// SPDX-License-Identifier: GPL-3.0-or-later #include "plugin_proc.h" #define PLUGIN_PROC_MODULE_STAT_NAME "/proc/stat" struct per_core_single_number_file { unsigned char found:1; const char *filename; int fd; collected_number value; RRDDIM *rd; }; struct last_ticks { collected_number frequency; collected_number ticks; }; // This is an extension of struct per_core_single_number_file at CPU_FREQ_INDEX. // Either scaling_cur_freq or time_in_state file is used at one time. struct per_core_time_in_state_file { const char *filename; procfile *ff; size_t last_ticks_len; struct last_ticks *last_ticks; }; #define CORE_THROTTLE_COUNT_INDEX 0 #define PACKAGE_THROTTLE_COUNT_INDEX 1 #define CPU_FREQ_INDEX 2 #define PER_CORE_FILES 3 struct cpu_chart { const char *id; RRDSET *st; RRDDIM *rd_user; RRDDIM *rd_nice; RRDDIM *rd_system; RRDDIM *rd_idle; RRDDIM *rd_iowait; RRDDIM *rd_irq; RRDDIM *rd_softirq; RRDDIM *rd_steal; RRDDIM *rd_guest; RRDDIM *rd_guest_nice; struct per_core_single_number_file files[PER_CORE_FILES]; struct per_core_time_in_state_file time_in_state_files; }; static int keep_per_core_fds_open = CONFIG_BOOLEAN_YES; static int keep_cpuidle_fds_open = CONFIG_BOOLEAN_YES; static int read_per_core_files(struct cpu_chart *all_cpu_charts, size_t len, size_t index) { char buf[50 + 1]; size_t x, files_read = 0, files_nonzero = 0; for(x = 0; x < len ; x++) { struct per_core_single_number_file *f = &all_cpu_charts[x].files[index]; f->found = 0; if(unlikely(!f->filename)) continue; if(unlikely(f->fd == -1)) { f->fd = open(f->filename, O_RDONLY); if (unlikely(f->fd == -1)) { collector_error("Cannot open file '%s'", f->filename); continue; } } ssize_t ret = read(f->fd, buf, 50); if(unlikely(ret < 0)) { // cannot read that file collector_error("Cannot read file '%s'", f->filename); close(f->fd); f->fd = -1; continue; } else { // successful read // terminate the buffer buf[ret] = '\0'; if(unlikely(keep_per_core_fds_open != CONFIG_BOOLEAN_YES)) { close(f->fd); f->fd = -1; } else if(lseek(f->fd, 0, SEEK_SET) == -1) { collector_error("Cannot seek in file '%s'", f->filename); close(f->fd); f->fd = -1; } } files_read++; f->found = 1; f->value = str2ll(buf, NULL); if(likely(f->value != 0)) files_nonzero++; } if(files_read == 0) return -1; if(files_nonzero == 0) return 0; return (int)files_nonzero; } static int read_per_core_time_in_state_files(struct cpu_chart *all_cpu_charts, size_t len, size_t index) { size_t x, files_read = 0, files_nonzero = 0; for(x = 0; x < len ; x++) { struct per_core_single_number_file *f = &all_cpu_charts[x].files[index]; struct per_core_time_in_state_file *tsf = &all_cpu_charts[x].time_in_state_files; f->found = 0; if(unlikely(!tsf->filename)) continue; if(unlikely(!tsf->ff)) { tsf->ff = procfile_open(tsf->filename, " \t:", PROCFILE_FLAG_DEFAULT); if(unlikely(!tsf->ff)) { collector_error("Cannot open file '%s'", tsf->filename); continue; } } tsf->ff = procfile_readall(tsf->ff); if(unlikely(!tsf->ff)) { collector_error("Cannot read file '%s'", tsf->filename); procfile_close(tsf->ff); tsf->ff = NULL; continue; } else { // successful read size_t lines = procfile_lines(tsf->ff), l; size_t words; unsigned long long total_ticks_since_last = 0, avg_freq = 0; // Check if there is at least one frequency in time_in_state if (procfile_word(tsf->ff, 0)[0] == '\0') { if(unlikely(keep_per_core_fds_open != CONFIG_BOOLEAN_YES)) { procfile_close(tsf->ff); tsf->ff = NULL; } // TODO: Is there a better way to avoid spikes than calculating the average over // the whole period under schedutil governor? // freez(tsf->last_ticks); // tsf->last_ticks = NULL; // tsf->last_ticks_len = 0; continue; } if (unlikely(tsf->last_ticks_len < lines || tsf->last_ticks == NULL)) { tsf->last_ticks = reallocz(tsf->last_ticks, sizeof(struct last_ticks) * lines); memset(tsf->last_ticks, 0, sizeof(struct last_ticks) * lines); tsf->last_ticks_len = lines; } f->value = 0; for(l = 0; l < lines - 1 ;l++) { unsigned long long frequency = 0, ticks = 0, ticks_since_last = 0; words = procfile_linewords(tsf->ff, l); if(unlikely(words < 2)) { collector_error("Cannot read time_in_state line. Expected 2 params, read %zu.", words); continue; } frequency = str2ull(procfile_lineword(tsf->ff, l, 0)); ticks = str2ull(procfile_lineword(tsf->ff, l, 1)); // It is assumed that frequencies are static and sorted ticks_since_last = ticks - tsf->last_ticks[l].ticks; tsf->last_ticks[l].frequency = frequency; tsf->last_ticks[l].ticks = ticks; total_ticks_since_last += ticks_since_last; avg_freq += frequency * ticks_since_last; } if (likely(total_ticks_since_last)) { avg_freq /= total_ticks_since_last; f->value = avg_freq; } if(unlikely(keep_per_core_fds_open != CONFIG_BOOLEAN_YES)) { procfile_close(tsf->ff); tsf->ff = NULL; } } files_read++; f->found = 1; if(likely(f->value != 0)) files_nonzero++; } if(unlikely(files_read == 0)) return -1; if(unlikely(files_nonzero == 0)) return 0; return (int)files_nonzero; } static void chart_per_core_files(struct cpu_chart *all_cpu_charts, size_t len, size_t index, RRDSET *st, collected_number multiplier, collected_number divisor, RRD_ALGORITHM algorithm) { size_t x; for(x = 0; x < len ; x++) { struct per_core_single_number_file *f = &all_cpu_charts[x].files[index]; if(unlikely(!f->found)) continue; if(unlikely(!f->rd)) f->rd = rrddim_add(st, all_cpu_charts[x].id, NULL, multiplier, divisor, algorithm); rrddim_set_by_pointer(st, f->rd, f->value); } } struct cpuidle_state { char *name; char *time_filename; int time_fd; collected_number value; RRDDIM *rd; }; struct per_core_cpuidle_chart { RRDSET *st; RRDDIM *active_time_rd; collected_number active_time; collected_number last_active_time; struct cpuidle_state *cpuidle_state; size_t cpuidle_state_len; int rescan_cpu_states; }; static void* wake_cpu_thread(void* core) { pthread_t thread; cpu_set_t cpu_set; static size_t cpu_wakeups = 0; static int errors = 0; CPU_ZERO(&cpu_set); CPU_SET(*(int*)core, &cpu_set); thread = pthread_self(); if(unlikely(pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpu_set))) { if(unlikely(errors < 8)) { collector_error("Cannot set CPU affinity for core %d", *(int*)core); errors++; } else if(unlikely(errors < 9)) { collector_error("CPU affinity errors are disabled"); errors++; } } // Make the CPU core do something to force it to update its idle counters cpu_wakeups++; return 0; } static int read_schedstat(char *schedstat_filename, struct per_core_cpuidle_chart **cpuidle_charts_address, size_t *schedstat_cores_found) { static size_t cpuidle_charts_len = 0; static procfile *ff = NULL; struct per_core_cpuidle_chart *cpuidle_charts = *cpuidle_charts_address; size_t cores_found = 0; if(unlikely(!ff)) { ff = procfile_open(schedstat_filename, " \t:", PROCFILE_FLAG_DEFAULT); if(unlikely(!ff)) return 1; } ff = procfile_readall(ff); if(unlikely(!ff)) return 1; size_t lines = procfile_lines(ff), l; size_t words; for(l = 0; l < lines ;l++) { char *row_key = procfile_lineword(ff, l, 0); // faster strncmp(row_key, "cpu", 3) == 0 if(likely(row_key[0] == 'c' && row_key[1] == 'p' && row_key[2] == 'u')) { words = procfile_linewords(ff, l); if(unlikely(words < 10)) { collector_error("Cannot read /proc/schedstat cpu line. Expected 9 params, read %zu.", words); return 1; } cores_found++; size_t core = str2ul(&row_key[3]); if(unlikely(core >= cores_found)) { collector_error("Core %zu found but no more than %zu cores were expected.", core, cores_found); return 1; } if(unlikely(cpuidle_charts_len < cores_found)) { cpuidle_charts = reallocz(cpuidle_charts, sizeof(struct per_core_cpuidle_chart) * cores_found); *cpuidle_charts_address = cpuidle_charts; memset(cpuidle_charts + cpuidle_charts_len, 0, sizeof(struct per_core_cpuidle_chart) * (cores_found - cpuidle_charts_len)); cpuidle_charts_len = cores_found; } cpuidle_charts[core].active_time = str2ull(procfile_lineword(ff, l, 7)) / 1000; } } *schedstat_cores_found = cores_found; return 0; } static int read_one_state(char *buf, const char *filename, int *fd) { ssize_t ret = read(*fd, buf, 50); if(unlikely(ret <= 0)) { // cannot read that file collector_error("Cannot read file '%s'", filename); close(*fd); *fd = -1; return 0; } else { // successful read // terminate the buffer buf[ret - 1] = '\0'; if(unlikely(keep_cpuidle_fds_open != CONFIG_BOOLEAN_YES)) { close(*fd); *fd = -1; } else if(lseek(*fd, 0, SEEK_SET) == -1) { collector_error("Cannot seek in file '%s'", filename); close(*fd); *fd = -1; } } return 1; } static int read_cpuidle_states(char *cpuidle_name_filename , char *cpuidle_time_filename, struct per_core_cpuidle_chart *cpuidle_charts, size_t core) { char filename[FILENAME_MAX + 1]; static char next_state_filename[FILENAME_MAX + 1]; struct stat stbuf; struct per_core_cpuidle_chart *cc = &cpuidle_charts[core]; size_t state; if(unlikely(!cc->cpuidle_state_len || cc->rescan_cpu_states)) { int state_file_found = 1; // check at least one state if(cc->cpuidle_state_len) { for(state = 0; state < cc->cpuidle_state_len; state++) { freez(cc->cpuidle_state[state].name); freez(cc->cpuidle_state[state].time_filename); close(cc->cpuidle_state[state].time_fd); cc->cpuidle_state[state].time_fd = -1; } freez(cc->cpuidle_state); cc->cpuidle_state = NULL; cc->cpuidle_state_len = 0; cc->active_time_rd = NULL; cc->st = NULL; } while(likely(state_file_found)) { snprintfz(filename, FILENAME_MAX, cpuidle_name_filename, core, cc->cpuidle_state_len); if (stat(filename, &stbuf) == 0) cc->cpuidle_state_len++; else state_file_found = 0; } snprintfz(next_state_filename, FILENAME_MAX, cpuidle_name_filename, core, cc->cpuidle_state_len); if(likely(cc->cpuidle_state_len)) cc->cpuidle_state = callocz(cc->cpuidle_state_len, sizeof(struct cpuidle_state)); for(state = 0; state < cc->cpuidle_state_len; state++) { char name_buf[50 + 1]; snprintfz(filename, FILENAME_MAX, cpuidle_name_filename, core, state); int fd = open(filename, O_RDONLY, 0666); if(unlikely(fd == -1)) { collector_error("Cannot open file '%s'", filename); cc->rescan_cpu_states = 1; return 1; } ssize_t r = read(fd, name_buf, 50); if(unlikely(r < 1)) { collector_error("Cannot read file '%s'", filename); close(fd); cc->rescan_cpu_states = 1; return 1; } name_buf[r - 1] = '\0'; // erase extra character cc->cpuidle_state[state].name = strdupz(trim(name_buf)); close(fd); snprintfz(filename, FILENAME_MAX, cpuidle_time_filename, core, state); cc->cpuidle_state[state].time_filename = strdupz(filename); cc->cpuidle_state[state].time_fd = -1; } cc->rescan_cpu_states = 0; } for(state = 0; state < cc->cpuidle_state_len; state++) { struct cpuidle_state *cs = &cc->cpuidle_state[state]; if(unlikely(cs->time_fd == -1)) { cs->time_fd = open(cs->time_filename, O_RDONLY); if (unlikely(cs->time_fd == -1)) { collector_error("Cannot open file '%s'", cs->time_filename); cc->rescan_cpu_states = 1; return 1; } } char time_buf[50 + 1]; if(likely(read_one_state(time_buf, cs->time_filename, &cs->time_fd))) { cs->value = str2ll(time_buf, NULL); } else { cc->rescan_cpu_states = 1; return 1; } } // check if the number of states was increased if(unlikely(stat(next_state_filename, &stbuf) == 0)) { cc->rescan_cpu_states = 1; return 1; } return 0; } int do_proc_stat(int update_every, usec_t dt) { (void)dt; static struct cpu_chart *all_cpu_charts = NULL; static size_t all_cpu_charts_size = 0; static procfile *ff = NULL; static int do_cpu = -1, do_cpu_cores = -1, do_interrupts = -1, do_context = -1, do_forks = -1, do_processes = -1, do_core_throttle_count = -1, do_package_throttle_count = -1, do_cpu_freq = -1, do_cpuidle = -1; static uint32_t hash_intr, hash_ctxt, hash_processes, hash_procs_running, hash_procs_blocked; static char *core_throttle_count_filename = NULL, *package_throttle_count_filename = NULL, *scaling_cur_freq_filename = NULL, *time_in_state_filename = NULL, *schedstat_filename = NULL, *cpuidle_name_filename = NULL, *cpuidle_time_filename = NULL; static const RRDVAR_ACQUIRED *cpus_var = NULL; static int accurate_freq_avail = 0, accurate_freq_is_used = 0; size_t cores_found = (size_t)get_system_cpus(); if(unlikely(do_cpu == -1)) { do_cpu = config_get_boolean("plugin:proc:/proc/stat", "cpu utilization", CONFIG_BOOLEAN_YES); do_cpu_cores = config_get_boolean("plugin:proc:/proc/stat", "per cpu core utilization", CONFIG_BOOLEAN_YES); do_interrupts = config_get_boolean("plugin:proc:/proc/stat", "cpu interrupts", CONFIG_BOOLEAN_YES); do_context = config_get_boolean("plugin:proc:/proc/stat", "context switches", CONFIG_BOOLEAN_YES); do_forks = config_get_boolean("plugin:proc:/proc/stat", "processes started", CONFIG_BOOLEAN_YES); do_processes = config_get_boolean("plugin:proc:/proc/stat", "processes running", CONFIG_BOOLEAN_YES); // give sane defaults based on the number of processors if(unlikely(get_system_cpus() > 50)) { // the system has too many processors keep_per_core_fds_open = CONFIG_BOOLEAN_NO; do_core_throttle_count = CONFIG_BOOLEAN_NO; do_package_throttle_count = CONFIG_BOOLEAN_NO; do_cpu_freq = CONFIG_BOOLEAN_NO; do_cpuidle = CONFIG_BOOLEAN_NO; } else { // the system has a reasonable number of processors keep_per_core_fds_open = CONFIG_BOOLEAN_YES; do_core_throttle_count = CONFIG_BOOLEAN_AUTO; do_package_throttle_count = CONFIG_BOOLEAN_NO; do_cpu_freq = CONFIG_BOOLEAN_YES; do_cpuidle = CONFIG_BOOLEAN_YES; } if(unlikely(get_system_cpus() > 24)) { // the system has too many processors keep_cpuidle_fds_open = CONFIG_BOOLEAN_NO; } else { // the system has a reasonable number of processors keep_cpuidle_fds_open = CONFIG_BOOLEAN_YES; } keep_per_core_fds_open = config_get_boolean("plugin:proc:/proc/stat", "keep per core files open", keep_per_core_fds_open); keep_cpuidle_fds_open = config_get_boolean("plugin:proc:/proc/stat", "keep cpuidle files open", keep_cpuidle_fds_open); do_core_throttle_count = config_get_boolean_ondemand("plugin:proc:/proc/stat", "core_throttle_count", do_core_throttle_count); do_package_throttle_count = config_get_boolean_ondemand("plugin:proc:/proc/stat", "package_throttle_count", do_package_throttle_count); do_cpu_freq = config_get_boolean_ondemand("plugin:proc:/proc/stat", "cpu frequency", do_cpu_freq); do_cpuidle = config_get_boolean_ondemand("plugin:proc:/proc/stat", "cpu idle states", do_cpuidle); hash_intr = simple_hash("intr"); hash_ctxt = simple_hash("ctxt"); hash_processes = simple_hash("processes"); hash_procs_running = simple_hash("procs_running"); hash_procs_blocked = simple_hash("procs_blocked"); char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/%s/thermal_throttle/core_throttle_count"); core_throttle_count_filename = config_get("plugin:proc:/proc/stat", "core_throttle_count filename to monitor", filename); snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/%s/thermal_throttle/package_throttle_count"); package_throttle_count_filename = config_get("plugin:proc:/proc/stat", "package_throttle_count filename to monitor", filename); snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/%s/cpufreq/scaling_cur_freq"); scaling_cur_freq_filename = config_get("plugin:proc:/proc/stat", "scaling_cur_freq filename to monitor", filename); snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/%s/cpufreq/stats/time_in_state"); time_in_state_filename = config_get("plugin:proc:/proc/stat", "time_in_state filename to monitor", filename); snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/proc/schedstat"); schedstat_filename = config_get("plugin:proc:/proc/stat", "schedstat filename to monitor", filename); if(do_cpuidle != CONFIG_BOOLEAN_NO) { struct stat stbuf; if (stat(schedstat_filename, &stbuf)) do_cpuidle = CONFIG_BOOLEAN_NO; } snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/cpu%zu/cpuidle/state%zu/name"); cpuidle_name_filename = config_get("plugin:proc:/proc/stat", "cpuidle name filename to monitor", filename); snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/cpu%zu/cpuidle/state%zu/time"); cpuidle_time_filename = config_get("plugin:proc:/proc/stat", "cpuidle time filename to monitor", filename); } if(unlikely(!ff)) { char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/proc/stat"); ff = procfile_open(config_get("plugin:proc:/proc/stat", "filename to monitor", filename), " \t:", PROCFILE_FLAG_DEFAULT); if(unlikely(!ff)) return 1; } ff = procfile_readall(ff); if(unlikely(!ff)) return 0; // we return 0, so that we will retry to open it next time size_t lines = procfile_lines(ff), l; size_t words; unsigned long long processes = 0, running = 0 , blocked = 0; for(l = 0; l < lines ;l++) { char *row_key = procfile_lineword(ff, l, 0); uint32_t hash = simple_hash(row_key); // faster strncmp(row_key, "cpu", 3) == 0 if(likely(row_key[0] == 'c' && row_key[1] == 'p' && row_key[2] == 'u')) { words = procfile_linewords(ff, l); if(unlikely(words < 9)) { collector_error("Cannot read /proc/stat cpu line. Expected 9 params, read %zu.", words); continue; } size_t core = (row_key[3] == '\0') ? 0 : str2ul(&row_key[3]) + 1; if(likely(core > 0)) cores_found = core; if(likely((core == 0 && do_cpu) || (core > 0 && do_cpu_cores))) { char *id; unsigned long long user = 0, nice = 0, system = 0, idle = 0, iowait = 0, irq = 0, softirq = 0, steal = 0, guest = 0, guest_nice = 0; id = row_key; user = str2ull(procfile_lineword(ff, l, 1)); nice = str2ull(procfile_lineword(ff, l, 2)); system = str2ull(procfile_lineword(ff, l, 3)); idle = str2ull(procfile_lineword(ff, l, 4)); iowait = str2ull(procfile_lineword(ff, l, 5)); irq = str2ull(procfile_lineword(ff, l, 6)); softirq = str2ull(procfile_lineword(ff, l, 7)); steal = str2ull(procfile_lineword(ff, l, 8)); guest = str2ull(procfile_lineword(ff, l, 9)); user -= guest; guest_nice = str2ull(procfile_lineword(ff, l, 10)); nice -= guest_nice; char *title, *type, *context, *family; long priority; if(unlikely(core >= all_cpu_charts_size)) { size_t old_cpu_charts_size = all_cpu_charts_size; all_cpu_charts_size = core + 1; all_cpu_charts = reallocz(all_cpu_charts, sizeof(struct cpu_chart) * all_cpu_charts_size); memset(&all_cpu_charts[old_cpu_charts_size], 0, sizeof(struct cpu_chart) * (all_cpu_charts_size - old_cpu_charts_size)); } struct cpu_chart *cpu_chart = &all_cpu_charts[core]; if(unlikely(!cpu_chart->st)) { cpu_chart->id = strdupz(id); if(unlikely(core == 0)) { title = "Total CPU utilization"; type = "system"; context = "system.cpu"; family = id; priority = NETDATA_CHART_PRIO_SYSTEM_CPU; } else { title = "Core utilization"; type = "cpu"; context = "cpu.cpu"; family = "utilization"; priority = NETDATA_CHART_PRIO_CPU_PER_CORE; char filename[FILENAME_MAX + 1]; struct stat stbuf; if(do_core_throttle_count != CONFIG_BOOLEAN_NO) { snprintfz(filename, FILENAME_MAX, core_throttle_count_filename, id); if (stat(filename, &stbuf) == 0) { cpu_chart->files[CORE_THROTTLE_COUNT_INDEX].filename = strdupz(filename); cpu_chart->files[CORE_THROTTLE_COUNT_INDEX].fd = -1; do_core_throttle_count = CONFIG_BOOLEAN_YES; } } if(do_package_throttle_count != CONFIG_BOOLEAN_NO) { snprintfz(filename, FILENAME_MAX, package_throttle_count_filename, id); if (stat(filename, &stbuf) == 0) { cpu_chart->files[PACKAGE_THROTTLE_COUNT_INDEX].filename = strdupz(filename); cpu_chart->files[PACKAGE_THROTTLE_COUNT_INDEX].fd = -1; do_package_throttle_count = CONFIG_BOOLEAN_YES; } } if(do_cpu_freq != CONFIG_BOOLEAN_NO) { snprintfz(filename, FILENAME_MAX, scaling_cur_freq_filename, id); if (stat(filename, &stbuf) == 0) { cpu_chart->files[CPU_FREQ_INDEX].filename = strdupz(filename); cpu_chart->files[CPU_FREQ_INDEX].fd = -1; do_cpu_freq = CONFIG_BOOLEAN_YES; } snprintfz(filename, FILENAME_MAX, time_in_state_filename, id); if (stat(filename, &stbuf) == 0) { cpu_chart->time_in_state_files.filename = strdupz(filename); cpu_chart->time_in_state_files.ff = NULL; do_cpu_freq = CONFIG_BOOLEAN_YES; accurate_freq_avail = 1; } } } cpu_chart->st = rrdset_create_localhost( type , id , NULL , family , context , title , "percentage" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , priority + core , update_every , RRDSET_TYPE_STACKED ); long multiplier = 1; long divisor = 1; // sysconf(_SC_CLK_TCK); cpu_chart->rd_guest_nice = rrddim_add(cpu_chart->st, "guest_nice", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_guest = rrddim_add(cpu_chart->st, "guest", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_steal = rrddim_add(cpu_chart->st, "steal", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_softirq = rrddim_add(cpu_chart->st, "softirq", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_irq = rrddim_add(cpu_chart->st, "irq", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_user = rrddim_add(cpu_chart->st, "user", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_system = rrddim_add(cpu_chart->st, "system", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_nice = rrddim_add(cpu_chart->st, "nice", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_iowait = rrddim_add(cpu_chart->st, "iowait", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); cpu_chart->rd_idle = rrddim_add(cpu_chart->st, "idle", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); rrddim_hide(cpu_chart->st, "idle"); if (core > 0) { char cpu_core[50 + 1]; snprintfz(cpu_core, 50, "cpu%lu", core - 1); rrdlabels_add(cpu_chart->st->rrdlabels, "cpu", cpu_core, RRDLABEL_SRC_AUTO); } if(unlikely(core == 0 && cpus_var == NULL)) cpus_var = rrdvar_custom_host_variable_add_and_acquire(localhost, "active_processors"); } rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_user, user); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_nice, nice); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_system, system); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_idle, idle); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_iowait, iowait); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_irq, irq); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_softirq, softirq); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_steal, steal); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_guest, guest); rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_guest_nice, guest_nice); rrdset_done(cpu_chart->st); } } else if(unlikely(hash == hash_intr && strcmp(row_key, "intr") == 0)) { if(likely(do_interrupts)) { static RRDSET *st_intr = NULL; static RRDDIM *rd_interrupts = NULL; unsigned long long value = str2ull(procfile_lineword(ff, l, 1)); if(unlikely(!st_intr)) { st_intr = rrdset_create_localhost( "system" , "intr" , NULL , "interrupts" , NULL , "CPU Interrupts" , "interrupts/s" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , NETDATA_CHART_PRIO_SYSTEM_INTR , update_every , RRDSET_TYPE_LINE ); rrdset_flag_set(st_intr, RRDSET_FLAG_DETAIL); rd_interrupts = rrddim_add(st_intr, "interrupts", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL); } rrddim_set_by_pointer(st_intr, rd_interrupts, value); rrdset_done(st_intr); } } else if(unlikely(hash == hash_ctxt && strcmp(row_key, "ctxt") == 0)) { if(likely(do_context)) { static RRDSET *st_ctxt = NULL; static RRDDIM *rd_switches = NULL; unsigned long long value = str2ull(procfile_lineword(ff, l, 1)); if(unlikely(!st_ctxt)) { st_ctxt = rrdset_create_localhost( "system" , "ctxt" , NULL , "processes" , NULL , "CPU Context Switches" , "context switches/s" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , NETDATA_CHART_PRIO_SYSTEM_CTXT , update_every , RRDSET_TYPE_LINE ); rd_switches = rrddim_add(st_ctxt, "switches", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL); } rrddim_set_by_pointer(st_ctxt, rd_switches, value); rrdset_done(st_ctxt); } } else if(unlikely(hash == hash_processes && !processes && strcmp(row_key, "processes") == 0)) { processes = str2ull(procfile_lineword(ff, l, 1)); } else if(unlikely(hash == hash_procs_running && !running && strcmp(row_key, "procs_running") == 0)) { running = str2ull(procfile_lineword(ff, l, 1)); } else if(unlikely(hash == hash_procs_blocked && !blocked && strcmp(row_key, "procs_blocked") == 0)) { blocked = str2ull(procfile_lineword(ff, l, 1)); } } // -------------------------------------------------------------------- if(likely(do_forks)) { static RRDSET *st_forks = NULL; static RRDDIM *rd_started = NULL; if(unlikely(!st_forks)) { st_forks = rrdset_create_localhost( "system" , "forks" , NULL , "processes" , NULL , "Started Processes" , "processes/s" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , NETDATA_CHART_PRIO_SYSTEM_FORKS , update_every , RRDSET_TYPE_LINE ); rrdset_flag_set(st_forks, RRDSET_FLAG_DETAIL); rd_started = rrddim_add(st_forks, "started", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL); } rrddim_set_by_pointer(st_forks, rd_started, processes); rrdset_done(st_forks); } // -------------------------------------------------------------------- if(likely(do_processes)) { static RRDSET *st_processes = NULL; static RRDDIM *rd_running = NULL; static RRDDIM *rd_blocked = NULL; if(unlikely(!st_processes)) { st_processes = rrdset_create_localhost( "system" , "processes" , NULL , "processes" , NULL , "System Processes" , "processes" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , NETDATA_CHART_PRIO_SYSTEM_PROCESSES , update_every , RRDSET_TYPE_LINE ); rd_running = rrddim_add(st_processes, "running", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); rd_blocked = rrddim_add(st_processes, "blocked", NULL, -1, 1, RRD_ALGORITHM_ABSOLUTE); } rrddim_set_by_pointer(st_processes, rd_running, running); rrddim_set_by_pointer(st_processes, rd_blocked, blocked); rrdset_done(st_processes); } if(likely(all_cpu_charts_size > 1)) { if(likely(do_core_throttle_count != CONFIG_BOOLEAN_NO)) { int r = read_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CORE_THROTTLE_COUNT_INDEX); if(likely(r != -1 && (do_core_throttle_count == CONFIG_BOOLEAN_YES || r > 0))) { do_core_throttle_count = CONFIG_BOOLEAN_YES; static RRDSET *st_core_throttle_count = NULL; if (unlikely(!st_core_throttle_count)) { st_core_throttle_count = rrdset_create_localhost( "cpu" , "core_throttling" , NULL , "throttling" , "cpu.core_throttling" , "Core Thermal Throttling Events" , "events/s" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , NETDATA_CHART_PRIO_CORE_THROTTLING , update_every , RRDSET_TYPE_LINE ); } chart_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CORE_THROTTLE_COUNT_INDEX, st_core_throttle_count, 1, 1, RRD_ALGORITHM_INCREMENTAL); rrdset_done(st_core_throttle_count); } } if(likely(do_package_throttle_count != CONFIG_BOOLEAN_NO)) { int r = read_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, PACKAGE_THROTTLE_COUNT_INDEX); if(likely(r != -1 && (do_package_throttle_count == CONFIG_BOOLEAN_YES || r > 0))) { do_package_throttle_count = CONFIG_BOOLEAN_YES; static RRDSET *st_package_throttle_count = NULL; if(unlikely(!st_package_throttle_count)) { st_package_throttle_count = rrdset_create_localhost( "cpu" , "package_throttling" , NULL , "throttling" , "cpu.package_throttling" , "Package Thermal Throttling Events" , "events/s" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , NETDATA_CHART_PRIO_PACKAGE_THROTTLING , update_every , RRDSET_TYPE_LINE ); } chart_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, PACKAGE_THROTTLE_COUNT_INDEX, st_package_throttle_count, 1, 1, RRD_ALGORITHM_INCREMENTAL); rrdset_done(st_package_throttle_count); } } if(likely(do_cpu_freq != CONFIG_BOOLEAN_NO)) { char filename[FILENAME_MAX + 1]; int r = 0; if (accurate_freq_avail) { r = read_per_core_time_in_state_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CPU_FREQ_INDEX); if(r > 0 && !accurate_freq_is_used) { accurate_freq_is_used = 1; snprintfz(filename, FILENAME_MAX, time_in_state_filename, "cpu*"); collector_info("cpufreq is using %s", filename); } } if (r < 1) { r = read_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CPU_FREQ_INDEX); if(accurate_freq_is_used) { accurate_freq_is_used = 0; snprintfz(filename, FILENAME_MAX, scaling_cur_freq_filename, "cpu*"); collector_info("cpufreq fell back to %s", filename); } } if(likely(r != -1 && (do_cpu_freq == CONFIG_BOOLEAN_YES || r > 0))) { do_cpu_freq = CONFIG_BOOLEAN_YES; static RRDSET *st_scaling_cur_freq = NULL; if(unlikely(!st_scaling_cur_freq)) { st_scaling_cur_freq = rrdset_create_localhost( "cpu" , "cpufreq" , NULL , "cpufreq" , "cpufreq.cpufreq" , "Current CPU Frequency" , "MHz" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , NETDATA_CHART_PRIO_CPUFREQ_SCALING_CUR_FREQ , update_every , RRDSET_TYPE_LINE ); } chart_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CPU_FREQ_INDEX, st_scaling_cur_freq, 1, 1000, RRD_ALGORITHM_ABSOLUTE); rrdset_done(st_scaling_cur_freq); } } } // -------------------------------------------------------------------- static struct per_core_cpuidle_chart *cpuidle_charts = NULL; size_t schedstat_cores_found = 0; if(likely(do_cpuidle != CONFIG_BOOLEAN_NO && !read_schedstat(schedstat_filename, &cpuidle_charts, &schedstat_cores_found))) { int cpu_states_updated = 0; size_t core, state; // proc.plugin runs on Linux systems only. Multi-platform compatibility is not needed here, // so bare pthread functions are used to avoid unneeded overheads. for(core = 0; core < schedstat_cores_found; core++) { if(unlikely(!(cpuidle_charts[core].active_time - cpuidle_charts[core].last_active_time))) { pthread_t thread; cpu_set_t global_cpu_set; if (likely(!pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &global_cpu_set))) { if (unlikely(!CPU_ISSET(core, &global_cpu_set))) { continue; } } else collector_error("Cannot read current process affinity"); // These threads are very ephemeral and don't need to have a specific name if(unlikely(pthread_create(&thread, NULL, wake_cpu_thread, (void *)&core))) collector_error("Cannot create wake_cpu_thread"); else if(unlikely(pthread_join(thread, NULL))) collector_error("Cannot join wake_cpu_thread"); cpu_states_updated = 1; } } if(unlikely(!cpu_states_updated || !read_schedstat(schedstat_filename, &cpuidle_charts, &schedstat_cores_found))) { for(core = 0; core < schedstat_cores_found; core++) { cpuidle_charts[core].last_active_time = cpuidle_charts[core].active_time; int r = read_cpuidle_states(cpuidle_name_filename, cpuidle_time_filename, cpuidle_charts, core); if(likely(r != -1 && (do_cpuidle == CONFIG_BOOLEAN_YES || r > 0))) { do_cpuidle = CONFIG_BOOLEAN_YES; char cpuidle_chart_id[RRD_ID_LENGTH_MAX + 1]; snprintfz(cpuidle_chart_id, RRD_ID_LENGTH_MAX, "cpu%zu_cpuidle", core); if(unlikely(!cpuidle_charts[core].st)) { cpuidle_charts[core].st = rrdset_create_localhost( "cpu" , cpuidle_chart_id , NULL , "cpuidle" , "cpuidle.cpu_cstate_residency_time" , "C-state residency time" , "percentage" , PLUGIN_PROC_NAME , PLUGIN_PROC_MODULE_STAT_NAME , NETDATA_CHART_PRIO_CPUIDLE + core , update_every , RRDSET_TYPE_STACKED ); char corebuf[50+1]; snprintfz(corebuf, 50, "cpu%zu", core); rrdlabels_add(cpuidle_charts[core].st->rrdlabels, "cpu", corebuf, RRDLABEL_SRC_AUTO); char cpuidle_dim_id[RRD_ID_LENGTH_MAX + 1]; cpuidle_charts[core].active_time_rd = rrddim_add(cpuidle_charts[core].st, "active", "C0 (active)", 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); for(state = 0; state < cpuidle_charts[core].cpuidle_state_len; state++) { strncpyz(cpuidle_dim_id, cpuidle_charts[core].cpuidle_state[state].name, RRD_ID_LENGTH_MAX); for(int i = 0; cpuidle_dim_id[i]; i++) cpuidle_dim_id[i] = tolower(cpuidle_dim_id[i]); cpuidle_charts[core].cpuidle_state[state].rd = rrddim_add(cpuidle_charts[core].st, cpuidle_dim_id, cpuidle_charts[core].cpuidle_state[state].name, 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); } } rrddim_set_by_pointer(cpuidle_charts[core].st, cpuidle_charts[core].active_time_rd, cpuidle_charts[core].active_time); for(state = 0; state < cpuidle_charts[core].cpuidle_state_len; state++) { rrddim_set_by_pointer(cpuidle_charts[core].st, cpuidle_charts[core].cpuidle_state[state].rd, cpuidle_charts[core].cpuidle_state[state].value); } rrdset_done(cpuidle_charts[core].st); } } } } if(cpus_var) rrdvar_custom_host_variable_set(localhost, cpus_var, cores_found); return 0; }