end_chart(); write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, retransmit)); write_chart_dimension(w->name, value); } } write_end_chart(); write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, call_udp_sent)); write_chart_dimension(w->name, value); } } write_end_chart(); write_begin_chart(NETDATA_APPS_FAMILY, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS); for (w = root; w; w = w->next) { if (unlikely(w->exposed && w->processes)) { value = ebpf_socket_sum_values_for_pids(w->root_pid, offsetof(ebpf_socket_publish_apps_t, call_udp_received)); write_chart_dimension(w->name, value); } } write_end_chart(); } /***************************************************************** * * FUNCTIONS TO CREATE CHARTS * *****************************************************************/ /** * Create global charts * * Call ebpf_create_chart to create the charts for the collector. * * @param em a pointer to the structure with the default values. */ static void ebpf_create_global_charts(ebpf_module_t *em) { int order = 21070; ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_INBOUND_CONNECTIONS, "Inbound connections.", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_INCOMING_CONNECTION_TCP], 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_TCP_OUTBOUND_CONNECTIONS, "TCP outbound connections.", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V4], 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_TCP_FUNCTION_COUNT, "Calls to internal functions", EBPF_COMMON_DIMENSION_CALL, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, socket_publish_aggregated, 3, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_TCP_FUNCTION_BITS, "TCP bandwidth", EBPF_COMMON_DIMENSION_BITS, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, socket_publish_aggregated, 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); if (em->mode < MODE_ENTRY) { ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_TCP_FUNCTION_ERROR, "TCP errors", EBPF_COMMON_DIMENSION_CALL, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, socket_publish_aggregated, 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); } ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_TCP_RETRANSMIT, "Packages retransmitted", EBPF_COMMON_DIMENSION_CALL, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_TCP_RETRANSMIT], 1, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_UDP_FUNCTION_COUNT, "UDP calls", EBPF_COMMON_DIMENSION_CALL, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF], 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_UDP_FUNCTION_BITS, "UDP bandwidth", EBPF_COMMON_DIMENSION_BITS, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF], 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); if (em->mode < MODE_ENTRY) { ebpf_create_chart(NETDATA_EBPF_IP_FAMILY, NETDATA_UDP_FUNCTION_ERROR, "UDP errors", EBPF_COMMON_DIMENSION_CALL, NETDATA_SOCKET_KERNEL_FUNCTIONS, NULL, NETDATA_EBPF_CHART_TYPE_LINE, order++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF], 2, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); } } /** * Create apps charts * * Call ebpf_create_chart to create the charts on apps submenu. * * @param em a pointer to the structure with the default values. * @param ptr a pointer for targets */ void ebpf_socket_create_apps_charts(struct ebpf_module *em, void *ptr) { struct target *root = ptr; int order = 20080; ebpf_create_charts_on_apps(NETDATA_NET_APPS_CONNECTION_TCP_V4, "Calls to tcp_v4_connection", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_charts_on_apps(NETDATA_NET_APPS_CONNECTION_TCP_V6, "Calls to tcp_v6_connection", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_SENT, "Bytes sent", EBPF_COMMON_DIMENSION_BITS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_RECV, "bytes received", EBPF_COMMON_DIMENSION_BITS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS, "Calls for tcp_sendmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS, "Calls for tcp_cleanup_rbuf", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT, "Calls for tcp_retransmit", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS, "Calls for udp_sendmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_charts_on_apps(NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS, "Calls for udp_recvmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], root, em->update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); socket_apps_created = 1; } /** * Create network viewer chart * * Create common charts. * * @param id chart id * @param title chart title * @param units units label * @param family group name used to attach the chart on dashboard * @param order chart order * @param update_every value to overwrite the update frequency set by the server. * @param ptr plot structure with values. */ static void ebpf_socket_create_nv_chart(char *id, char *title, char *units, char *family, int order, int update_every, netdata_vector_plot_t *ptr) { ebpf_write_chart_cmd(NETDATA_EBPF_FAMILY, id, title, units, family, NETDATA_EBPF_CHART_TYPE_STACKED, NULL, order, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); uint32_t i; uint32_t end = ptr->last_plot; netdata_socket_plot_t *w = ptr->plot; for (i = 0; i < end; i++) { fprintf(stdout, "DIMENSION %s '' incremental -1 1\n", w[i].dimension_sent); fprintf(stdout, "DIMENSION %s '' incremental 1 1\n", w[i].dimension_recv); } end = ptr->last; fprintf(stdout, "DIMENSION %s '' incremental -1 1\n", w[end].dimension_sent); fprintf(stdout, "DIMENSION %s '' incremental 1 1\n", w[end].dimension_recv); } /** * Create network viewer retransmit * * Create a specific chart. * * @param id the chart id * @param title the chart title * @param units the units label * @param family the group name used to attach the chart on dashboard * @param order the chart order * @param update_every value to overwrite the update frequency set by the server. * @param ptr the plot structure with values. */ static void ebpf_socket_create_nv_retransmit(char *id, char *title, char *units, char *family, int order, int update_every, netdata_vector_plot_t *ptr) { ebpf_write_chart_cmd(NETDATA_EBPF_FAMILY, id, title, units, family, NETDATA_EBPF_CHART_TYPE_STACKED, NULL, order, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); uint32_t i; uint32_t end = ptr->last_plot; netdata_socket_plot_t *w = ptr->plot; for (i = 0; i < end; i++) { fprintf(stdout, "DIMENSION %s '' incremental 1 1\n", w[i].dimension_retransmit); } end = ptr->last; fprintf(stdout, "DIMENSION %s '' incremental 1 1\n", w[end].dimension_retransmit); } /** * Create Network Viewer charts * * Recreate the charts when new sockets are created. * * @param ptr a pointer for inbound or outbound vectors. * @param update_every value to overwrite the update frequency set by the server. */ static void ebpf_socket_create_nv_charts(netdata_vector_plot_t *ptr, int update_every) { // We do not have new sockets, so we do not need move forward if (ptr->max_plot == ptr->last_plot) return; ptr->last_plot = ptr->max_plot; if (ptr == (netdata_vector_plot_t *)&outbound_vectors) { ebpf_socket_create_nv_chart(NETDATA_NV_OUTBOUND_BYTES, "Outbound connections (bytes).", EBPF_COMMON_DIMENSION_BYTES, NETDATA_NETWORK_CONNECTIONS_GROUP, 21080, update_every, ptr); ebpf_socket_create_nv_chart(NETDATA_NV_OUTBOUND_PACKETS, "Outbound connections (packets)", EBPF_COMMON_DIMENSION_PACKETS, NETDATA_NETWORK_CONNECTIONS_GROUP, 21082, update_every, ptr); ebpf_socket_create_nv_retransmit(NETDATA_NV_OUTBOUND_RETRANSMIT, "Retransmitted packets", EBPF_COMMON_DIMENSION_CALL, NETDATA_NETWORK_CONNECTIONS_GROUP, 21083, update_every, ptr); } else { ebpf_socket_create_nv_chart(NETDATA_NV_INBOUND_BYTES, "Inbound connections (bytes)", EBPF_COMMON_DIMENSION_BYTES, NETDATA_NETWORK_CONNECTIONS_GROUP, 21084, update_every, ptr); ebpf_socket_create_nv_chart(NETDATA_NV_INBOUND_PACKETS, "Inbound connections (packets)", EBPF_COMMON_DIMENSION_PACKETS, NETDATA_NETWORK_CONNECTIONS_GROUP, 21085, update_every, ptr); } ptr->flags |= NETWORK_VIEWER_CHARTS_CREATED; } /***************************************************************** * * READ INFORMATION FROM KERNEL RING * *****************************************************************/ /** * Is specific ip inside the range * * Check if the ip is inside a IP range previously defined * * @param cmp the IP to compare * @param family the IP family * * @return It returns 1 if the IP is inside the range and 0 otherwise */ static int is_specific_ip_inside_range(union netdata_ip_t *cmp, int family) { if (!network_viewer_opt.excluded_ips && !network_viewer_opt.included_ips) return 1; uint32_t ipv4_test = ntohl(cmp->addr32[0]); ebpf_network_viewer_ip_list_t *move = network_viewer_opt.excluded_ips; while (move) { if (family == AF_INET) { if (ntohl(move->first.addr32[0]) <= ipv4_test && ipv4_test <= ntohl(move->last.addr32[0]) ) return 0; } else { if (memcmp(move->first.addr8, cmp->addr8, sizeof(union netdata_ip_t)) <= 0 && memcmp(move->last.addr8, cmp->addr8, sizeof(union netdata_ip_t)) >= 0) { return 0; } } move = move->next; } move = network_viewer_opt.included_ips; while (move) { if (family == AF_INET) { if (ntohl(move->first.addr32[0]) <= ipv4_test && ntohl(move->last.addr32[0]) >= ipv4_test) return 1; } else { if (memcmp(move->first.addr8, cmp->addr8, sizeof(union netdata_ip_t)) <= 0 && memcmp(move->last.addr8, cmp->addr8, sizeof(union netdata_ip_t)) >= 0) { return 1; } } move = move->next; } return 0; } /** * Is port inside range * * Verify if the cmp port is inside the range [first, last]. * This function expects only the last parameter as big endian. * * @param cmp the value to compare * * @return It returns 1 when cmp is inside and 0 otherwise. */ static int is_port_inside_range(uint16_t cmp) { // We do not have restrictions for ports. if (!network_viewer_opt.excluded_port && !network_viewer_opt.included_port) return 1; // Test if port is excluded ebpf_network_viewer_port_list_t *move = network_viewer_opt.excluded_port; cmp = htons(cmp); while (move) { if (move->cmp_first <= cmp && cmp <= move->cmp_last) return 0; move = move->next; } // Test if the port is inside allowed range move = network_viewer_opt.included_port; while (move) { if (move->cmp_first <= cmp && cmp <= move->cmp_last) return 1; move = move->next; } return 0; } /** * Hostname matches pattern * * @param cmp the value to compare * * @return It returns 1 when the value matches and zero otherwise. */ int hostname_matches_pattern(char *cmp) { if (!network_viewer_opt.included_hostnames && !network_viewer_opt.excluded_hostnames) return 1; ebpf_network_viewer_hostname_list_t *move = network_viewer_opt.excluded_hostnames; while (move) { if (simple_pattern_matches(move->value_pattern, cmp)) return 0; move = move->next; } move = network_viewer_opt.included_hostnames; while (move) { if (simple_pattern_matches(move->value_pattern, cmp)) return 1; move = move->next; } return 0; } /** * Is socket allowed? * * Compare destination addresses and destination ports to define next steps * * @param key the socket read from kernel ring * @param family the family used to compare IPs (AF_INET and AF_INET6) * * @return It returns 1 if this socket is inside the ranges and 0 otherwise. */ int is_socket_allowed(netdata_socket_idx_t *key, int family) { if (!is_port_inside_range(key->dport)) return 0; return is_specific_ip_inside_range(&key->daddr, family); } /** * Compare sockets * * Compare destination address and destination port. * We do not compare source port, because it is random. * We also do not compare source address, because inbound and outbound connections are stored in separated AVL trees. * * @param a pointer to netdata_socket_plot * @param b pointer to netdata_socket_plot * * @return It returns 0 case the values are equal, 1 case a is bigger than b and -1 case a is smaller than b. */ static int compare_sockets(void *a, void *b) { struct netdata_socket_plot *val1 = a; struct netdata_socket_plot *val2 = b; int cmp; // We do not need to compare val2 family, because data inside hash table is always from the same family if (val1->family == AF_INET) { //IPV4 if (val1->flags & NETDATA_INBOUND_DIRECTION) { if (val1->index.sport == val2->index.sport) cmp = 0; else { cmp = (val1->index.sport > val2->index.sport)?1:-1; } } else { cmp = memcmp(&val1->index.dport, &val2->index.dport, sizeof(uint16_t)); if (!cmp) { cmp = memcmp(&val1->index.daddr.addr32[0], &val2->index.daddr.addr32[0], sizeof(uint32_t)); } } } else { if (val1->flags & NETDATA_INBOUND_DIRECTION) { if (val1->index.sport == val2->index.sport) cmp = 0; else { cmp = (val1->index.sport > val2->index.sport)?1:-1; } } else { cmp = memcmp(&val1->index.dport, &val2->index.dport, sizeof(uint16_t)); if (!cmp) { cmp = memcmp(&val1->index.daddr.addr32, &val2->index.daddr.addr32, 4*sizeof(uint32_t)); } } } return cmp; } /** * Build dimension name * * Fill dimension name vector with values given * * @param dimname the output vector * @param hostname the hostname for the socket. * @param service_name the service used to connect. * @param proto the protocol used in this connection * @param family is this IPV4(AF_INET) or IPV6(AF_INET6) * * @return it returns the size of the data copied on success and -1 otherwise. */ static inline int build_outbound_dimension_name(char *dimname, char *hostname, char *service_name, char *proto, int family) { return snprintf(dimname, CONFIG_MAX_NAME - 7, (family == AF_INET)?"%s:%s:%s_":"%s:%s:[%s]_", service_name, proto, hostname); } /** * Fill inbound dimension name * * Mount the dimension name with the input given * * @param dimname the output vector * @param service_name the service used to connect. * @param proto the protocol used in this connection * * @return it returns the size of the data copied on success and -1 otherwise. */ static inline int build_inbound_dimension_name(char *dimname, char *service_name, char *proto) { return snprintf(dimname, CONFIG_MAX_NAME - 7, "%s:%s_", service_name, proto); } /** * Fill Resolved Name * * Fill the resolved name structure with the value given. * The hostname is the largest value possible, if it is necessary to cut some value, it must be cut. * * @param ptr the output vector * @param hostname the hostname resolved or IP. * @param length the length for the hostname. * @param service_name the service name associated to the connection * @param is_outbound the is this an outbound connection */ static inline void fill_resolved_name(netdata_socket_plot_t *ptr, char *hostname, size_t length, char *service_name, int is_outbound) { if (length < NETDATA_MAX_NETWORK_COMBINED_LENGTH) ptr->resolved_name = strdupz(hostname); else { length = NETDATA_MAX_NETWORK_COMBINED_LENGTH; ptr->resolved_name = mallocz( NETDATA_MAX_NETWORK_COMBINED_LENGTH + 1); memcpy(ptr->resolved_name, hostname, length); ptr->resolved_name[length] = '\0'; } char dimname[CONFIG_MAX_NAME]; int size; char *protocol; if (ptr->sock.protocol == IPPROTO_UDP) { protocol = "UDP"; } else if (ptr->sock.protocol == IPPROTO_TCP) { protocol = "TCP"; } else { protocol = "ALL"; } if (is_outbound) size = build_outbound_dimension_name(dimname, hostname, service_name, protocol, ptr->family); else size = build_inbound_dimension_name(dimname,service_name, protocol); if (size > 0) { strcpy(&dimname[size], "sent"); dimname[size + 4] = '\0'; ptr->dimension_sent = strdupz(dimname); strcpy(&dimname[size], "recv"); ptr->dimension_recv = strdupz(dimname); dimname[size - 1] = '\0'; ptr->dimension_retransmit = strdupz(dimname); } } /** * Mount dimension names * * Fill the vector names after to resolve the addresses * * @param ptr a pointer to the structure where the values are stored. * @param is_outbound is a outbound ptr value? * * @return It returns 1 if the name is valid and 0 otherwise. */ int fill_names(netdata_socket_plot_t *ptr, int is_outbound) { char hostname[NI_MAXHOST], service_name[NI_MAXSERV]; if (ptr->resolved) return 1; int ret; static int resolve_name = -1; static int resolve_service = -1; if (resolve_name == -1) resolve_name = network_viewer_opt.hostname_resolution_enabled; if (resolve_service == -1) resolve_service = network_viewer_opt.service_resolution_enabled; netdata_socket_idx_t *idx = &ptr->index; char *errname = { "Not resolved" }; // Resolve Name if (ptr->family == AF_INET) { //IPV4 struct sockaddr_in myaddr; memset(&myaddr, 0 , sizeof(myaddr)); myaddr.sin_family = ptr->family; if (is_outbound) { myaddr.sin_port = idx->dport; myaddr.sin_addr.s_addr = idx->daddr.addr32[0]; } else { myaddr.sin_port = idx->sport; myaddr.sin_addr.s_addr = idx->saddr.addr32[0]; } ret = (!resolve_name)?-1:getnameinfo((struct sockaddr *)&myaddr, sizeof(myaddr), hostname, sizeof(hostname), service_name, sizeof(service_name), NI_NAMEREQD); if (!ret && !resolve_service) { snprintf(service_name, sizeof(service_name), "%u", ntohs(myaddr.sin_port)); } if (ret) { // I cannot resolve the name, I will use the IP if (!inet_ntop(AF_INET, &myaddr.sin_addr.s_addr, hostname, NI_MAXHOST)) { strncpy(hostname, errname, 13); } snprintf(service_name, sizeof(service_name), "%u", ntohs(myaddr.sin_port)); ret = 1; } } else { // IPV6 struct sockaddr_in6 myaddr6; memset(&myaddr6, 0 , sizeof(myaddr6)); myaddr6.sin6_family = AF_INET6; if (is_outbound) { myaddr6.sin6_port = idx->dport; memcpy(myaddr6.sin6_addr.s6_addr, idx->daddr.addr8, sizeof(union netdata_ip_t)); } else { myaddr6.sin6_port = idx->sport; memcpy(myaddr6.sin6_addr.s6_addr, idx->saddr.addr8, sizeof(union netdata_ip_t)); } ret = (!resolve_name)?-1:getnameinfo((struct sockaddr *)&myaddr6, sizeof(myaddr6), hostname, sizeof(hostname), service_name, sizeof(service_name), NI_NAMEREQD); if (!ret && !resolve_service) { snprintf(service_name, sizeof(service_name), "%u", ntohs(myaddr6.sin6_port)); } if (ret) { // I cannot resolve the name, I will use the IP if (!inet_ntop(AF_INET6, myaddr6.sin6_addr.s6_addr, hostname, NI_MAXHOST)) { strncpy(hostname, errname, 13); } snprintf(service_name, sizeof(service_name), "%u", ntohs(myaddr6.sin6_port)); ret = 1; } } fill_resolved_name(ptr, hostname, strlen(hostname) + strlen(service_name)+ NETDATA_DOTS_PROTOCOL_COMBINED_LENGTH, service_name, is_outbound); if (resolve_name && !ret) ret = hostname_matches_pattern(hostname); ptr->resolved++; return ret; } /** * Fill last Network Viewer Dimension * * Fill the unique dimension that is always plotted. * * @param ptr the pointer for the last dimension * @param is_outbound is this an inbound structure? */ static void fill_last_nv_dimension(netdata_socket_plot_t *ptr, int is_outbound) { char hostname[NI_MAXHOST], service_name[NI_MAXSERV]; char *other = { "other" }; // We are also copying the NULL bytes to avoid warnings in new compilers strncpy(hostname, other, 6); strncpy(service_name, other, 6); ptr->family = AF_INET; ptr->sock.protocol = 255; ptr->flags = (!is_outbound)?NETDATA_INBOUND_DIRECTION:NETDATA_OUTBOUND_DIRECTION; fill_resolved_name(ptr, hostname, 10 + NETDATA_DOTS_PROTOCOL_COMBINED_LENGTH, service_name, is_outbound); #ifdef NETDATA_INTERNAL_CHECKS info("Last %s dimension added: ID = %u, IP = OTHER, NAME = %s, DIM1 = %s, DIM2 = %s, DIM3 = %s", (is_outbound)?"outbound":"inbound", network_viewer_opt.max_dim - 1, ptr->resolved_name, ptr->dimension_recv, ptr->dimension_sent, ptr->dimension_retransmit); #endif } /** * Update Socket Data * * Update the socket information with last collected data * * @param sock * @param lvalues */ static inline void update_socket_data(netdata_socket_t *sock, netdata_socket_t *lvalues) { sock->recv_packets += lvalues->recv_packets; sock->sent_packets += lvalues->sent_packets; sock->recv_bytes += lvalues->recv_bytes; sock->sent_bytes += lvalues->sent_bytes; sock->retransmit += lvalues->retransmit; if (lvalues->ct > sock->ct) sock->ct = lvalues->ct; } /** * Store socket inside avl * * Store the socket values inside the avl tree. * * @param out the structure with information used to plot charts. * @param lvalues Values read from socket ring. * @param lindex the index information, the real socket. * @param family the family associated to the socket * @param flags the connection flags */ static void store_socket_inside_avl(netdata_vector_plot_t *out, netdata_socket_t *lvalues, netdata_socket_idx_t *lindex, int family, uint32_t flags) { netdata_socket_plot_t test, *ret ; memcpy(&test.index, lindex, sizeof(netdata_socket_idx_t)); test.flags = flags; ret = (netdata_socket_plot_t *) avl_search_lock(&out->tree, (avl_t *)&test); if (ret) { if (lvalues->ct > ret->plot.last_time) { update_socket_data(&ret->sock, lvalues); } } else { uint32_t curr = out->next; uint32_t last = out->last; netdata_socket_plot_t *w = &out->plot[curr]; int resolved; if (curr == last) { if (lvalues->ct > w->plot.last_time) { update_socket_data(&w->sock, lvalues); } return; } else { memcpy(&w->sock, lvalues, sizeof(netdata_socket_t)); memcpy(&w->index, lindex, sizeof(netdata_socket_idx_t)); w->family = family; resolved = fill_names(w, out != (netdata_vector_plot_t *)&inbound_vectors); } if (!resolved) { freez(w->resolved_name); freez(w->dimension_sent); freez(w->dimension_recv); freez(w->dimension_retransmit); memset(w, 0, sizeof(netdata_socket_plot_t)); return; } w->flags = flags; netdata_socket_plot_t *check ; check = (netdata_socket_plot_t *) avl_insert_lock(&out->tree, (avl_t *)w); if (check != w) error("Internal error, cannot insert the AVL tree."); #ifdef NETDATA_INTERNAL_CHECKS char iptext[INET6_ADDRSTRLEN]; if (inet_ntop(family, &w->index.daddr.addr8, iptext, sizeof(iptext))) info("New %s dimension added: ID = %u, IP = %s, NAME = %s, DIM1 = %s, DIM2 = %s, DIM3 = %s", (out == &inbound_vectors)?"inbound":"outbound", curr, iptext, w->resolved_name, w->dimension_recv, w->dimension_sent, w->dimension_retransmit); #endif curr++; if (curr > last) curr = last; out->next = curr; } } /** * Compare Vector to store * * Compare input values with local address to select table to store. * * @param direction store inbound and outbound direction. * @param cmp index read from hash table. * @param proto the protocol read. * * @return It returns the structure with address to compare. */ netdata_vector_plot_t * select_vector_to_store(uint32_t *direction, netdata_socket_idx_t *cmp, uint8_t proto) { if (!listen_ports) { *direction = NETDATA_OUTBOUND_DIRECTION; return &outbound_vectors; } ebpf_network_viewer_port_list_t *move_ports = listen_ports; while (move_ports) { if (move_ports->protocol == proto && move_ports->first == cmp->sport) { *direction = NETDATA_INBOUND_DIRECTION; return &inbound_vectors; } move_ports = move_ports->next; } *direction = NETDATA_OUTBOUND_DIRECTION; return &outbound_vectors; } /** * Hash accumulator * * @param values the values used to calculate the data. * @param key the key to store data. * @param family the connection family * @param end the values size. */ static void hash_accumulator(netdata_socket_t *values, netdata_socket_idx_t *key, int family, int end) { uint64_t bsent = 0, brecv = 0, psent = 0, precv = 0; uint16_t retransmit = 0; int i; uint8_t protocol = values[0].protocol; uint64_t ct = values[0].ct; for (i = 1; i < end; i++) { netdata_socket_t *w = &values[i]; precv += w->recv_packets; psent += w->sent_packets; brecv += w->recv_bytes; bsent += w->sent_bytes; retransmit += w->retransmit; if (!protocol) protocol = w->protocol; if (w->ct > ct) ct = w->ct; } values[0].recv_packets += precv; values[0].sent_packets += psent; values[0].recv_bytes += brecv; values[0].sent_bytes += bsent; values[0].retransmit += retransmit; values[0].protocol = (!protocol)?IPPROTO_TCP:protocol; values[0].ct = ct; if (is_socket_allowed(key, family)) { uint32_t dir; netdata_vector_plot_t *table = select_vector_to_store(&dir, key, protocol); store_socket_inside_avl(table, &values[0], key, family, dir); } } /** * Read socket hash table * * Read data from hash tables created on kernel ring. * * @param fd the hash table with data. * @param family the family associated to the hash table * * @return it returns 0 on success and -1 otherwise. */ static void read_socket_hash_table(int fd, int family, int network_connection) { if (wait_to_plot) return; netdata_socket_idx_t key = {}; netdata_socket_idx_t next_key = {}; netdata_socket_t *values = socket_values; size_t length = ebpf_nprocs*sizeof(netdata_socket_t); int test, end = (running_on_kernel < NETDATA_KERNEL_V4_15) ? 1 : ebpf_nprocs; while (bpf_map_get_next_key(fd, &key, &next_key) == 0) { // We need to reset the values when we are working on kernel 4.15 or newer, because kernel does not create // values for specific processor unless it is used to store data. As result of this behavior one the next socket // can have values from the previous one. memset(values, 0, length); test = bpf_map_lookup_elem(fd, &key, values); if (test < 0) { key = next_key; continue; } if (network_connection) { hash_accumulator(values, &key, family, end); } key = next_key; } test = bpf_map_lookup_elem(fd, &next_key, values); if (test < 0) { return; } if (network_connection) { hash_accumulator(values, &next_key, family, end); } } /** * Fill Network Viewer Port list * * Fill the strcture with values read from /proc or hash table. * * @param out the structure where we will store data. * @param value the ports we are listen to. * @param proto the protocol used for this connection. * @param in the strcuture with values read form different sources. */ static inline void fill_nv_port_list(ebpf_network_viewer_port_list_t *out, uint16_t value, uint16_t proto, netdata_passive_connection_t *in) { out->first = value; out->protocol = proto; out->pid = in->pid; out->tgid = in->tgid; out->connections = in->counter; } /** * Update listen table * * Update link list when it is necessary. * * @param value the ports we are listen to. * @param proto the protocol used with port connection. * @param in the strcuture with values read form different sources. */ void update_listen_table(uint16_t value, uint16_t proto, netdata_passive_connection_t *in) { ebpf_network_viewer_port_list_t *w; if (likely(listen_ports)) { ebpf_network_viewer_port_list_t *move = listen_ports, *store = listen_ports; while (move) { if (move->protocol == proto && move->first == value) { move->pid = in->pid; move->tgid = in->tgid; move->connections = in->counter; return; } store = move; move = move->next; } w = callocz(1, sizeof(ebpf_network_viewer_port_list_t)); store->next = w; } else { w = callocz(1, sizeof(ebpf_network_viewer_port_list_t)); listen_ports = w; } fill_nv_port_list(w, value, proto, in); #ifdef NETDATA_INTERNAL_CHECKS info("The network viewer is monitoring inbound connections for port %u", ntohs(value)); #endif } /** * Read listen table * * Read the table with all ports that we are listen on host. */ static void read_listen_table() { netdata_passive_connection_idx_t key = {}; netdata_passive_connection_idx_t next_key = {}; int fd = socket_maps[NETDATA_SOCKET_LPORTS].map_fd; netdata_passive_connection_t value = {}; while (bpf_map_get_next_key(fd, &key, &next_key) == 0) { int test = bpf_map_lookup_elem(fd, &key, &value); if (test < 0) { key = next_key; continue; } // The correct protocol must come from kernel update_listen_table(key.port, key.protocol, &value); key = next_key; memset(&value, 0, sizeof(value)); } if (next_key.port && value.pid) { // The correct protocol must come from kernel update_listen_table(next_key.port, next_key.protocol, &value); } } /** * Socket read hash * * This is the thread callback. * This thread is necessary, because we cannot freeze the whole plugin to read the data on very busy socket. * * @param ptr It is a NULL value for this thread. * * @return It always returns NULL. */ void *ebpf_socket_read_hash(void *ptr) { ebpf_module_t *em = (ebpf_module_t *)ptr; read_thread_closed = 0; heartbeat_t hb; heartbeat_init(&hb); usec_t step = NETDATA_SOCKET_READ_SLEEP_MS * em->update_every; int fd_ipv4 = socket_maps[NETDATA_SOCKET_TABLE_IPV4].map_fd; int fd_ipv6 = socket_maps[NETDATA_SOCKET_TABLE_IPV6].map_fd; int network_connection = em->optional; while (!close_ebpf_plugin) { usec_t dt = heartbeat_next(&hb, step); (void)dt; pthread_mutex_lock(&nv_mutex); read_listen_table(); read_socket_hash_table(fd_ipv4, AF_INET, network_connection); read_socket_hash_table(fd_ipv6, AF_INET6, network_connection); wait_to_plot = 1; pthread_mutex_unlock(&nv_mutex); } read_thread_closed = 1; return NULL; } /** * Read the hash table and store data to allocated vectors. */ static void read_hash_global_tables() { uint64_t idx; netdata_idx_t res[NETDATA_SOCKET_COUNTER]; netdata_idx_t *val = socket_hash_values; int fd = socket_maps[NETDATA_SOCKET_GLOBAL].map_fd; for (idx = 0; idx < NETDATA_SOCKET_COUNTER; idx++) { if (!bpf_map_lookup_elem(fd, &idx, val)) { uint64_t total = 0; int i; int end = ebpf_nprocs; for (i = 0; i < end; i++) total += val[i]; res[idx] = total; } else { res[idx] = 0; } } socket_aggregated_data[NETDATA_IDX_TCP_SENDMSG].call = res[NETDATA_KEY_CALLS_TCP_SENDMSG]; socket_aggregated_data[NETDATA_IDX_TCP_CLEANUP_RBUF].call = res[NETDATA_KEY_CALLS_TCP_CLEANUP_RBUF]; socket_aggregated_data[NETDATA_IDX_TCP_CLOSE].call = res[NETDATA_KEY_CALLS_TCP_CLOSE]; socket_aggregated_data[NETDATA_IDX_UDP_RECVBUF].call = res[NETDATA_KEY_CALLS_UDP_RECVMSG]; socket_aggregated_data[NETDATA_IDX_UDP_SENDMSG].call = res[NETDATA_KEY_CALLS_UDP_SENDMSG]; socket_aggregated_data[NETDATA_IDX_TCP_RETRANSMIT].call = res[NETDATA_KEY_TCP_RETRANSMIT]; socket_aggregated_data[NETDATA_IDX_TCP_CONNECTION_V4].call = res[NETDATA_KEY_CALLS_TCP_CONNECT_IPV4]; socket_aggregated_data[NETDATA_IDX_TCP_CONNECTION_V6].call = res[NETDATA_KEY_CALLS_TCP_CONNECT_IPV6]; socket_aggregated_data[NETDATA_IDX_TCP_SENDMSG].ecall = res[NETDATA_KEY_ERROR_TCP_SENDMSG]; socket_aggregated_data[NETDATA_IDX_TCP_CLEANUP_RBUF].ecall = res[NETDATA_KEY_ERROR_TCP_CLEANUP_RBUF]; socket_aggregated_data[NETDATA_IDX_UDP_RECVBUF].ecall = res[NETDATA_KEY_ERROR_UDP_RECVMSG]; socket_aggregated_data[NETDATA_IDX_UDP_SENDMSG].ecall = res[NETDATA_KEY_ERROR_UDP_SENDMSG]; socket_aggregated_data[NETDATA_IDX_TCP_CONNECTION_V4].ecall = res[NETDATA_KEY_ERROR_TCP_CONNECT_IPV4]; socket_aggregated_data[NETDATA_IDX_TCP_CONNECTION_V6].ecall = res[NETDATA_KEY_ERROR_TCP_CONNECT_IPV6]; socket_aggregated_data[NETDATA_IDX_TCP_SENDMSG].bytes = res[NETDATA_KEY_BYTES_TCP_SENDMSG]; socket_aggregated_data[NETDATA_IDX_TCP_CLEANUP_RBUF].bytes = res[NETDATA_KEY_BYTES_TCP_CLEANUP_RBUF]; socket_aggregated_data[NETDATA_IDX_UDP_RECVBUF].bytes = res[NETDATA_KEY_BYTES_UDP_RECVMSG]; socket_aggregated_data[NETDATA_IDX_UDP_SENDMSG].bytes = res[NETDATA_KEY_BYTES_UDP_SENDMSG]; } /** * Fill publish apps when necessary. * * @param current_pid the PID that I am updating * @param eb the structure with data read from memory. */ void ebpf_socket_fill_publish_apps(uint32_t current_pid, ebpf_bandwidth_t *eb) { ebpf_socket_publish_apps_t *curr = socket_bandwidth_curr[current_pid]; if (!curr) { curr = callocz(1, sizeof(ebpf_socket_publish_apps_t)); socket_bandwidth_curr[current_pid] = curr; } curr->bytes_sent = eb->bytes_sent; curr->bytes_received = eb->bytes_received; curr->call_tcp_sent = eb->call_tcp_sent; curr->call_tcp_received = eb->call_tcp_received; curr->retransmit = eb->retransmit; curr->call_udp_sent = eb->call_udp_sent; curr->call_udp_received = eb->call_udp_received; curr->call_close = eb->close; curr->call_tcp_v4_connection = eb->tcp_v4_connection; curr->call_tcp_v6_connection = eb->tcp_v6_connection; } /** * Bandwidth accumulator. * * @param out the vector with the values to sum */ void ebpf_socket_bandwidth_accumulator(ebpf_bandwidth_t *out) { int i, end = (running_on_kernel >= NETDATA_KERNEL_V4_15) ? ebpf_nprocs : 1; ebpf_bandwidth_t *total = &out[0]; for (i = 1; i < end; i++) { ebpf_bandwidth_t *move = &out[i]; total->bytes_sent += move->bytes_sent; total->bytes_received += move->bytes_received; total->call_tcp_sent += move->call_tcp_sent; total->call_tcp_received += move->call_tcp_received; total->retransmit += move->retransmit; total->call_udp_sent += move->call_udp_sent; total->call_udp_received += move->call_udp_received; total->close += move->close; total->tcp_v4_connection += move->tcp_v4_connection; total->tcp_v6_connection += move->tcp_v6_connection; } } /** * Update the apps data reading information from the hash table */ static void ebpf_socket_update_apps_data() { int fd = socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH].map_fd; ebpf_bandwidth_t *eb = bandwidth_vector; uint32_t key; struct pid_stat *pids = root_of_pids; while (pids) { key = pids->pid; if (bpf_map_lookup_elem(fd, &key, eb)) { pids = pids->next; continue; } ebpf_socket_bandwidth_accumulator(eb); ebpf_socket_fill_publish_apps(key, eb); pids = pids->next; } } /** * Update cgroup * * Update cgroup data based in */ static void ebpf_update_socket_cgroup() { ebpf_cgroup_target_t *ect ; ebpf_bandwidth_t *eb = bandwidth_vector; int fd = socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH].map_fd; pthread_mutex_lock(&mutex_cgroup_shm); for (ect = ebpf_cgroup_pids; ect; ect = ect->next) { struct pid_on_target2 *pids; for (pids = ect->pids; pids; pids = pids->next) { int pid = pids->pid; ebpf_bandwidth_t *out = &pids->socket; ebpf_socket_publish_apps_t *publish = &ect->publish_socket; if (likely(socket_bandwidth_curr) && socket_bandwidth_curr[pid]) { ebpf_socket_publish_apps_t *in = socket_bandwidth_curr[pid]; publish->bytes_sent = in->bytes_sent; publish->bytes_received = in->bytes_received; publish->call_tcp_sent = in->call_tcp_sent; publish->call_tcp_received = in->call_tcp_received; publish->retransmit = in->retransmit; publish->call_udp_sent = in->call_udp_sent; publish->call_udp_received = in->call_udp_received; publish->call_close = in->call_close; publish->call_tcp_v4_connection = in->call_tcp_v4_connection; publish->call_tcp_v6_connection = in->call_tcp_v6_connection; } else { if (!bpf_map_lookup_elem(fd, &pid, eb)) { ebpf_socket_bandwidth_accumulator(eb); memcpy(out, eb, sizeof(ebpf_bandwidth_t)); publish->bytes_sent = out->bytes_sent; publish->bytes_received = out->bytes_received; publish->call_tcp_sent = out->call_tcp_sent; publish->call_tcp_received = out->call_tcp_received; publish->retransmit = out->retransmit; publish->call_udp_sent = out->call_udp_sent; publish->call_udp_received = out->call_udp_received; publish->call_close = out->close; publish->call_tcp_v4_connection = out->tcp_v4_connection; publish->call_tcp_v6_connection = out->tcp_v6_connection; } } } } pthread_mutex_unlock(&mutex_cgroup_shm); } /** * Sum PIDs * * Sum values for all targets. * * @param fd structure used to store data * @param pids input data */ static void ebpf_socket_sum_cgroup_pids(ebpf_socket_publish_apps_t *socket, struct pid_on_target2 *pids) { ebpf_socket_publish_apps_t accumulator; memset(&accumulator, 0, sizeof(accumulator)); while (pids) { ebpf_bandwidth_t *w = &pids->socket; accumulator.bytes_received += w->bytes_received; accumulator.bytes_sent += w->bytes_sent; accumulator.call_tcp_received += w->call_tcp_received; accumulator.call_tcp_sent += w->call_tcp_sent; accumulator.retransmit += w->retransmit; accumulator.call_udp_received += w->call_udp_received; accumulator.call_udp_sent += w->call_udp_sent; accumulator.call_close += w->close; accumulator.call_tcp_v4_connection += w->tcp_v4_connection; accumulator.call_tcp_v6_connection += w->tcp_v6_connection; pids = pids->next; } socket->bytes_sent = (accumulator.bytes_sent >= socket->bytes_sent) ? accumulator.bytes_sent : socket->bytes_sent; socket->bytes_received = (accumulator.bytes_received >= socket->bytes_received) ? accumulator.bytes_received : socket->bytes_received; socket->call_tcp_sent = (accumulator.call_tcp_sent >= socket->call_tcp_sent) ? accumulator.call_tcp_sent : socket->call_tcp_sent; socket->call_tcp_received = (accumulator.call_tcp_received >= socket->call_tcp_received) ? accumulator.call_tcp_received : socket->call_tcp_received; socket->retransmit = (accumulator.retransmit >= socket->retransmit) ? accumulator.retransmit : socket->retransmit; socket->call_udp_sent = (accumulator.call_udp_sent >= socket->call_udp_sent) ? accumulator.call_udp_sent : socket->call_udp_sent; socket->call_udp_received = (accumulator.call_udp_received >= socket->call_udp_received) ? accumulator.call_udp_received : socket->call_udp_received; socket->call_close = (accumulator.call_close >= socket->call_close) ? accumulator.call_close : socket->call_close; socket->call_tcp_v4_connection = (accumulator.call_tcp_v4_connection >= socket->call_tcp_v4_connection) ? accumulator.call_tcp_v4_connection : socket->call_tcp_v4_connection; socket->call_tcp_v6_connection = (accumulator.call_tcp_v6_connection >= socket->call_tcp_v6_connection) ? accumulator.call_tcp_v6_connection : socket->call_tcp_v6_connection; } /** * Create specific socket charts * * Create charts for cgroup/application. * * @param type the chart type. * @param update_every value to overwrite the update frequency set by the server. */ static void ebpf_create_specific_socket_charts(char *type, int update_every) { int order_basis = 5300; ebpf_create_chart(type, NETDATA_NET_APPS_CONNECTION_TCP_V4, "Calls to tcp_v4_connection", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_TCP_V4_CONN_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V4], 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(type, NETDATA_NET_APPS_CONNECTION_TCP_V6, "Calls to tcp_v6_connection", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_TCP_V6_CONN_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V6], 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_RECV, "Bytes received", EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_SOCKET_BYTES_RECV_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_TCP_CLEANUP_RBUF], 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_SENT, "Bytes sent", EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_SOCKET_BYTES_SEND_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, socket_publish_aggregated, 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS, "Calls to tcp_cleanup_rbuf.", EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_SOCKET_TCP_RECV_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_TCP_CLEANUP_RBUF], 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS, "Calls to tcp_sendmsg.", EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_SOCKET_TCP_SEND_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, socket_publish_aggregated, 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT, "Calls to tcp_retransmit.", EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_SOCKET_TCP_RETRANSMIT_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_TCP_RETRANSMIT], 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS, "Calls to udp_sendmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_SOCKET_UDP_SEND_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_UDP_SENDMSG], 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); ebpf_create_chart(type, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS, "Calls to udp_recvmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_CGROUP_NET_GROUP, NETDATA_CGROUP_SOCKET_UDP_RECV_CONTEXT, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, ebpf_create_global_dimension, &socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF], 1, update_every, NETDATA_EBPF_MODULE_NAME_SOCKET); } /** * Obsolete specific socket charts * * Obsolete charts for cgroup/application. * * @param type the chart type. * @param update_every value to overwrite the update frequency set by the server. */ static void ebpf_obsolete_specific_socket_charts(char *type, int update_every) { int order_basis = 5300; ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_CONNECTION_TCP_V4, "Calls to tcp_v4_connection", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_V4_CONN_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_CONNECTION_TCP_V6,"Calls to tcp_v6_connection", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_V6_CONN_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_RECV, "Bytes received", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_BYTES_RECV_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_SENT,"Bytes sent", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_BYTES_SEND_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS, "Calls to tcp_cleanup_rbuf.", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_RECV_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS, "Calls to tcp_sendmsg.", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_SEND_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT, "Calls to tcp_retransmit.", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_TCP_RETRANSMIT_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS, "Calls to udp_sendmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_UDP_SEND_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); ebpf_write_chart_obsolete(type, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS, "Calls to udp_recvmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_LINE, NETDATA_SERVICES_SOCKET_UDP_RECV_CONTEXT, NETDATA_CHART_PRIO_CGROUPS_CONTAINERS + order_basis++, update_every); } /* * Send Specific Swap data * * Send data for specific cgroup/apps. * * @param type chart type * @param values structure with values that will be sent to netdata */ static void ebpf_send_specific_socket_data(char *type, ebpf_socket_publish_apps_t *values) { write_begin_chart(type, NETDATA_NET_APPS_CONNECTION_TCP_V4); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V4].name, (long long) values->call_tcp_v4_connection); write_end_chart(); write_begin_chart(type, NETDATA_NET_APPS_CONNECTION_TCP_V6); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_CONNECTION_V6].name, (long long) values->call_tcp_v6_connection); write_end_chart(); write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_SENT); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_SENDMSG].name, (long long) values->bytes_sent); write_end_chart(); write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_RECV); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_CLEANUP_RBUF].name, (long long) values->bytes_received); write_end_chart(); write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_SENDMSG].name, (long long) values->call_tcp_sent); write_end_chart(); write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_CLEANUP_RBUF].name, (long long) values->call_tcp_received); write_end_chart(); write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_TCP_RETRANSMIT].name, (long long) values->retransmit); write_end_chart(); write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_UDP_SENDMSG].name, (long long) values->call_udp_sent); write_end_chart(); write_begin_chart(type, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS); write_chart_dimension(socket_publish_aggregated[NETDATA_IDX_UDP_RECVBUF].name, (long long) values->call_udp_received); write_end_chart(); } /** * Create Systemd Socket Charts * * Create charts when systemd is enabled * * @param update_every value to overwrite the update frequency set by the server. **/ static void ebpf_create_systemd_socket_charts(int update_every) { int order = 20080; ebpf_create_charts_on_systemd(NETDATA_NET_APPS_CONNECTION_TCP_V4, "Calls to tcp_v4_connection", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_TCP_V4_CONN_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); ebpf_create_charts_on_systemd(NETDATA_NET_APPS_CONNECTION_TCP_V6, "Calls to tcp_v6_connection", EBPF_COMMON_DIMENSION_CONNECTIONS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_TCP_V6_CONN_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_RECV, "Bytes received", EBPF_COMMON_DIMENSION_BITS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_BYTES_RECV_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_SENT, "Bytes sent", EBPF_COMMON_DIMENSION_BITS, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_BYTES_SEND_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS, "Calls to tcp_cleanup_rbuf.", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_TCP_RECV_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS, "Calls to tcp_sendmsg.", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_TCP_SEND_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT, "Calls to tcp_retransmit", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_TCP_RETRANSMIT_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS, "Calls to udp_sendmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_UDP_SEND_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); ebpf_create_charts_on_systemd(NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS, "Calls to udp_recvmsg", EBPF_COMMON_DIMENSION_CALL, NETDATA_APPS_NET_GROUP, NETDATA_EBPF_CHART_TYPE_STACKED, order++, ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX], NETDATA_SERVICES_SOCKET_UDP_RECV_CONTEXT, NETDATA_EBPF_MODULE_NAME_SOCKET, update_every); } /** * Send Systemd charts * * Send collected data to Netdata. * * @return It returns the status for chart creation, if it is necessary to remove a specific dimension, zero is returned * otherwise function returns 1 to avoid chart recreation */ static int ebpf_send_systemd_socket_charts() { int ret = 1; ebpf_cgroup_target_t *ect; write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_CONNECTION_TCP_V4); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.call_tcp_v4_connection); } else ret = 0; } write_end_chart(); write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_CONNECTION_TCP_V6); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.call_tcp_v6_connection); } else ret = 0; } write_end_chart(); write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_SENT); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.bytes_sent); } else ret = 0; } write_end_chart(); write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_RECV); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.bytes_received); } } write_end_chart(); write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_SEND_CALLS); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.call_tcp_sent); } } write_end_chart(); write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_RECV_CALLS); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.call_tcp_received); } } write_end_chart(); write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_TCP_RETRANSMIT); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.retransmit); } } write_end_chart(); write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_UDP_SEND_CALLS); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.call_udp_sent); } } write_end_chart(); write_begin_chart(NETDATA_SERVICE_FAMILY, NETDATA_NET_APPS_BANDWIDTH_UDP_RECV_CALLS); for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (unlikely(ect->systemd) && unlikely(ect->updated)) { write_chart_dimension(ect->name, (long long)ect->publish_socket.call_udp_received); } } write_end_chart(); return ret; } /** * Update Cgroup algorithm * * Change algorithm from absolute to incremental */ void ebpf_socket_update_cgroup_algorithm() { int i; for (i = 0; i < NETDATA_MAX_SOCKET_VECTOR; i++) { netdata_publish_syscall_t *ptr = &socket_publish_aggregated[i]; freez(ptr->algorithm); ptr->algorithm = strdupz(ebpf_algorithms[NETDATA_EBPF_INCREMENTAL_IDX]); } } /** * Send data to Netdata calling auxiliary functions. * * @param update_every value to overwrite the update frequency set by the server. */ static void ebpf_socket_send_cgroup_data(int update_every) { if (!ebpf_cgroup_pids) return; pthread_mutex_lock(&mutex_cgroup_shm); ebpf_cgroup_target_t *ect; for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { ebpf_socket_sum_cgroup_pids(&ect->publish_socket, ect->pids); } int has_systemd = shm_ebpf_cgroup.header->systemd_enabled; if (has_systemd) { static int systemd_charts = 0; if (!systemd_charts) { ebpf_create_systemd_socket_charts(update_every); systemd_charts = 1; } systemd_charts = ebpf_send_systemd_socket_charts(); } for (ect = ebpf_cgroup_pids; ect ; ect = ect->next) { if (ect->systemd) continue; if (!(ect->flags & NETDATA_EBPF_CGROUP_HAS_SOCKET_CHART)) { ebpf_create_specific_socket_charts(ect->name, update_every); ect->flags |= NETDATA_EBPF_CGROUP_HAS_SOCKET_CHART; } if (ect->flags & NETDATA_EBPF_CGROUP_HAS_SOCKET_CHART && ect->updated) { ebpf_send_specific_socket_data(ect->name, &ect->publish_socket); } else { ebpf_obsolete_specific_socket_charts(ect->name, update_every); ect->flags &= ~NETDATA_EBPF_CGROUP_HAS_SOCKET_CHART; } } pthread_mutex_unlock(&mutex_cgroup_shm); } /***************************************************************** * * FUNCTIONS WITH THE MAIN LOOP * *****************************************************************/ struct netdata_static_thread socket_threads = {"EBPF SOCKET READ", NULL, NULL, 1, NULL, NULL, ebpf_socket_read_hash }; /** * Main loop for this collector. * * @param step the number of microseconds used with heart beat * @param em the structure with thread information */ static void socket_collector(usec_t step, ebpf_module_t *em) { UNUSED(step); heartbeat_t hb; heartbeat_init(&hb); socket_threads.thread = mallocz(sizeof(netdata_thread_t)); netdata_thread_create(socket_threads.thread, socket_threads.name, NETDATA_THREAD_OPTION_JOINABLE, ebpf_socket_read_hash, em); int cgroups = em->cgroup_charts; if (cgroups) ebpf_socket_update_cgroup_algorithm(); int socket_apps_enabled = ebpf_modules[EBPF_MODULE_SOCKET_IDX].apps_charts; int socket_global_enabled = ebpf_modules[EBPF_MODULE_SOCKET_IDX].global_charts; int network_connection = em->optional; int update_every = em->update_every; int counter = update_every - 1; while (!close_ebpf_plugin) { pthread_mutex_lock(&collect_data_mutex); pthread_cond_wait(&collect_data_cond_var, &collect_data_mutex); if (++counter == update_every) { counter = 0; if (socket_global_enabled) read_hash_global_tables(); if (socket_apps_enabled) ebpf_socket_update_apps_data(); if (cgroups) ebpf_update_socket_cgroup(); calculate_nv_plot(); pthread_mutex_lock(&lock); if (socket_global_enabled) ebpf_socket_send_data(em); if (socket_apps_enabled) ebpf_socket_send_apps_data(em, apps_groups_root_target); if (cgroups) ebpf_socket_send_cgroup_data(update_every); fflush(stdout); if (network_connection) { // We are calling fflush many times, because when we have a lot of dimensions // we began to have not expected outputs and Netdata closed the plugin. pthread_mutex_lock(&nv_mutex); ebpf_socket_create_nv_charts(&inbound_vectors, update_every); fflush(stdout); ebpf_socket_send_nv_data(&inbound_vectors); ebpf_socket_create_nv_charts(&outbound_vectors, update_every); fflush(stdout); ebpf_socket_send_nv_data(&outbound_vectors); wait_to_plot = 0; pthread_mutex_unlock(&nv_mutex); } pthread_mutex_unlock(&lock); } pthread_mutex_unlock(&collect_data_mutex); } } /***************************************************************** * * FUNCTIONS TO CLOSE THE THREAD * *****************************************************************/ /** * Clean internal socket plot * * Clean all structures allocated with strdupz. * * @param ptr the pointer with addresses to clean. */ static inline void clean_internal_socket_plot(netdata_socket_plot_t *ptr) { freez(ptr->dimension_recv); freez(ptr->dimension_sent); freez(ptr->resolved_name); freez(ptr->dimension_retransmit); } /** * Clean socket plot * * Clean the allocated data for inbound and outbound vectors. */ static void clean_allocated_socket_plot() { uint32_t i; uint32_t end = inbound_vectors.last; netdata_socket_plot_t *plot = inbound_vectors.plot; for (i = 0; i < end; i++) { clean_internal_socket_plot(&plot[i]); } clean_internal_socket_plot(&plot[inbound_vectors.last]); end = outbound_vectors.last; plot = outbound_vectors.plot; for (i = 0; i < end; i++) { clean_internal_socket_plot(&plot[i]); } clean_internal_socket_plot(&plot[outbound_vectors.last]); } /** * Clean network ports allocated during initialization. * * @param ptr a pointer to the link list. */ static void clean_network_ports(ebpf_network_viewer_port_list_t *ptr) { if (unlikely(!ptr)) return; while (ptr) { ebpf_network_viewer_port_list_t *next = ptr->next; freez(ptr->value); freez(ptr); ptr = next; } } /** * Clean service names * * Clean the allocated link list that stores names. * * @param names the link list. */ static void clean_service_names(ebpf_network_viewer_dim_name_t *names) { if (unlikely(!names)) return; while (names) { ebpf_network_viewer_dim_name_t *next = names->next; freez(names->name); freez(names); names = next; } } /** * Clean hostnames * * @param hostnames the hostnames to clean */ static void clean_hostnames(ebpf_network_viewer_hostname_list_t *hostnames) { if (unlikely(!hostnames)) return; while (hostnames) { ebpf_network_viewer_hostname_list_t *next = hostnames->next; freez(hostnames->value); simple_pattern_free(hostnames->value_pattern); freez(hostnames); hostnames = next; } } void clean_socket_apps_structures() { struct pid_stat *pids = root_of_pids; while (pids) { freez(socket_bandwidth_curr[pids->pid]); pids = pids->next; } } /** * Cleanup publish syscall * * @param nps list of structures to clean */ void ebpf_cleanup_publish_syscall(netdata_publish_syscall_t *nps) { while (nps) { freez(nps->algorithm); nps = nps->next; } } /** * Clean port Structure * * Clean the allocated list. * * @param clean the list that will be cleaned */ void clean_port_structure(ebpf_network_viewer_port_list_t **clean) { ebpf_network_viewer_port_list_t *move = *clean; while (move) { ebpf_network_viewer_port_list_t *next = move->next; freez(move->value); freez(move); move = next; } *clean = NULL; } /** * Clean IP structure * * Clean the allocated list. * * @param clean the list that will be cleaned */ static void clean_ip_structure(ebpf_network_viewer_ip_list_t **clean) { ebpf_network_viewer_ip_list_t *move = *clean; while (move) { ebpf_network_viewer_ip_list_t *next = move->next; freez(move->value); freez(move); move = next; } *clean = NULL; } /** * Clean up the main thread. * * @param ptr thread data. */ static void ebpf_socket_cleanup(void *ptr) { ebpf_module_t *em = (ebpf_module_t *)ptr; if (!em->enabled) return; heartbeat_t hb; heartbeat_init(&hb); uint32_t tick = 2*USEC_PER_MS; while (!read_thread_closed) { usec_t dt = heartbeat_next(&hb, tick); UNUSED(dt); } ebpf_cleanup_publish_syscall(socket_publish_aggregated); freez(socket_hash_values); freez(bandwidth_vector); freez(socket_values); clean_allocated_socket_plot(); freez(inbound_vectors.plot); freez(outbound_vectors.plot); clean_port_structure(&listen_ports); ebpf_modules[EBPF_MODULE_SOCKET_IDX].enabled = 0; clean_network_ports(network_viewer_opt.included_port); clean_network_ports(network_viewer_opt.excluded_port); clean_service_names(network_viewer_opt.names); clean_hostnames(network_viewer_opt.included_hostnames); clean_hostnames(network_viewer_opt.excluded_hostnames); pthread_mutex_destroy(&nv_mutex); freez(socket_threads.thread); if (probe_links) { struct bpf_program *prog; size_t i = 0 ; bpf_object__for_each_program(prog, objects) { bpf_link__destroy(probe_links[i]); i++; } bpf_object__close(objects); } finalized_threads = 1; } /***************************************************************** * * FUNCTIONS TO START THREAD * *****************************************************************/ /** * Allocate vectors used with this thread. * We are not testing the return, because callocz does this and shutdown the software * case it was not possible to allocate. * * @param apps is apps enabled? */ static void ebpf_socket_allocate_global_vectors(int apps) { memset(socket_aggregated_data, 0 ,NETDATA_MAX_SOCKET_VECTOR * sizeof(netdata_syscall_stat_t)); memset(socket_publish_aggregated, 0 ,NETDATA_MAX_SOCKET_VECTOR * sizeof(netdata_publish_syscall_t)); socket_hash_values = callocz(ebpf_nprocs, sizeof(netdata_idx_t)); if (apps) socket_bandwidth_curr = callocz((size_t)pid_max, sizeof(ebpf_socket_publish_apps_t *)); bandwidth_vector = callocz((size_t)ebpf_nprocs, sizeof(ebpf_bandwidth_t)); socket_values = callocz((size_t)ebpf_nprocs, sizeof(netdata_socket_t)); inbound_vectors.plot = callocz(network_viewer_opt.max_dim, sizeof(netdata_socket_plot_t)); outbound_vectors.plot = callocz(network_viewer_opt.max_dim, sizeof(netdata_socket_plot_t)); } /** * Initialize Inbound and Outbound * * Initialize the common outbound and inbound sockets. */ static void initialize_inbound_outbound() { inbound_vectors.last = network_viewer_opt.max_dim - 1; outbound_vectors.last = inbound_vectors.last; fill_last_nv_dimension(&inbound_vectors.plot[inbound_vectors.last], 0); fill_last_nv_dimension(&outbound_vectors.plot[outbound_vectors.last], 1); } /***************************************************************** * * EBPF SOCKET THREAD * *****************************************************************/ /** * Fill Port list * * @param out a pointer to the link list. * @param in the structure that will be linked. */ static inline void fill_port_list(ebpf_network_viewer_port_list_t **out, ebpf_network_viewer_port_list_t *in) { if (likely(*out)) { ebpf_network_viewer_port_list_t *move = *out, *store = *out; uint16_t first = ntohs(in->first); uint16_t last = ntohs(in->last); while (move) { uint16_t cmp_first = ntohs(move->first); uint16_t cmp_last = ntohs(move->last); if (cmp_first <= first && first <= cmp_last && cmp_first <= last && last <= cmp_last ) { info("The range/value (%u, %u) is inside the range/value (%u, %u) already inserted, it will be ignored.", first, last, cmp_first, cmp_last); freez(in->value); freez(in); return; } else if (first <= cmp_first && cmp_first <= last && first <= cmp_last && cmp_last <= last) { info("The range (%u, %u) is bigger than previous range (%u, %u) already inserted, the previous will be ignored.", first, last, cmp_first, cmp_last); freez(move->value); move->value = in->value; move->first = in->first; move->last = in->last; freez(in); return; } store = move; move = move->next; } store->next = in; } else { *out = in; } #ifdef NETDATA_INTERNAL_CHECKS info("Adding values %s( %u, %u) to %s port list used on network viewer", in->value, ntohs(in->first), ntohs(in->last), (*out == network_viewer_opt.included_port)?"included":"excluded"); #endif } /** * Parse Service List * * @param out a pointer to store the link list * @param service the service used to create the structure that will be linked. */ static void parse_service_list(void **out, char *service) { ebpf_network_viewer_port_list_t **list = (ebpf_network_viewer_port_list_t **)out; struct servent *serv = getservbyname((const char *)service, "tcp"); if (!serv) serv = getservbyname((const char *)service, "udp"); if (!serv) { info("Cannot resolv the service '%s' with protocols TCP and UDP, it will be ignored", service); return; } ebpf_network_viewer_port_list_t *w = callocz(1, sizeof(ebpf_network_viewer_port_list_t)); w->value = strdupz(service); w->hash = simple_hash(service); w->first = w->last = (uint16_t)serv->s_port; fill_port_list(list, w); } /** * Netmask * * Copied from iprange (https://github.com/firehol/iprange/blob/master/iprange.h) * * @param prefix create the netmask based in the CIDR value. * * @return */ static inline in_addr_t netmask(int prefix) { if (prefix == 0) return (~((in_addr_t) - 1)); else return (in_addr_t)(~((1 << (32 - prefix)) - 1)); } /** * Broadcast * * Copied from iprange (https://github.com/firehol/iprange/blob/master/iprange.h) * * @param addr is the ip address * @param prefix is the CIDR value. * * @return It returns the last address of the range */ static inline in_addr_t broadcast(in_addr_t addr, int prefix) { return (addr | ~netmask(prefix)); } /** * Network * * Copied from iprange (https://github.com/firehol/iprange/blob/master/iprange.h) * * @param addr is the ip address * @param prefix is the CIDR value. * * @return It returns the first address of the range. */ static inline in_addr_t ipv4_network(in_addr_t addr, int prefix) { return (addr & netmask(prefix)); } /** * IP to network long * * @param dst the vector to store the result * @param ip the source ip given by our users. * @param domain the ip domain (IPV4 or IPV6) * @param source the original string * * @return it returns 0 on success and -1 otherwise. */ static inline int ip2nl(uint8_t *dst, char *ip, int domain, char *source) { if (inet_pton(domain, ip, dst) <= 0) { error("The address specified (%s) is invalid ", source); return -1; } return 0; } /** * Get IPV6 Last Address * * @param out the address to store the last address. * @param in the address used to do the math. * @param prefix number of bits used to calculate the address */ static void get_ipv6_last_addr(union netdata_ip_t *out, union netdata_ip_t *in, uint64_t prefix) { uint64_t mask,tmp; uint64_t ret[2]; memcpy(ret, in->addr32, sizeof(union netdata_ip_t)); if (prefix == 128) { memcpy(out->addr32, in->addr32, sizeof(union netdata_ip_t)); return; } else if (!prefix) { ret[0] = ret[1] = 0xFFFFFFFFFFFFFFFF; memcpy(out->addr32, ret, sizeof(union netdata_ip_t)); return; } else if (prefix <= 64) { ret[1] = 0xFFFFFFFFFFFFFFFFULL; tmp = be64toh(ret[0]); if (prefix > 0) { mask = 0xFFFFFFFFFFFFFFFFULL << (64 - prefix); tmp |= ~mask; } ret[0] = htobe64(tmp); } else { mask = 0xFFFFFFFFFFFFFFFFULL << (128 - prefix); tmp = be64toh(ret[1]); tmp |= ~mask; ret[1] = htobe64(tmp); } memcpy(out->addr32, ret, sizeof(union netdata_ip_t)); } /** * Calculate ipv6 first address * * @param out the address to store the first address. * @param in the address used to do the math. * @param prefix number of bits used to calculate the address */ static void get_ipv6_first_addr(union netdata_ip_t *out, union netdata_ip_t *in, uint64_t prefix) { uint64_t mask,tmp; uint64_t ret[2]; memcpy(ret, in->addr32, sizeof(union netdata_ip_t)); if (prefix == 128) { memcpy(out->addr32, in->addr32, sizeof(union netdata_ip_t)); return; } else if (!prefix) { ret[0] = ret[1] = 0; memcpy(out->addr32, ret, sizeof(union netdata_ip_t)); return; } else if (prefix <= 64) { ret[1] = 0ULL; tmp = be64toh(ret[0]); if (prefix > 0) { mask = 0xFFFFFFFFFFFFFFFFULL << (64 - prefix); tmp &= mask; } ret[0] = htobe64(tmp); } else { mask = 0xFFFFFFFFFFFFFFFFULL << (128 - prefix); tmp = be64toh(ret[1]); tmp &= mask; ret[1] = htobe64(tmp); } memcpy(out->addr32, ret, sizeof(union netdata_ip_t)); } /** * Is ip inside the range * * Check if the ip is inside a IP range * * @param rfirst the first ip address of the range * @param rlast the last ip address of the range * @param cmpfirst the first ip to compare * @param cmplast the last ip to compare * @param family the IP family * * @return It returns 1 if the IP is inside the range and 0 otherwise */ static int is_ip_inside_range(union netdata_ip_t *rfirst, union netdata_ip_t *rlast, union netdata_ip_t *cmpfirst, union netdata_ip_t *cmplast, int family) { if (family == AF_INET) { if (ntohl(rfirst->addr32[0]) <= ntohl(cmpfirst->addr32[0]) && ntohl(rlast->addr32[0]) >= ntohl(cmplast->addr32[0])) return 1; } else { if (memcmp(rfirst->addr8, cmpfirst->addr8, sizeof(union netdata_ip_t)) <= 0 && memcmp(rlast->addr8, cmplast->addr8, sizeof(union netdata_ip_t)) >= 0) { return 1; } } return 0; } /** * Fill IP list * * @param out a pointer to the link list. * @param in the structure that will be linked. */ void fill_ip_list(ebpf_network_viewer_ip_list_t **out, ebpf_network_viewer_ip_list_t *in, char *table) { #ifndef NETDATA_INTERNAL_CHECKS UNUSED(table); #endif if (likely(*out)) { ebpf_network_viewer_ip_list_t *move = *out, *store = *out; while (move) { if (in->ver == move->ver && is_ip_inside_range(&move->first, &move->last, &in->first, &in->last, in->ver)) { info("The range/value (%s) is inside the range/value (%s) already inserted, it will be ignored.", in->value, move->value); freez(in->value); freez(in); return; } store = move; move = move->next; } store->next = in; } else { *out = in; } #ifdef NETDATA_INTERNAL_CHECKS char first[512], last[512]; if (in->ver == AF_INET) { if (inet_ntop(AF_INET, in->first.addr8, first, INET_ADDRSTRLEN) && inet_ntop(AF_INET, in->last.addr8, last, INET_ADDRSTRLEN)) info("Adding values %s - %s to %s IP list \"%s\" used on network viewer", first, last, (*out == network_viewer_opt.included_ips)?"included":"excluded", table); } else { if (inet_ntop(AF_INET6, in->first.addr8, first, INET6_ADDRSTRLEN) && inet_ntop(AF_INET6, in->last.addr8, last, INET6_ADDRSTRLEN)) info("Adding values %s - %s to %s IP list \"%s\" used on network viewer", first, last, (*out == network_viewer_opt.included_ips)?"included":"excluded", table); } #endif } /** * Parse IP List * * Parse IP list and link it. * * @param out a pointer to store the link list * @param ip the value given as parameter */ static void parse_ip_list(void **out, char *ip) { ebpf_network_viewer_ip_list_t **list = (ebpf_network_viewer_ip_list_t **)out; char *ipdup = strdupz(ip); union netdata_ip_t first = { }; union netdata_ip_t last = { }; char *is_ipv6; if (*ip == '*' && *(ip+1) == '\0') { memset(first.addr8, 0, sizeof(first.addr8)); memset(last.addr8, 0xFF, sizeof(last.addr8)); is_ipv6 = ip; clean_ip_structure(list); goto storethisip; } char *end = ip; // Move while I cannot find a separator while (*end && *end != '/' && *end != '-') end++; // We will use only the classic IPV6 for while, but we could consider the base 85 in a near future // https://tools.ietf.org/html/rfc1924 is_ipv6 = strchr(ip, ':'); int select; if (*end && !is_ipv6) { // IPV4 range select = (*end == '/') ? 0 : 1; *end++ = '\0'; if (*end == '!') { info("The exclusion cannot be in the second part of the range %s, it will be ignored.", ipdup); goto cleanipdup; } if (!select) { // CIDR select = ip2nl(first.addr8, ip, AF_INET, ipdup); if (select) goto cleanipdup; select = (int) str2i(end); if (select < NETDATA_MINIMUM_IPV4_CIDR || select > NETDATA_MAXIMUM_IPV4_CIDR) { info("The specified CIDR %s is not valid, the IP %s will be ignored.", end, ip); goto cleanipdup; } last.addr32[0] = htonl(broadcast(ntohl(first.addr32[0]), select)); // This was added to remove // https://app.codacy.com/manual/netdata/netdata/pullRequest?prid=5810941&bid=19021977 UNUSED(last.addr32[0]); uint32_t ipv4_test = htonl(ipv4_network(ntohl(first.addr32[0]), select)); if (first.addr32[0] != ipv4_test) { first.addr32[0] = ipv4_test; struct in_addr ipv4_convert; ipv4_convert.s_addr = ipv4_test; char ipv4_msg[INET_ADDRSTRLEN]; if(inet_ntop(AF_INET, &ipv4_convert, ipv4_msg, INET_ADDRSTRLEN)) info("The network value of CIDR %s was updated for %s .", ipdup, ipv4_msg); } } else { // Range select = ip2nl(first.addr8, ip, AF_INET, ipdup); if (select) goto cleanipdup; select = ip2nl(last.addr8, end, AF_INET, ipdup); if (select) goto cleanipdup; } if (htonl(first.addr32[0]) > htonl(last.addr32[0])) { info("The specified range %s is invalid, the second address is smallest than the first, it will be ignored.", ipdup); goto cleanipdup; } } else if (is_ipv6) { // IPV6 if (!*end) { // Unique select = ip2nl(first.addr8, ip, AF_INET6, ipdup); if (select) goto cleanipdup; memcpy(last.addr8, first.addr8, sizeof(first.addr8)); } else if (*end == '-') { *end++ = 0x00; if (*end == '!') { info("The exclusion cannot be in the second part of the range %s, it will be ignored.", ipdup); goto cleanipdup; } select = ip2nl(first.addr8, ip, AF_INET6, ipdup); if (select) goto cleanipdup; select = ip2nl(last.addr8, end, AF_INET6, ipdup); if (select) goto cleanipdup; } else { // CIDR *end++ = 0x00; if (*end == '!') { info("The exclusion cannot be in the second part of the range %s, it will be ignored.", ipdup); goto cleanipdup; } select = str2i(end); if (select < 0 || select > 128) { info("The CIDR %s is not valid, the address %s will be ignored.", end, ip); goto cleanipdup; } uint64_t prefix = (uint64_t)select; select = ip2nl(first.addr8, ip, AF_INET6, ipdup); if (select) goto cleanipdup; get_ipv6_last_addr(&last, &first, prefix); union netdata_ip_t ipv6_test; get_ipv6_first_addr(&ipv6_test, &first, prefix); if (memcmp(first.addr8, ipv6_test.addr8, sizeof(union netdata_ip_t)) != 0) { memcpy(first.addr8, ipv6_test.addr8, sizeof(union netdata_ip_t)); struct in6_addr ipv6_convert; memcpy(ipv6_convert.s6_addr, ipv6_test.addr8, sizeof(union netdata_ip_t)); char ipv6_msg[INET6_ADDRSTRLEN]; if(inet_ntop(AF_INET6, &ipv6_convert, ipv6_msg, INET6_ADDRSTRLEN)) info("The network value of CIDR %s was updated for %s .", ipdup, ipv6_msg); } } if ((be64toh(*(uint64_t *)&first.addr32[2]) > be64toh(*(uint64_t *)&last.addr32[2]) && !memcmp(first.addr32, last.addr32, 2*sizeof(uint32_t))) || (be64toh(*(uint64_t *)&first.addr32) > be64toh(*(uint64_t *)&last.addr32)) ) { info("The specified range %s is invalid, the second address is smallest than the first, it will be ignored.", ipdup); goto cleanipdup; } } else { // Unique ip select = ip2nl(first.addr8, ip, AF_INET, ipdup); if (select) goto cleanipdup; memcpy(last.addr8, first.addr8, sizeof(first.addr8)); } ebpf_network_viewer_ip_list_t *store; storethisip: store = callocz(1, sizeof(ebpf_network_viewer_ip_list_t)); store->value = ipdup; store->hash = simple_hash(ipdup); store->ver = (uint8_t)(!is_ipv6)?AF_INET:AF_INET6; memcpy(store->first.addr8, first.addr8, sizeof(first.addr8)); memcpy(store->last.addr8, last.addr8, sizeof(last.addr8)); fill_ip_list(list, store, "socket"); return; cleanipdup: freez(ipdup); } /** * Parse IP Range * * Parse the IP ranges given and create Network Viewer IP Structure * * @param ptr is a pointer with the text to parse. */ static void parse_ips(char *ptr) { // No value if (unlikely(!ptr)) return; while (likely(ptr)) { // Move forward until next valid character while (isspace(*ptr)) ptr++; // No valid value found if (unlikely(!*ptr)) return; // Find space that ends the list char *end = strchr(ptr, ' '); if (end) { *end++ = '\0'; } int neg = 0; if (*ptr == '!') { neg++; ptr++; } if (isascii(*ptr)) { // Parse port parse_ip_list((!neg)?(void **)&network_viewer_opt.included_ips:(void **)&network_viewer_opt.excluded_ips, ptr); } ptr = end; } } /** * Parse port list * * Parse an allocated port list with the range given * * @param out a pointer to store the link list * @param range the informed range for the user. */ static void parse_port_list(void **out, char *range) { int first, last; ebpf_network_viewer_port_list_t **list = (ebpf_network_viewer_port_list_t **)out; char *copied = strdupz(range); if (*range == '*' && *(range+1) == '\0') { first = 1; last = 65535; clean_port_structure(list); goto fillenvpl; } char *end = range; //Move while I cannot find a separator while (*end && *end != ':' && *end != '-') end++; //It has a range if (likely(*end)) { *end++ = '\0'; if (*end == '!') { info("The exclusion cannot be in the second part of the range, the range %s will be ignored.", copied); freez(copied); return; } last = str2i((const char *)end); } else { last = 0; } first = str2i((const char *)range); if (first < NETDATA_MINIMUM_PORT_VALUE || first > NETDATA_MAXIMUM_PORT_VALUE) { info("The first port %d of the range \"%s\" is invalid and it will be ignored!", first, copied); freez(copied); return; } if (!last) last = first; if (last < NETDATA_MINIMUM_PORT_VALUE || last > NETDATA_MAXIMUM_PORT_VALUE) { info("The second port %d of the range \"%s\" is invalid and the whole range will be ignored!", last, copied); freez(copied); return; } if (first > last) { info("The specified order %s is wrong, the smallest value is always the first, it will be ignored!", copied); freez(copied); return; } ebpf_network_viewer_port_list_t *w; fillenvpl: w = callocz(1, sizeof(ebpf_network_viewer_port_list_t)); w->value = copied; w->hash = simple_hash(copied); w->first = (uint16_t)htons((uint16_t)first); w->last = (uint16_t)htons((uint16_t)last); w->cmp_first = (uint16_t)first; w->cmp_last = (uint16_t)last; fill_port_list(list, w); } /** * Read max dimension. * * Netdata plot two dimensions per connection, so it is necessary to adjust the values. * * @param cfg the configuration structure */ static void read_max_dimension(struct config *cfg) { int maxdim ; maxdim = (int) appconfig_get_number(cfg, EBPF_NETWORK_VIEWER_SECTION, EBPF_MAXIMUM_DIMENSIONS, NETDATA_NV_CAP_VALUE); if (maxdim < 0) { error("'maximum dimensions = %d' must be a positive number, Netdata will change for default value %ld.", maxdim, NETDATA_NV_CAP_VALUE); maxdim = NETDATA_NV_CAP_VALUE; } maxdim /= 2; if (!maxdim) { info("The number of dimensions is too small (%u), we are setting it to minimum 2", network_viewer_opt.max_dim); network_viewer_opt.max_dim = 1; return; } network_viewer_opt.max_dim = (uint32_t)maxdim; } /** * Parse Port Range * * Parse the port ranges given and create Network Viewer Port Structure * * @param ptr is a pointer with the text to parse. */ static void parse_ports(char *ptr) { // No value if (unlikely(!ptr)) return; while (likely(ptr)) { // Move forward until next valid character while (isspace(*ptr)) ptr++; // No valid value found if (unlikely(!*ptr)) return; // Find space that ends the list char *end = strchr(ptr, ' '); if (end) { *end++ = '\0'; } int neg = 0; if (*ptr == '!') { neg++; ptr++; } if (isdigit(*ptr)) { // Parse port parse_port_list((!neg)?(void **)&network_viewer_opt.included_port:(void **)&network_viewer_opt.excluded_port, ptr); } else if (isalpha(*ptr)) { // Parse service parse_service_list((!neg)?(void **)&network_viewer_opt.included_port:(void **)&network_viewer_opt.excluded_port, ptr); } else if (*ptr == '*') { // All parse_port_list((!neg)?(void **)&network_viewer_opt.included_port:(void **)&network_viewer_opt.excluded_port, ptr); } ptr = end; } } /** * Link hostname * * @param out is the output link list * @param in the hostname to add to list. */ static void link_hostname(ebpf_network_viewer_hostname_list_t **out, ebpf_network_viewer_hostname_list_t *in) { if (likely(*out)) { ebpf_network_viewer_hostname_list_t *move = *out; for (; move->next ; move = move->next ) { if (move->hash == in->hash && !strcmp(move->value, in->value)) { info("The hostname %s was already inserted, it will be ignored.", in->value); freez(in->value); simple_pattern_free(in->value_pattern); freez(in); return; } } move->next = in; } else { *out = in; } #ifdef NETDATA_INTERNAL_CHECKS info("Adding value %s to %s hostname list used on network viewer", in->value, (*out == network_viewer_opt.included_hostnames)?"included":"excluded"); #endif } /** * Link Hostnames * * Parse the list of hostnames to create the link list. * This is not associated with the IP, because simple patterns like *example* cannot be resolved to IP. * * @param out is the output link list * @param parse is a pointer with the text to parser. */ static void link_hostnames(char *parse) { // No value if (unlikely(!parse)) return; while (likely(parse)) { // Find the first valid value while (isspace(*parse)) parse++; // No valid value found if (unlikely(!*parse)) return; // Find space that ends the list char *end = strchr(parse, ' '); if (end) { *end++ = '\0'; } int neg = 0; if (*parse == '!') { neg++; parse++; } ebpf_network_viewer_hostname_list_t *hostname = callocz(1 , sizeof(ebpf_network_viewer_hostname_list_t)); hostname->value = strdupz(parse); hostname->hash = simple_hash(parse); hostname->value_pattern = simple_pattern_create(parse, NULL, SIMPLE_PATTERN_EXACT); link_hostname((!neg)?&network_viewer_opt.included_hostnames:&network_viewer_opt.excluded_hostnames, hostname); parse = end; } } /** * Parse network viewer section * * @param cfg the configuration structure */ void parse_network_viewer_section(struct config *cfg) { read_max_dimension(cfg); network_viewer_opt.hostname_resolution_enabled = appconfig_get_boolean(cfg, EBPF_NETWORK_VIEWER_SECTION, EBPF_CONFIG_RESOLVE_HOSTNAME, CONFIG_BOOLEAN_NO); network_viewer_opt.service_resolution_enabled = appconfig_get_boolean(cfg, EBPF_NETWORK_VIEWER_SECTION, EBPF_CONFIG_RESOLVE_SERVICE, CONFIG_BOOLEAN_NO); char *value = appconfig_get(cfg, EBPF_NETWORK_VIEWER_SECTION, EBPF_CONFIG_PORTS, NULL); parse_ports(value); if (network_viewer_opt.hostname_resolution_enabled) { value = appconfig_get(cfg, EBPF_NETWORK_VIEWER_SECTION, EBPF_CONFIG_HOSTNAMES, NULL); link_hostnames(value); } else { info("Name resolution is disabled, collector will not parser \"hostnames\" list."); } value = appconfig_get(cfg, EBPF_NETWORK_VIEWER_SECTION, "ips", "!127.0.0.1/8 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16 fc00::/7 !::1/128"); parse_ips(value); } /** * Link dimension name * * Link user specified names inside a link list. * * @param port the port number associated to the dimension name. * @param hash the calculated hash for the dimension name. * @param name the dimension name. */ static void link_dimension_name(char *port, uint32_t hash, char *value) { int test = str2i(port); if (test < NETDATA_MINIMUM_PORT_VALUE || test > NETDATA_MAXIMUM_PORT_VALUE){ error("The dimension given (%s = %s) has an invalid value and it will be ignored.", port, value); return; } ebpf_network_viewer_dim_name_t *w; w = callocz(1, sizeof(ebpf_network_viewer_dim_name_t)); w->name = strdupz(value); w->hash = hash; w->port = (uint16_t) htons(test); ebpf_network_viewer_dim_name_t *names = network_viewer_opt.names; if (unlikely(!names)) { network_viewer_opt.names = w; } else { for (; names->next; names = names->next) { if (names->port == w->port) { info("Duplicated definition for a service, the name %s will be ignored. ", names->name); freez(names->name); names->name = w->name; names->hash = w->hash; freez(w); return; } } names->next = w; } #ifdef NETDATA_INTERNAL_CHECKS info("Adding values %s( %u) to dimension name list used on network viewer", w->name, htons(w->port)); #endif } /** * Parse service Name section. * * This function gets the values that will be used to overwrite dimensions. * * @param cfg the configuration structure */ void parse_service_name_section(struct config *cfg) { struct section *co = appconfig_get_section(cfg, EBPF_SERVICE_NAME_SECTION); if (co) { struct config_option *cv; for (cv = co->values; cv ; cv = cv->next) { link_dimension_name(cv->name, cv->hash, cv->value); } } // Always associated the default port to Netdata ebpf_network_viewer_dim_name_t *names = network_viewer_opt.names; if (names) { uint16_t default_port = htons(19999); while (names) { if (names->port == default_port) return; names = names->next; } } char *port_string = getenv("NETDATA_LISTEN_PORT"); if (port_string) { // if variable has an invalid value, we assume netdata is using 19999 int default_port = str2i(port_string); if (default_port > 0 && default_port < 65536) link_dimension_name(port_string, simple_hash(port_string), "Netdata"); } } void parse_table_size_options(struct config *cfg) { socket_maps[NETDATA_SOCKET_TABLE_BANDWIDTH].user_input = (uint32_t) appconfig_get_number(cfg, EBPF_GLOBAL_SECTION, EBPF_CONFIG_BANDWIDTH_SIZE, NETDATA_MAXIMUM_CONNECTIONS_ALLOWED); socket_maps[NETDATA_SOCKET_TABLE_IPV4].user_input = (uint32_t) appconfig_get_number(cfg, EBPF_GLOBAL_SECTION, EBPF_CONFIG_IPV4_SIZE, NETDATA_MAXIMUM_CONNECTIONS_ALLOWED); socket_maps[NETDATA_SOCKET_TABLE_IPV6].user_input = (uint32_t) appconfig_get_number(cfg, EBPF_GLOBAL_SECTION, EBPF_CONFIG_IPV6_SIZE, NETDATA_MAXIMUM_CONNECTIONS_ALLOWED); socket_maps[NETDATA_SOCKET_TABLE_UDP].user_input = (uint32_t) appconfig_get_number(cfg, EBPF_GLOBAL_SECTION, EBPF_CONFIG_UDP_SIZE, NETDATA_MAXIMUM_UDP_CONNECTIONS_ALLOWED); } /* * Load BPF * * Load BPF files. * * @param em the structure with configuration */ static int ebpf_socket_load_bpf(ebpf_module_t *em) { int ret = 0; if (em->load == EBPF_LOAD_LEGACY) { probe_links = ebpf_load_program(ebpf_plugin_dir, em, running_on_kernel, isrh, &objects); if (!probe_links) { ret = -1; } } #ifdef LIBBPF_MAJOR_VERSION else { bpf_obj = socket_bpf__open(); if (!bpf_obj) ret = -1; else ret = ebpf_socket_load_and_attach(bpf_obj, em); } #endif if (ret) { error("%s %s", EBPF_DEFAULT_ERROR_MSG, em->thread_name); } return ret; } /** * Socket thread * * Thread used to generate socket charts. * * @param ptr a pointer to `struct ebpf_module` * * @return It always return NULL */ void *ebpf_socket_thread(void *ptr) { netdata_thread_cleanup_push(ebpf_socket_cleanup, ptr); memset(&inbound_vectors.tree, 0, sizeof(avl_tree_lock)); memset(&outbound_vectors.tree, 0, sizeof(avl_tree_lock)); avl_init_lock(&inbound_vectors.tree, compare_sockets); avl_init_lock(&outbound_vectors.tree, compare_sockets); ebpf_module_t *em = (ebpf_module_t *)ptr; em->maps = socket_maps; parse_network_viewer_section(&socket_config); parse_service_name_section(&socket_config); parse_table_size_options(&socket_config); if (!em->enabled) goto endsocket; if (pthread_mutex_init(&nv_mutex, NULL)) { em->enabled = CONFIG_BOOLEAN_NO; error("Cannot initialize local mutex"); goto endsocket; } pthread_mutex_lock(&lock); ebpf_socket_allocate_global_vectors(em->apps_charts); initialize_inbound_outbound(); if (running_on_kernel < NETDATA_EBPF_KERNEL_5_0) em->mode = MODE_ENTRY; #ifdef LIBBPF_MAJOR_VERSION ebpf_adjust_thread_load(em, default_btf); #endif if (ebpf_socket_load_bpf(em)) { em->enabled = CONFIG_BOOLEAN_NO; pthread_mutex_unlock(&lock); goto endsocket; } int algorithms[NETDATA_MAX_SOCKET_VECTOR] = { NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_ABSOLUTE_IDX, NETDATA_EBPF_INCREMENTAL_IDX, NETDATA_EBPF_INCREMENTAL_IDX }; ebpf_global_labels( socket_aggregated_data, socket_publish_aggregated, socket_dimension_names, socket_id_names, algorithms, NETDATA_MAX_SOCKET_VECTOR); ebpf_create_global_charts(em); ebpf_update_stats(&plugin_statistics, em); finalized_threads = 0; pthread_mutex_unlock(&lock); socket_collector((usec_t)(em->update_every * USEC_PER_SEC), em); endsocket: if (!em->enabled) ebpf_update_disabled_plugin_stats(em); netdata_thread_cleanup_pop(1); return NULL; }