/* * This is a public domain general purpose hash table package written by * Peter Moore @ UCB. */ /* * static char sccsid[] = "@(#) st.c 5.1 89/12/14 Crucible"; */ #include "avro_private.h" #include "avro/allocation.h" #include #include #include #include "st.h" typedef struct st_table_entry st_table_entry; struct st_table_entry { unsigned int hash; st_data_t key; st_data_t record; st_table_entry *next; }; #define ST_DEFAULT_MAX_DENSITY 5 #define ST_DEFAULT_INIT_TABLE_SIZE 11 /* * DEFAULT_MAX_DENSITY is the default for the largest we allow the * average number of items per bin before increasing the number of * bins * * DEFAULT_INIT_TABLE_SIZE is the default for the number of bins * allocated initially * */ static int numcmp(long, long); static int numhash(long); static struct st_hash_type type_numhash = { HASH_FUNCTION_CAST numcmp, HASH_FUNCTION_CAST numhash }; /* * extern int strcmp(const char *, const char *); */ static int strhash(const char *); static struct st_hash_type type_strhash = { HASH_FUNCTION_CAST strcmp, HASH_FUNCTION_CAST strhash }; static void rehash(st_table *); #ifdef RUBY #define malloc xmalloc #define calloc xcalloc #endif #define Calloc(n,s) (char*)avro_calloc((n),(s)) #define free_bins(tbl) \ avro_free(tbl->bins, tbl->num_bins * sizeof(st_table_entry *)) #define EQUAL(table,x,y) ((x)==(y) || (*table->type->compare)((x),(y)) == 0) #define do_hash(key,table) (unsigned int)(*(table)->type->hash)((key)) #define do_hash_bin(key,table) (do_hash(key, table)%(table)->num_bins) /* * MINSIZE is the minimum size of a dictionary. */ #define MINSIZE 8 /* * Table of prime numbers 2^n+a, 2<=n<=30. */ static long primes[] = { 8 + 3, 16 + 3, 32 + 5, 64 + 3, 128 + 3, 256 + 27, 512 + 9, 1024 + 9, 2048 + 5, 4096 + 3, 8192 + 27, 16384 + 43, 32768 + 3, 65536 + 45, 131072 + 29, 262144 + 3, 524288 + 21, 1048576 + 7, 2097152 + 17, 4194304 + 15, 8388608 + 9, 16777216 + 43, 33554432 + 35, 67108864 + 15, 134217728 + 29, 268435456 + 3, 536870912 + 11, 1073741824 + 85, 0 }; static int new_size(int size) { unsigned int i; #if 0 for (i = 3; i < 31; i++) { if ((1 << i) > size) return 1 << i; } return -1; #else int newsize; for (i = 0, newsize = MINSIZE; i < sizeof(primes) / sizeof(primes[0]); i++, newsize <<= 1) { if (newsize > size) return primes[i]; } /* * Ran out of polynomials */ return -1; /* should raise exception */ #endif } #ifdef HASH_LOG static int collision = 0; static int init_st = 0; static void stat_col() { FILE *f = fopen("/tmp/col", "w"); fprintf(f, "collision: %d\n", collision); fclose(f); } #endif st_table *st_init_table_with_size(struct st_hash_type *type, int size) { st_table *tbl; #ifdef HASH_LOG if (init_st == 0) { init_st = 1; atexit(stat_col); } #endif size = new_size(size); /* round up to prime number */ tbl = (st_table *) avro_new(st_table); tbl->type = type; tbl->num_entries = 0; tbl->num_bins = size; tbl->bins = (st_table_entry **) Calloc(size, sizeof(st_table_entry *)); return tbl; } st_table *st_init_table(struct st_hash_type *type) { return st_init_table_with_size(type, 0); } st_table *st_init_numtable(void) { return st_init_table(&type_numhash); } st_table *st_init_numtable_with_size(int size) { return st_init_table_with_size(&type_numhash, size); } st_table *st_init_strtable(void) { return st_init_table(&type_strhash); } st_table *st_init_strtable_with_size(int size) { return st_init_table_with_size(&type_strhash, size); } void st_free_table(st_table *table) { register st_table_entry *ptr, *next; int i; for (i = 0; i < table->num_bins; i++) { ptr = table->bins[i]; while (ptr != 0) { next = ptr->next; avro_freet(st_table_entry, ptr); ptr = next; } } free_bins(table); avro_freet(st_table, table); } #define PTR_NOT_EQUAL(table, ptr, hash_val, key) \ ((ptr) != 0 && (ptr->hash != (hash_val) || !EQUAL((table), (key), (ptr)->key))) #ifdef HASH_LOG #define COLLISION collision++ #else #define COLLISION #endif #define FIND_ENTRY(table, ptr, hash_val, bin_pos) do {\ bin_pos = hash_val%(table)->num_bins;\ ptr = (table)->bins[bin_pos];\ if (PTR_NOT_EQUAL(table, ptr, hash_val, key)) {\ COLLISION;\ while (PTR_NOT_EQUAL(table, ptr->next, hash_val, key)) {\ ptr = ptr->next;\ }\ ptr = ptr->next;\ }\ } while (0) int st_lookup(st_table *table, register st_data_t key, st_data_t *value) { unsigned int hash_val, bin_pos; register st_table_entry *ptr; hash_val = do_hash(key, table); FIND_ENTRY(table, ptr, hash_val, bin_pos); if (ptr == 0) { return 0; } else { if (value != 0) *value = ptr->record; return 1; } } #define ADD_DIRECT(table, key, value, hash_val, bin_pos)\ do {\ st_table_entry *entry;\ if (table->num_entries/(table->num_bins) > ST_DEFAULT_MAX_DENSITY) {\ rehash(table);\ bin_pos = hash_val % table->num_bins;\ }\ \ entry = (st_table_entry *) avro_new(st_table_entry);\ \ entry->hash = hash_val;\ entry->key = key;\ entry->record = value;\ entry->next = table->bins[bin_pos];\ table->bins[bin_pos] = entry;\ table->num_entries++;\ } while (0) int st_insert(register st_table *table, register st_data_t key, st_data_t value) { unsigned int hash_val, bin_pos; register st_table_entry *ptr; hash_val = do_hash(key, table); FIND_ENTRY(table, ptr, hash_val, bin_pos); if (ptr == 0) { ADD_DIRECT(table, key, value, hash_val, bin_pos); return 0; } else { ptr->record = value; return 1; } } void st_add_direct(st_table *table,st_data_t key,st_data_t value) { unsigned int hash_val, bin_pos; hash_val = do_hash(key, table); bin_pos = hash_val % table->num_bins; ADD_DIRECT(table, key, value, hash_val, bin_pos); } static void rehash(register st_table *table) { register st_table_entry *ptr, *next, **new_bins; int i, old_num_bins = table->num_bins, new_num_bins; unsigned int hash_val; new_num_bins = new_size(old_num_bins + 1); new_bins = (st_table_entry **) Calloc(new_num_bins, sizeof(st_table_entry *)); for (i = 0; i < old_num_bins; i++) { ptr = table->bins[i]; while (ptr != 0) { next = ptr->next; hash_val = ptr->hash % new_num_bins; ptr->next = new_bins[hash_val]; new_bins[hash_val] = ptr; ptr = next; } } free_bins(table); table->num_bins = new_num_bins; table->bins = new_bins; } st_table *st_copy(st_table *old_table) { st_table *new_table; st_table_entry *ptr, *entry; int i, num_bins = old_table->num_bins; new_table = (st_table *) avro_new(st_table); if (new_table == 0) { return 0; } *new_table = *old_table; new_table->bins = (st_table_entry **) Calloc((unsigned)num_bins, sizeof(st_table_entry *)); if (new_table->bins == 0) { avro_freet(st_table, new_table); return 0; } for (i = 0; i < num_bins; i++) { new_table->bins[i] = 0; ptr = old_table->bins[i]; while (ptr != 0) { entry = (st_table_entry *) avro_new(st_table_entry); if (entry == 0) { free_bins(new_table); avro_freet(st_table, new_table); return 0; } *entry = *ptr; entry->next = new_table->bins[i]; new_table->bins[i] = entry; ptr = ptr->next; } } return new_table; } int st_delete(register st_table *table,register st_data_t *key,st_data_t *value) { unsigned int hash_val; st_table_entry *tmp; register st_table_entry *ptr; hash_val = do_hash_bin(*key, table); ptr = table->bins[hash_val]; if (ptr == 0) { if (value != 0) *value = 0; return 0; } if (EQUAL(table, *key, ptr->key)) { table->bins[hash_val] = ptr->next; table->num_entries--; if (value != 0) *value = ptr->record; *key = ptr->key; avro_freet(st_table_entry, ptr); return 1; } for (; ptr->next != 0; ptr = ptr->next) { if (EQUAL(table, ptr->next->key, *key)) { tmp = ptr->next; ptr->next = ptr->next->next; table->num_entries--; if (value != 0) *value = tmp->record; *key = tmp->key; avro_freet(st_table_entry, tmp); return 1; } } return 0; } int st_delete_safe(register st_table *table,register st_data_t *key,st_data_t *value,st_data_t never) { unsigned int hash_val; register st_table_entry *ptr; hash_val = do_hash_bin(*key, table); ptr = table->bins[hash_val]; if (ptr == 0) { if (value != 0) *value = 0; return 0; } for (; ptr != 0; ptr = ptr->next) { if ((ptr->key != never) && EQUAL(table, ptr->key, *key)) { table->num_entries--; *key = ptr->key; if (value != 0) *value = ptr->record; ptr->key = ptr->record = never; return 1; } } return 0; } static int delete_never(st_data_t key, st_data_t value, st_data_t never) { AVRO_UNUSED(key); if (value == never) return ST_DELETE; return ST_CONTINUE; } void st_cleanup_safe(st_table *table,st_data_t never) { int num_entries = table->num_entries; st_foreach(table, HASH_FUNCTION_CAST delete_never, never); table->num_entries = num_entries; } int st_foreach(st_table *table,int (*func) (ANYARGS),st_data_t arg) { st_table_entry *ptr, *last, *tmp; enum st_retval retval; int i; for (i = 0; i < table->num_bins; i++) { last = 0; for (ptr = table->bins[i]; ptr != 0;) { retval = (enum st_retval) (*func) (ptr->key, ptr->record, arg); switch (retval) { case ST_CHECK: /* check if hash is modified during * iteration */ tmp = 0; if (i < table->num_bins) { for (tmp = table->bins[i]; tmp; tmp = tmp->next) { if (tmp == ptr) break; } } if (!tmp) { /* * call func with error notice */ return 1; } /* * fall through */ case ST_CONTINUE: last = ptr; ptr = ptr->next; break; case ST_STOP: return 0; case ST_DELETE: tmp = ptr; if (last == 0) { table->bins[i] = ptr->next; } else { last->next = ptr->next; } ptr = ptr->next; avro_freet(st_table_entry, tmp); table->num_entries--; } } } return 0; } static int strhash(register const char *string) { register int c; #ifdef HASH_ELFHASH register unsigned int h = 0, g; while ((c = *string++) != '\0') { h = (h << 4) + c; if (g = h & 0xF0000000) h ^= g >> 24; h &= ~g; } return h; #elif defined(HASH_PERL) register int val = 0; while ((c = *string++) != '\0') { val += c; val += (val << 10); val ^= (val >> 6); } val += (val << 3); val ^= (val >> 11); return val + (val << 15); #else register int val = 0; while ((c = *string++) != '\0') { val = val * 997 + c; } return val + (val >> 5); #endif } static int numcmp(long x, long y) { return x != y; } static int numhash(long n) { return n; }