

PRESENTS

Fuzzing integration, vulnerability analysis and
bug-fixing in Fluent Bit log-processor
in collaboration with the Fluent Bit maintainers and sponsored by The Linux Foundation

Authors
David Korczynski​ <​david@adalogics.com​>
Adam Korczynski ​<​adam@adalogics.com​>
Date: 10th December, 2020

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:david@adalogics.com
mailto:adam@adalogics.com

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

Executive summary
Goal of engagement
The overall goal of the engagement described in this report was to integrate vulnerability
analysis by way of fuzzing into the Fluent Bit project. This was done in a manner such that
vulnerability analysis will happen continuously (even after the engagement) and effort was
also spent in fixing many of the vulnerabilities found. The source code of Fluent Bit is written
in C and this makes Fluent Bit susceptible to memory corruption vulnerabilities and bugs,
and these were the concern of this engagement.

Scope of engagement
The focus of the engagement was fiuzzing the core Fluent Bit engine, which corresponds to
the C files inside the ​src/​ directory of the Fluent Bit source code. In this context, the Fluent
Bit source code corresponds to the code in the Github repository
https://github.com/fluent/Fluent Bit

Methodology
Ada Logic’s security researchers performed an initial analysis of the Fluent Bit library to
understand where the Fluent Bit library exposes APIs that may be used by plugins or
external developers. These APIs correspond to the entry points of the library and make up
the threat model of this engagement. Following this, Ada Logics entered a phase of
developing fuzzers that attack these APIs in a myriad of ways, and fixing the security bugs
found by these fuzzers. This was done repeatedly for several iterations. The fuzzers and the
fixes are all integrated into the Fluent Bit source code, and an infrastructure was set up such
that the fuzzers are run by Google’s OSS-Fuzz service. The effect of this is that the fuzzers
run continuously both during and after this engagement.

Ada Logics
Oxford, United Kingdom

1

Results summarised
16 fuzzers developed for Fluent Bit

More than 30 Bugs found in the code, with 20 that have security relevance

16 vulnerabilities and bugs fixed

Code and fixes committed upstream, this includes more than 40 commits.

Integration of continuous fuzzing by way of OSS-Fuzz

https://github.com/fluent/fluent-bit

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

Engagement process and methodology
In this section we go through the overall approach and process of the project. ​flb_parser.c

Initial assessment of library
The first step was to perform an initial assessment of the code in the ​src/​ directory of the
Fluent Bit source code. The code in this directory is used explicitly by plugins and the Fluent
Bit main application, and these plugins are exposed to potential adversarial inputs. The
primary concern of this initial assessment of the library was, therefore, to determine the parts
of the library that are relevant for fuzzing and the parts that are related to each other. In this
section we outline these.

Parsing routines
An obvious source of complexity are the parsers that exist in the Fluent Bit code, for both
json, ltsvc, logfmt and regex parsing, which are primarily placed in the files:

● flb_parser.c
● flb_parser_decoder.c
● flb_parser_json.c
● flb_parser_logfmt.c
● flb_parser_ltsv.c
● flb_parser_regex.c
● flb_config.c
● flb_config_map.c

All of these files have been fuzzed extensively and several bugs were found (see result
section below for more details on bugs).

Data packing:
Routines related to data packing and unpacking are equally relevant and similarly contain a
high degree of complexity. The two main files related to data packing are:

● flb_pack.c
● flb_pack_gelf.c

The code in both of these files have been fuzzed extensively and bugs have been found in
the packing routines as well.

Utility code and data structures
Another important category of code that was fuzzed are the routines related to utility logic of
Fluent Bit. This includes routines for converting strings representing time formats, URI
decoding and more. This category of code include:

● flb_unescape.c
● flb_uri.c
● flb_strptime.c

Ada Logics
Oxford, United Kingdom

2

https://github.com/fluent/fluent-bit/blob/master/src/flb_parser.c

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

● flb_hash.c
● flb_sds.c
● flb_sha512.c
● flb_slist.c
● flb_gzip.c
● flb_utils.c
● flb_ra_key.c
● flb_record_accessor.c
● flb_kv.c
● flb_mp.c

Http client and aws logic
The http-logic as well as logic related to AWS Signature Version 4 also contain various
parser routines and are highly suitable for fuzzing. The files in this category include:

● flb_http_client.c
● flb_signv4.c

General Engine
A final category of code includes the logic related to running a Fluent Bit engine. Although
this is more difficult to fuzz since it has artifacts in the code that is more geared towards an
application rather than a library it requires a bit more careful consideration. Files in this list
that contain logic related to engine execution include:

● flb_engine.c
● flb_router.c
● flb_input.c
● flb_output.c

We have deployed fuzzers for all of these different categories of logic in the Fluent Bit base.

Fuzzer writing
All fuzzers are placed in the directory ​Fluent Bit​/​tests​/​internal​/fuzzers/ in the Fluent Bit
source code. The following table gives an overview of the fuzzers and which parts of the
code they target:

Ada Logics
Oxford, United Kingdom

3

Fuzzer name Target code

config_fuzzer.c Parsing routines

config_map_fuzzer.c Parsing routines

flb_json_fuzzer.c Parsing routines

http_fuzzer.c Http client and aws logic

https://github.com/fluent/fluent-bit
https://github.com/fluent/fluent-bit/tree/master/tests
https://github.com/fluent/fluent-bit/tree/master/tests/internal

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

Pull-requests with fuzzer code
The following pull requests (sorted by date of PR, earliest first) contain all of the various
fuzzer integrations:

1. https://github.com/fluent/fluent-bit/pull/2090
2. https://github.com/fluent/fluent-bit/pull/2114
3. https://github.com/fluent/fluent-bit/pull/2502
4. https://github.com/fluent/fluent-bit/pull/2541
5. https://github.com/fluent/fluent-bit/pull/2665
6. https://github.com/fluent/fluent-bit/pull/2725
7. https://github.com/fluent/fluent-bit/pull/2778
8. https://github.com/fluent/fluent-bit/pull/2816

In general, the following URL will enable you to see all commits related to fuzzing as well as
fixes: https://github.com/fluent/fluent-bit/commits?author=DavidKorczynski

Example fuzzer
In this section we describe one of the fuzzers integrated into the project.

Ada Logics
Oxford, United Kingdom

4

msgpack_parser_fuzzer.c Parsing routines

parse_ltsv_fuzzer.c Parsing routines

parser_fuzzer.c Parsing routines

parser_json_fuzzer.c Parsing routines

msgpack_to_gelf_fuzzer.c Data packing:

pack_json_state_fuzzer.c Data packing:

signv4_fuzzer.c Http client and aws logic

http_fuzzer.c Http client and aws logic

record_ac_fuzzer.c Utility code and data structures

strp_fuzzer.c Utility code and data structures

utils_fuzzer.c Utility code and data structures

engine_fuzzer.c General Engine

#include <stdint.h>

https://github.com/fluent/fluent-bit/pull/2090
https://github.com/fluent/fluent-bit/pull/2114
https://github.com/fluent/fluent-bit/pull/2502
https://github.com/fluent/fluent-bit/pull/2541
https://github.com/fluent/fluent-bit/pull/2665
https://github.com/fluent/fluent-bit/pull/2725
https://github.com/fluent/fluent-bit/pull/2778
https://github.com/fluent/fluent-bit/pull/2816

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

Bug fixing
After having created the fuzzers and have them run, the next step of the engagement is to fix
bugs. The bugs that were found have all been shared with the maintainers of Fluent Bit. As
such, we will not go in detail with each of these in this report, but rather go through a single
bug to illustrate the process as well as an example of a bug in Fluent Bit.

We describe the bug with ID 5162073690210304 (forward referencing to table with bugs
fixed), which is a stack-based buffer overflow. The report from Address Sanitizer is as
follows:

Ada Logics
Oxford, United Kingdom

5

#include <string.h>

#include <stdlib.h>

#include <Fluent Bit/flb_time.h>

#include <Fluent Bit/flb_parser.h>

int​ ​LLVMFuzzerTestOneInput​(​const​ ​uint8_t​ *data, ​size_t​ size){
 ​void​ *out_buf = ​NULL​;
 ​size_t​ out_size = ​0​;
 ​struct​ ​flb_time​ ​out_time​;
 ​struct​ ​flb_config​ *​fuzz_config​;
 ​struct​ ​flb_parser​ *​fuzz_parser​;

 ​/* json parser */
 fuzz_config = flb_config_init();

 fuzz_parser = flb_parser_create(​"fuzzer"​, ​"json"​, ​NULL​, ​NULL​,
 ​NULL​, ​NULL​, MK_FALSE, ​NULL​,
 ​0​, ​NULL​, fuzz_config);
 flb_parser_do(fuzz_parser, (​char​*)data, size,
 &out_buf, &out_size, &out_time);

 ​if​ (out_buf != ​NULL​) {
 ​free​(out_buf);
 }

 flb_parser_destroy(fuzz_parser);

 flb_config_exit(fuzz_config);

 ​return​ ​0​;
}

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

Root-cause analysis of this bug revealed that following code inside of ​flb_pack_gelf.c​ led to
the error:

The behaviour of the above code is to set ​val ​to be ​temp​ and set the content of ​val (temp)
by way of ​sprintf​ and the expected behaviour is that ​sprintf ​returns the number of

Ada Logics
Oxford, United Kingdom

6

===
==​1​==ERROR: AddressSanitizer: ​stack​-buffer-overflow ​on​ address ​0x7ffd68dad750​ at pc ​0x000000521f97
bp ​0x7ffd68dad650​ sp ​0x7ffd68dace18
READ of size ​128​ at ​0x7ffd68dad750​ ​thread​ T0
 #0 ​0x521f96​ ​in​ __asan_memcpy
/src/llvm-project/compiler-rt/lib/asan/asan_interceptors_memintrinsics.cpp:​22​:​3
 #1 ​0x556b67​ ​in​ ​flb_sds_cat Fluent Bit/src/flb_sds.c​:​132​:​5
 #2 ​0x556098​ ​in​ ​flb_msgpack_gelf_value Fluent Bit/src/flb_pack_gelf.c​:​140​:​15
 #3 ​0x553c67​ ​in​ ​flb_msgpack_to_gelf Fluent Bit/src/flb_pack_gelf.c​:​720​:​27
 #4 ​0x556367​ ​in​ ​flb_msgpack_raw_to_gelf Fluent Bit/src/flb_pack_gelf.c​:​787​:​11
 #5 ​0x552947​ ​in​ ​LLVMFuzzerTestOneInput Fluent
Bit/tests/internal/fuzzers/msgpack_to_gelf_fuzzer.c​:​15​:​14
 #6 ​0x459e51​ ​in​ fuzzer​::Fuzzer::ExecuteCallback​(unsigned char const*, unsigned long)
/src/llvm-project/compiler-rt/lib/fuzzer/FuzzerLoop.cpp:​595​:​15
 #7 ​0x444f22​ ​in​ fuzzer​::RunOneTest​(fuzzer​::Fuzzer​*, char const*, unsigned long)
/src/llvm-project/compiler-rt/lib/fuzzer/FuzzerDriver.cpp:​323​:​6
 #8 ​0x44afde​ ​in​ fuzzer​::FuzzerDriver​(int*, char***, int (*)(unsigned char const*, unsigned
long)) /src/llvm-project/compiler-rt/lib/fuzzer/FuzzerDriver.cpp:​852​:​9
 #9 ​0x472fc2​ ​in​ main /src/llvm-project/compiler-rt/lib/fuzzer/FuzzerMain.cpp:​20​:​10
 #10 ​0x7fcd781d682f​ ​in​ __libc_start_main /build/glibc-LK5gWL/glibc​-2.23​/csu/libc-start.c:​291
 #11 ​0x4201f8​ ​in​ _start
Address ​0x7ffd68dad750​ is located ​in​ ​stack​ of ​thread​ T0 at offset ​144​ ​in​ frame
 #0 ​0x552a8f​ ​in​ flb_msgpack_to_gelf Fluent Bit/src/flb_pack_gelf.c:​407

char​ temp[​48​] = {​0​};
...

else​ ​if​ (v->type == MSGPACK_OBJECT_POSITIVE_INTEGER) {
 val = temp;

 val_len = ​snprintf​(temp, ​sizeof​(temp) - ​1​,
 ​"%"​ PRIu64, v->via.u64);
}

...

if​ (v->type == MSGPACK_OBJECT_EXT) {
 tmp = flb_msgpack_gelf_value_ext(s, quote, val, val_len);

}

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

characters printed to the target buffer. Then, ​val ​and ​temp​ are passed to
flb_msgpack_gelf_value_ext​ where the logic inside of this function expects to be able to
read ​val_len ​bytes of the ​val ​buffer. However, an overflow occurs within the
flb_msgpack_gelf_value_ext ​function as shown by the stacl trace, and the practical reason
for this is that the ​val_len ​variable can contain a value larger than 48 which corresponds to
sizeof(temp) (the number of bytes in temp). The very reason for this is that ​sprintf ​can in
certain circumstances return a value larger than ​sizeof(temp) ​as shown in the
documentation:

The fix of this is to ensure the value returned by ​snprintf​ does not extend beyond the size of
temp​:

Ada Logics
Oxford, United Kingdom

7

RETURN VALUE

 Upon successful ​return​, these functions ​return​ the number of characters
 printed (excluding the null byte used to end output to strings).

 The functions ​snprintf​() ​and​ vsnprintf() ​do​ ​not​ write more than
 size bytes (including the terminating null byte (​'\0'​)). If the output
 was truncated due to ​this​ limit, then the re-
 turn value is the number of characters (excluding the terminating

 null byte) which would have been written to the final ​string​ ​if​ enough
 space had been available.

char​ temp[​48​] = {​0​};
...

else​ ​if​ (v->type == MSGPACK_OBJECT_POSITIVE_INTEGER) {
 val = temp;

 val_len = ​snprintf​(temp, ​sizeof​(temp) - ​1​,
 ​"%"​ PRIu64, v->via.u64);
 ​/*
 * Check if the value length is larger than our string.

 * this is needed to avoid stack-based overflows.

 */

 ​if​ (val_len > ​sizeof​(temp)) {
 ​return​ ​NULL​;
 }

}
...

if​ (v->type == MSGPACK_OBJECT_EXT) {
 tmp = flb_msgpack_gelf_value_ext(s, quote, val, val_len);
}

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

We will not go into more detail with the other bugs found since this is too verbose. However,
in the next section on results a link is provided to commits for each of the bugs fixed during
the engagement.

Results
In this section we present the results of the engagement focusing on the bugs found as well
as the bugs fixed. The following two diagrams give an overview of the bugs fixed:

Overview of bugs found and fixed

Ada Logics
Oxford, United Kingdom

8

Bugs fixed by security severity

Bugs fixed by type

Bug id Bug type Commit with
Fix

Security
severity

5714223612821504 Heap-buffer-overflow (write) Commit link High

5087208312406016 Heap-buffer-overflow (read) Commit link Medium

5634053153488896 Null-dereference Commit link Low

5758082711552000 Heap-buffer-overflow (read) Commit link Medium

5976803149348864 Heap-buffer-overflow (read) Commit link Medium

https://github.com/fluent/fluent-bit/commit/979a9bb728b490659e7e6076c17f3e4cb2c5bd59
https://github.com/fluent/fluent-bit/commit/c2e33ae40af02fabe59b51637501a5be73583a15
https://github.com/fluent/fluent-bit/commit/7a588237fdb744e5825fb119753dcad2e8878866
https://github.com/fluent/fluent-bit/commit/7f0c3bb1bd8645ca556125b5afae8db77f973085
https://github.com/fluent/fluent-bit/commit/f6a8de0a8ca7caf4d857d20e35420e4f0ade96f9

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

During the engagement we also found that two libraries embedded into Fluent Bit were
outdated, in particular ​msgpack ​and ​miniz​, both of which have been integrated into
OSS-Fuzz since they were last embedded into Fluent Bit. Per advice from Ada Logics these
libraries have now been updated in the Fluent bit repository.

Remaining bugs to fix
There are several remaining bugs found by the fuzzers, and it is likely that more bugs will be
found as the fuzzers get more time to explore the code. These have all been communicated
to the Fluent Bit authors on email and through the OSS-Fuzz interface. The primary advice
from the engagement is that Fluent Bit maintainers fix these bugs and continue to maintain
the fuzzers of the project.

Ada Logics
Oxford, United Kingdom

9

4662513180082176 Heap-buffer-overflow (write) Commit link High

5663333098979328 Heap-buffer-overflow (read) Commit link Medium

5200866812100608 Heap-buffer-overflow (read) Commit link Medium

5177402080362496 Heap-buffer-overflow (read) Commit link Medium

 Memory leak Commit link Low

5125726487183360 Heap-buffer-overflow (write) Commit link High

 Heap-buffer-overflow (write) Commit link High

5731415213473792 Null-dereference Commit link Low

4907517888692224 Null-dereference Commit link Low

5162073690210304 Stack-based buffer overflow (read) Commit link Medium

5645355185864704 Null-dereference Commit link Medium

https://github.com/fluent/fluent-bit/commit/cadff53c093210404aed01c4cf586adb8caa07af
https://github.com/fluent/fluent-bit/commit/163af0b9c0513f31cc4cbfe8aeee26d22513163c
https://github.com/fluent/fluent-bit/commit/abe7301b134b0114241ce8b0b6ebbd5d18346fc2
https://github.com/fluent/fluent-bit/commit/7c265e23bd2c7592ac9987ea92daa426ce48263a
https://github.com/fluent/fluent-bit/commit/61164218298f9dbee5bac6648b5b4f5e97759bba
https://github.com/fluent/fluent-bit/commit/d118cebb93846c690b86187af890c11ff602d18c
https://github.com/fluent/fluent-bit/commit/ac83f8e1b208d5427ca5b99cf40549771987bc85
https://github.com/fluent/fluent-bit/commit/b366ede812b70ae43afb28d6430c26d371900c2e
https://github.com/fluent/fluent-bit/commit/b366ede812b70ae43afb28d6430c26d371900c2e
https://github.com/fluent/fluent-bit/commit/8315c5029f1b8bc855a2263b1986f22d24cd1a3b
https://github.com/fluent/fluent-bit/commit/69def19f264e4ca25c98adedfd141094d40903e2

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

The parts of Fluent Bit that remains to be analysed
An important element of auditing is to get a good idea of how much of the target is effectively
covered. This is both important from a perspective of assessing the security posture of the
target as well as understanding which areas need further assurance down the line. In this
section we give an estimate of this.

The figure on page 11 shows the coverage of the fuzzers achieved during a run of the
fuzzers locally. A total of 47% code coverage is achieved and this includes the code in the
src/aws directory which we did not consider in the engagement. Excluding the lines of the
aws directory we get 54% coverage. This coverage is, however, less than what is achieved
by OSS-Fuzz, where, the coverage is higher for several of the files, for example
flb_parser.c​ and ​flb_parser_decoder.c ​files:

However, since at the time of writing a remaining PR needs to be merged into Fluent Bit we
performed the local run to include all updates.

The coverage is an interim status and will increase based on

1. Fixing the remaining bugs as these bugs are hindering the fuzzers in exploring more
code. This is the most important part.

2. Letting the fuzzers run for more time as the fuzzers have not yet reached their
potential.

Once these have been achieved we estimate the fuzzers will increase a fair amount of
coverage as most of the fuzzers still have significantly more reach than is exhibited with the
current corpus.

In general, the coverage extends well through the project, the complex functions (e.g.
parsing routines in particular) are thoroughly analysed and most files are covered by the
fuzzers. Certain files were left out in exchange for spending more effort on more critical
code, for example code such as ​flb_sosreport.c ​and ​flb_random.c ​which are used for
outputting reports and a wrapper for /dev/urandom, respectively.

In general, a significant part of the code that is not covered by fuzzers can be categorised as
follows:

● Code blocked by bugs that the fuzzers hit.
● Code related to handling cases where common APIs fail (such as malloc). There is a

significant amount of this in the library.
● Various output-focused code (e.g. ​flb_sosreport.c​)
● Error reporting code, e.g. ​flb_utils_error​()

Ada Logics
Oxford, United Kingdom

10

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

● Network-related code (we do hit http parsing routines)
● Utility code that is not part of larger code-flows and other minor functions that are

used by few plugins.

Ada Logics
Oxford, United Kingdom

11

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

Ada Logics
Oxford, United Kingdom

12

Fluent Bit: Fuzzing integration, Vulnerability analysis & Bug-fixing​, ​Fall 2020

Advice following engagement
In this section we outline the advice following the engagement. This is meant as guidance for
how the Fluent Bit maintainers can increase security posture in the near and longer-term
future.

Advice for the short term

1. Fix the remaining set of bugs captured by the fuzzers

Advice for the long term

1. Continuing to maintain the fuzzers. In particular, we do not recommend breaking
them such that they no longer run in OSS-Fuzz.

2. Monitor the increase in coverage following bug fixing and identify the parts of the
code that miss analysis. In case these parts are security-relevant, fuzzing support
should be extended to this code.

3. Integrate an infrastructure for fuzzing the plugins of Fluent Bit. We believe the
smartest approach to this is coming up with a set of

Conclusions
In this engagement we have developed sixteen fuzzers for the Fluent Bit log processor, fixed
more than fifteen bugs found by these fuzzers and also integrated continuous fuzzing of
Fluent Bit by way of OSS-Fuzz.

The overall perspective of the engagement is that it was successful in illustrating a complete
perspective into the vulnerabilities and bugs of the Fluent Bit library. The fuzzers we
developed found more than thirty bugs in the library showing that the integration of fuzzing
had a significant impact on the security of Fluent Bit. However, not all of these are security
relevant and many of the bugs were fixed by Ada Logics during the engagement.

There is still work to do for the Fluent Bit maintainers to ensure a high level of security in the
library. It is imperative to fix the remaining set of bugs and once these are fixed the Fluent Bit
library will be well-covered by fuzzer analysis. Once this has been achieved, the security
posture of Fluent Bit will have made significant improvements and it is only then the security
against memory corruption vulnerabilities in Fluent Bit will be high.

The main step for Fluent Bit in the short term is to fix the remaining set of bugs found by the
fuzzers. Following this, the Fluent Bit maintainers need to monitor the state of the fuzzers
and after letting the fuzzers run for approximately a month provide the logic necessary to
cover the missing coverage in the library.

Ada Logics
Oxford, United Kingdom

13

