/* * MessagePack for C unpacking routine * * Copyright (C) 2008-2009 FURUHASHI Sadayuki * * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */ #include "msgpack/unpack.h" #include "msgpack/unpack_define.h" #include "msgpack/util.h" #include #ifdef _msgpack_atomic_counter_header #include _msgpack_atomic_counter_header #endif typedef struct { msgpack_zone** z; bool referenced; } unpack_user; #define msgpack_unpack_struct(name) \ struct template ## name #define msgpack_unpack_func(ret, name) \ ret template ## name #define msgpack_unpack_callback(name) \ template_callback ## name #define msgpack_unpack_object msgpack_object #define msgpack_unpack_user unpack_user struct template_context; typedef struct template_context template_context; static void template_init(template_context* ctx); static msgpack_object template_data(template_context* ctx); static int template_execute( template_context* ctx, const char* data, size_t len, size_t* off); static inline msgpack_object template_callback_root(unpack_user* u) { msgpack_object o; MSGPACK_UNUSED(u); o.type = MSGPACK_OBJECT_NIL; return o; } static inline int template_callback_uint8(unpack_user* u, uint8_t d, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_POSITIVE_INTEGER; o->via.u64 = d; return 0; } static inline int template_callback_uint16(unpack_user* u, uint16_t d, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_POSITIVE_INTEGER; o->via.u64 = d; return 0; } static inline int template_callback_uint32(unpack_user* u, uint32_t d, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_POSITIVE_INTEGER; o->via.u64 = d; return 0; } static inline int template_callback_uint64(unpack_user* u, uint64_t d, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_POSITIVE_INTEGER; o->via.u64 = d; return 0; } static inline int template_callback_int8(unpack_user* u, int8_t d, msgpack_object* o) { MSGPACK_UNUSED(u); if(d >= 0) { o->type = MSGPACK_OBJECT_POSITIVE_INTEGER; o->via.u64 = (uint64_t)d; return 0; } else { o->type = MSGPACK_OBJECT_NEGATIVE_INTEGER; o->via.i64 = d; return 0; } } static inline int template_callback_int16(unpack_user* u, int16_t d, msgpack_object* o) { MSGPACK_UNUSED(u); if(d >= 0) { o->type = MSGPACK_OBJECT_POSITIVE_INTEGER; o->via.u64 = (uint64_t)d; return 0; } else { o->type = MSGPACK_OBJECT_NEGATIVE_INTEGER; o->via.i64 = d; return 0; } } static inline int template_callback_int32(unpack_user* u, int32_t d, msgpack_object* o) { MSGPACK_UNUSED(u); if(d >= 0) { o->type = MSGPACK_OBJECT_POSITIVE_INTEGER; o->via.u64 = (uint64_t)d; return 0; } else { o->type = MSGPACK_OBJECT_NEGATIVE_INTEGER; o->via.i64 = d; return 0; } } static inline int template_callback_int64(unpack_user* u, int64_t d, msgpack_object* o) { MSGPACK_UNUSED(u); if(d >= 0) { o->type = MSGPACK_OBJECT_POSITIVE_INTEGER; o->via.u64 = (uint64_t)d; return 0; } else { o->type = MSGPACK_OBJECT_NEGATIVE_INTEGER; o->via.i64 = d; return 0; } } static inline int template_callback_float(unpack_user* u, float d, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_FLOAT32; o->via.f64 = d; return 0; } static inline int template_callback_double(unpack_user* u, double d, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_FLOAT64; o->via.f64 = d; return 0; } static inline int template_callback_nil(unpack_user* u, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_NIL; return 0; } static inline int template_callback_true(unpack_user* u, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_BOOLEAN; o->via.boolean = true; return 0; } static inline int template_callback_false(unpack_user* u, msgpack_object* o) { MSGPACK_UNUSED(u); o->type = MSGPACK_OBJECT_BOOLEAN; o->via.boolean = false; return 0; } static inline int template_callback_array(unpack_user* u, unsigned int n, msgpack_object* o) { size_t size; // Let's leverage the fact that sizeof(msgpack_object) is a compile time constant // to check for int overflows. // Note - while n is constrained to 32-bit, the product of n * sizeof(msgpack_object) // might not be constrained to 4GB on 64-bit systems #if SIZE_MAX == UINT_MAX if (n > SIZE_MAX/sizeof(msgpack_object)) return MSGPACK_UNPACK_NOMEM_ERROR; #endif o->type = MSGPACK_OBJECT_ARRAY; o->via.array.size = 0; size = n * sizeof(msgpack_object); if (*u->z == NULL) { *u->z = msgpack_zone_new(MSGPACK_ZONE_CHUNK_SIZE); if(*u->z == NULL) { return MSGPACK_UNPACK_NOMEM_ERROR; } } // Unsure whether size = 0 should be an error, and if so, what to return o->via.array.ptr = (msgpack_object*)msgpack_zone_malloc(*u->z, size); if(o->via.array.ptr == NULL) { return MSGPACK_UNPACK_NOMEM_ERROR; } return 0; } static inline int template_callback_array_item(unpack_user* u, msgpack_object* c, msgpack_object o) { MSGPACK_UNUSED(u); #if defined(__GNUC__) && !defined(__clang__) memcpy(&c->via.array.ptr[c->via.array.size], &o, sizeof(msgpack_object)); #else /* __GNUC__ && !__clang__ */ c->via.array.ptr[c->via.array.size] = o; #endif /* __GNUC__ && !__clang__ */ ++c->via.array.size; return 0; } static inline int template_callback_map(unpack_user* u, unsigned int n, msgpack_object* o) { size_t size; // Let's leverage the fact that sizeof(msgpack_object_kv) is a compile time constant // to check for int overflows // Note - while n is constrained to 32-bit, the product of n * sizeof(msgpack_object) // might not be constrained to 4GB on 64-bit systems // Note - this will always be false on 64-bit systems #if SIZE_MAX == UINT_MAX if (n > SIZE_MAX/sizeof(msgpack_object_kv)) return MSGPACK_UNPACK_NOMEM_ERROR; #endif o->type = MSGPACK_OBJECT_MAP; o->via.map.size = 0; size = n * sizeof(msgpack_object_kv); if (*u->z == NULL) { *u->z = msgpack_zone_new(MSGPACK_ZONE_CHUNK_SIZE); if(*u->z == NULL) { return MSGPACK_UNPACK_NOMEM_ERROR; } } // Should size = 0 be an error? If so, what error to return? o->via.map.ptr = (msgpack_object_kv*)msgpack_zone_malloc(*u->z, size); if(o->via.map.ptr == NULL) { return MSGPACK_UNPACK_NOMEM_ERROR; } return 0; } static inline int template_callback_map_item(unpack_user* u, msgpack_object* c, msgpack_object k, msgpack_object v) { MSGPACK_UNUSED(u); #if defined(__GNUC__) && !defined(__clang__) memcpy(&c->via.map.ptr[c->via.map.size].key, &k, sizeof(msgpack_object)); memcpy(&c->via.map.ptr[c->via.map.size].val, &v, sizeof(msgpack_object)); #else /* __GNUC__ && !__clang__ */ c->via.map.ptr[c->via.map.size].key = k; c->via.map.ptr[c->via.map.size].val = v; #endif /* __GNUC__ && !__clang__ */ ++c->via.map.size; return 0; } static inline int template_callback_str(unpack_user* u, const char* b, const char* p, unsigned int l, msgpack_object* o) { MSGPACK_UNUSED(b); if (*u->z == NULL) { *u->z = msgpack_zone_new(MSGPACK_ZONE_CHUNK_SIZE); if(*u->z == NULL) { return MSGPACK_UNPACK_NOMEM_ERROR; } } o->type = MSGPACK_OBJECT_STR; o->via.str.ptr = p; o->via.str.size = l; u->referenced = true; return 0; } static inline int template_callback_bin(unpack_user* u, const char* b, const char* p, unsigned int l, msgpack_object* o) { MSGPACK_UNUSED(b); if (*u->z == NULL) { *u->z = msgpack_zone_new(MSGPACK_ZONE_CHUNK_SIZE); if(*u->z == NULL) { return MSGPACK_UNPACK_NOMEM_ERROR; } } o->type = MSGPACK_OBJECT_BIN; o->via.bin.ptr = p; o->via.bin.size = l; u->referenced = true; return 0; } static inline int template_callback_ext(unpack_user* u, const char* b, const char* p, unsigned int l, msgpack_object* o) { MSGPACK_UNUSED(b); if (l == 0) { return MSGPACK_UNPACK_PARSE_ERROR; } if (*u->z == NULL) { *u->z = msgpack_zone_new(MSGPACK_ZONE_CHUNK_SIZE); if(*u->z == NULL) { return MSGPACK_UNPACK_NOMEM_ERROR; } } o->type = MSGPACK_OBJECT_EXT; o->via.ext.type = *p; o->via.ext.ptr = p + 1; o->via.ext.size = l - 1; u->referenced = true; return 0; } #include "msgpack/unpack_template.h" #define CTX_CAST(m) ((template_context*)(m)) #define CTX_REFERENCED(mpac) CTX_CAST((mpac)->ctx)->user.referenced #define COUNTER_SIZE (sizeof(_msgpack_atomic_counter_t)) static inline void init_count(void* buffer) { *(volatile _msgpack_atomic_counter_t*)buffer = 1; } static inline void decr_count(void* buffer) { // atomic if(--*(_msgpack_atomic_counter_t*)buffer == 0) { free(buffer); } if(_msgpack_sync_decr_and_fetch((volatile _msgpack_atomic_counter_t*)buffer) == 0) { free(buffer); } } static inline void incr_count(void* buffer) { // atomic ++*(_msgpack_atomic_counter_t*)buffer; _msgpack_sync_incr_and_fetch((volatile _msgpack_atomic_counter_t*)buffer); } static inline _msgpack_atomic_counter_t get_count(void* buffer) { return *(volatile _msgpack_atomic_counter_t*)buffer; } bool msgpack_unpacker_init(msgpack_unpacker* mpac, size_t initial_buffer_size) { char* buffer; void* ctx; if(initial_buffer_size < COUNTER_SIZE) { initial_buffer_size = COUNTER_SIZE; } buffer = (char*)malloc(initial_buffer_size); if(buffer == NULL) { return false; } ctx = malloc(sizeof(template_context)); if(ctx == NULL) { free(buffer); return false; } mpac->buffer = buffer; mpac->used = COUNTER_SIZE; mpac->free = initial_buffer_size - mpac->used; mpac->off = COUNTER_SIZE; mpac->parsed = 0; mpac->initial_buffer_size = initial_buffer_size; mpac->z = NULL; mpac->ctx = ctx; init_count(mpac->buffer); template_init(CTX_CAST(mpac->ctx)); CTX_CAST(mpac->ctx)->user.z = &mpac->z; CTX_CAST(mpac->ctx)->user.referenced = false; return true; } void msgpack_unpacker_destroy(msgpack_unpacker* mpac) { msgpack_zone_free(mpac->z); free(mpac->ctx); decr_count(mpac->buffer); } msgpack_unpacker* msgpack_unpacker_new(size_t initial_buffer_size) { msgpack_unpacker* mpac = (msgpack_unpacker*)malloc(sizeof(msgpack_unpacker)); if(mpac == NULL) { return NULL; } if(!msgpack_unpacker_init(mpac, initial_buffer_size)) { free(mpac); return NULL; } return mpac; } void msgpack_unpacker_free(msgpack_unpacker* mpac) { msgpack_unpacker_destroy(mpac); free(mpac); } bool msgpack_unpacker_expand_buffer(msgpack_unpacker* mpac, size_t size) { if(mpac->used == mpac->off && get_count(mpac->buffer) == 1 && !CTX_REFERENCED(mpac)) { // rewind buffer mpac->free += mpac->used - COUNTER_SIZE; mpac->used = COUNTER_SIZE; mpac->off = COUNTER_SIZE; if(mpac->free >= size) { return true; } } if(mpac->off == COUNTER_SIZE) { char* tmp; size_t next_size = (mpac->used + mpac->free) * 2; // include COUNTER_SIZE while(next_size < size + mpac->used) { size_t tmp_next_size = next_size * 2; if (tmp_next_size <= next_size) { next_size = size + mpac->used; break; } next_size = tmp_next_size; } tmp = (char*)realloc(mpac->buffer, next_size); if(tmp == NULL) { return false; } mpac->buffer = tmp; mpac->free = next_size - mpac->used; } else { char* tmp; size_t next_size = mpac->initial_buffer_size; // include COUNTER_SIZE size_t not_parsed = mpac->used - mpac->off; while(next_size < size + not_parsed + COUNTER_SIZE) { size_t tmp_next_size = next_size * 2; if (tmp_next_size <= next_size) { next_size = size + not_parsed + COUNTER_SIZE; break; } next_size = tmp_next_size; } tmp = (char*)malloc(next_size); if(tmp == NULL) { return false; } init_count(tmp); memcpy(tmp+COUNTER_SIZE, mpac->buffer+mpac->off, not_parsed); if(CTX_REFERENCED(mpac)) { if(!msgpack_zone_push_finalizer(mpac->z, decr_count, mpac->buffer)) { free(tmp); return false; } CTX_REFERENCED(mpac) = false; } else { decr_count(mpac->buffer); } mpac->buffer = tmp; mpac->used = not_parsed + COUNTER_SIZE; mpac->free = next_size - mpac->used; mpac->off = COUNTER_SIZE; } return true; } int msgpack_unpacker_execute(msgpack_unpacker* mpac) { size_t off = mpac->off; int ret = template_execute(CTX_CAST(mpac->ctx), mpac->buffer, mpac->used, &mpac->off); if(mpac->off > off) { mpac->parsed += mpac->off - off; } return ret; } msgpack_object msgpack_unpacker_data(msgpack_unpacker* mpac) { return template_data(CTX_CAST(mpac->ctx)); } msgpack_zone* msgpack_unpacker_release_zone(msgpack_unpacker* mpac) { msgpack_zone* old = mpac->z; if (old == NULL) return NULL; if(!msgpack_unpacker_flush_zone(mpac)) { return NULL; } mpac->z = NULL; CTX_CAST(mpac->ctx)->user.z = &mpac->z; return old; } void msgpack_unpacker_reset_zone(msgpack_unpacker* mpac) { msgpack_zone_clear(mpac->z); } bool msgpack_unpacker_flush_zone(msgpack_unpacker* mpac) { if(CTX_REFERENCED(mpac)) { if(!msgpack_zone_push_finalizer(mpac->z, decr_count, mpac->buffer)) { return false; } CTX_REFERENCED(mpac) = false; incr_count(mpac->buffer); } return true; } void msgpack_unpacker_reset(msgpack_unpacker* mpac) { template_init(CTX_CAST(mpac->ctx)); // don't reset referenced flag mpac->parsed = 0; } static inline msgpack_unpack_return unpacker_next(msgpack_unpacker* mpac, msgpack_unpacked* result) { int ret; msgpack_unpacked_destroy(result); ret = msgpack_unpacker_execute(mpac); if(ret < 0) { result->zone = NULL; memset(&result->data, 0, sizeof(msgpack_object)); return (msgpack_unpack_return)ret; } if(ret == 0) { return MSGPACK_UNPACK_CONTINUE; } result->zone = msgpack_unpacker_release_zone(mpac); result->data = msgpack_unpacker_data(mpac); return MSGPACK_UNPACK_SUCCESS; } msgpack_unpack_return msgpack_unpacker_next(msgpack_unpacker* mpac, msgpack_unpacked* result) { msgpack_unpack_return ret; ret = unpacker_next(mpac, result); if (ret == MSGPACK_UNPACK_SUCCESS) { msgpack_unpacker_reset(mpac); } return ret; } msgpack_unpack_return msgpack_unpacker_next_with_size(msgpack_unpacker* mpac, msgpack_unpacked* result, size_t *p_bytes) { msgpack_unpack_return ret; ret = unpacker_next(mpac, result); if (ret == MSGPACK_UNPACK_SUCCESS || ret == MSGPACK_UNPACK_CONTINUE) { *p_bytes = mpac->parsed; } if (ret == MSGPACK_UNPACK_SUCCESS) { msgpack_unpacker_reset(mpac); } return ret; } msgpack_unpack_return msgpack_unpack(const char* data, size_t len, size_t* off, msgpack_zone* result_zone, msgpack_object* result) { size_t noff = 0; if(off != NULL) { noff = *off; } if(len <= noff) { // FIXME return MSGPACK_UNPACK_CONTINUE; } else { int e; template_context ctx; template_init(&ctx); ctx.user.z = &result_zone; ctx.user.referenced = false; e = template_execute(&ctx, data, len, &noff); if(e < 0) { return (msgpack_unpack_return)e; } if(off != NULL) { *off = noff; } if(e == 0) { return MSGPACK_UNPACK_CONTINUE; } *result = template_data(&ctx); if(noff < len) { return MSGPACK_UNPACK_EXTRA_BYTES; } return MSGPACK_UNPACK_SUCCESS; } } msgpack_unpack_return msgpack_unpack_next(msgpack_unpacked* result, const char* data, size_t len, size_t* off) { size_t noff = 0; msgpack_unpacked_destroy(result); if(off != NULL) { noff = *off; } if(len <= noff) { return MSGPACK_UNPACK_CONTINUE; } { int e; template_context ctx; template_init(&ctx); ctx.user.z = &result->zone; ctx.user.referenced = false; e = template_execute(&ctx, data, len, &noff); if(off != NULL) { *off = noff; } if(e < 0) { msgpack_zone_free(result->zone); result->zone = NULL; return (msgpack_unpack_return)e; } if(e == 0) { return MSGPACK_UNPACK_CONTINUE; } result->data = template_data(&ctx); return MSGPACK_UNPACK_SUCCESS; } } #if defined(MSGPACK_OLD_COMPILER_BUS_ERROR_WORKAROUND) // FIXME: Dirty hack to avoid a bus error caused by OS X's old gcc. static void dummy_function_to_avoid_bus_error() { } #endif