// SPDX-License-Identifier: GPL-3.0-or-later #include "../libnetdata.h" // defaults are for compatibility // call clocks_init() once, to optimize these default settings static clockid_t clock_boottime_to_use = CLOCK_MONOTONIC; static clockid_t clock_monotonic_to_use = CLOCK_MONOTONIC; usec_t clock_monotonic_resolution = 1000; usec_t clock_realtime_resolution = 1000; #ifndef HAVE_CLOCK_GETTIME inline int clock_gettime(clockid_t clk_id, struct timespec *ts) { struct timeval tv; if(unlikely(gettimeofday(&tv, NULL) == -1)) { error("gettimeofday() failed."); return -1; } ts->tv_sec = tv.tv_sec; ts->tv_nsec = (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC; return 0; } #endif // Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is not subject to NTP adjustments // or the incremental adjustments performed by adjtime(3). This clock does not count time that the system is suspended static void test_clock_monotonic_raw(void) { #ifdef CLOCK_MONOTONIC_RAW struct timespec ts; if(clock_gettime(CLOCK_MONOTONIC_RAW, &ts) == -1 && errno == EINVAL) clock_monotonic_to_use = CLOCK_MONOTONIC; else clock_monotonic_to_use = CLOCK_MONOTONIC_RAW; #else clock_monotonic_to_use = CLOCK_MONOTONIC; #endif } // When running a binary with CLOCK_BOOTTIME defined on a system with a linux kernel older than Linux 2.6.39 the // clock_gettime(2) system call fails with EINVAL. In that case it must fall-back to CLOCK_MONOTONIC. static void test_clock_boottime(void) { struct timespec ts; if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL) clock_boottime_to_use = clock_monotonic_to_use; else clock_boottime_to_use = CLOCK_BOOTTIME; } static usec_t get_clock_resolution(clockid_t clock) { struct timespec ts; clock_getres(clock, &ts); return ts.tv_sec * USEC_PER_SEC + ts.tv_nsec * NSEC_PER_USEC; } // perform any initializations required for clocks void clocks_init(void) { // monotonic raw has to be tested before boottime test_clock_monotonic_raw(); // boottime has to be tested after monotonic coarse test_clock_boottime(); clock_monotonic_resolution = get_clock_resolution(clock_monotonic_to_use); clock_realtime_resolution = get_clock_resolution(CLOCK_REALTIME); // if for any reason these are zero, netdata will crash // since we use them as modulo to calculations if(!clock_realtime_resolution) clock_realtime_resolution = 1000; if(!clock_monotonic_resolution) clock_monotonic_resolution = 1000; } inline time_t now_sec(clockid_t clk_id) { struct timespec ts; if(unlikely(clock_gettime(clk_id, &ts) == -1)) { error("clock_gettime(%d, ×pec) failed.", clk_id); return 0; } return ts.tv_sec; } inline usec_t now_usec(clockid_t clk_id) { struct timespec ts; if(unlikely(clock_gettime(clk_id, &ts) == -1)) { error("clock_gettime(%d, ×pec) failed.", clk_id); return 0; } return (usec_t)ts.tv_sec * USEC_PER_SEC + (ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC; } inline int now_timeval(clockid_t clk_id, struct timeval *tv) { struct timespec ts; if(unlikely(clock_gettime(clk_id, &ts) == -1)) { error("clock_gettime(%d, ×pec) failed.", clk_id); tv->tv_sec = 0; tv->tv_usec = 0; return -1; } tv->tv_sec = ts.tv_sec; tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC); return 0; } inline time_t now_realtime_sec(void) { return now_sec(CLOCK_REALTIME); } inline usec_t now_realtime_usec(void) { return now_usec(CLOCK_REALTIME); } inline int now_realtime_timeval(struct timeval *tv) { return now_timeval(CLOCK_REALTIME, tv); } inline time_t now_monotonic_sec(void) { return now_sec(clock_monotonic_to_use); } inline usec_t now_monotonic_usec(void) { return now_usec(clock_monotonic_to_use); } inline int now_monotonic_timeval(struct timeval *tv) { return now_timeval(clock_monotonic_to_use, tv); } inline time_t now_monotonic_high_precision_sec(void) { return now_sec(CLOCK_MONOTONIC); } inline usec_t now_monotonic_high_precision_usec(void) { return now_usec(CLOCK_MONOTONIC); } inline int now_monotonic_high_precision_timeval(struct timeval *tv) { return now_timeval(CLOCK_MONOTONIC, tv); } inline time_t now_boottime_sec(void) { return now_sec(clock_boottime_to_use); } inline usec_t now_boottime_usec(void) { return now_usec(clock_boottime_to_use); } inline int now_boottime_timeval(struct timeval *tv) { return now_timeval(clock_boottime_to_use, tv); } inline usec_t timeval_usec(struct timeval *tv) { return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC); } inline msec_t timeval_msec(struct timeval *tv) { return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC); } inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) { usec_t ts1 = timeval_usec(now); usec_t ts2 = timeval_usec(old); if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2); return -((susec_t)(ts2 - ts1)); } inline usec_t dt_usec(struct timeval *now, struct timeval *old) { usec_t ts1 = timeval_usec(now); usec_t ts2 = timeval_usec(old); return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1); } #ifdef __linux__ void sleep_to_absolute_time(usec_t usec) { static int einval_printed = 0, enotsup_printed = 0, eunknown_printed = 0; clockid_t clock = CLOCK_REALTIME; struct timespec req = { .tv_sec = (time_t)(usec / USEC_PER_SEC), .tv_nsec = (suseconds_t)((usec % USEC_PER_SEC) * NSEC_PER_USEC) }; int ret = 0; while( (ret = clock_nanosleep(clock, TIMER_ABSTIME, &req, NULL)) != 0 ) { if(ret == EINTR) continue; else { if (ret == EINVAL) { if (!einval_printed) { einval_printed++; error( "Invalid time given to clock_nanosleep(): clockid = %d, tv_sec = %ld, tv_nsec = %ld", clock, req.tv_sec, req.tv_nsec); } } else if (ret == ENOTSUP) { if (!enotsup_printed) { enotsup_printed++; error( "Invalid clock id given to clock_nanosleep(): clockid = %d, tv_sec = %ld, tv_nsec = %ld", clock, req.tv_sec, req.tv_nsec); } } else { if (!eunknown_printed) { eunknown_printed++; error( "Unknown return value %d from clock_nanosleep(): clockid = %d, tv_sec = %ld, tv_nsec = %ld", ret, clock, req.tv_sec, req.tv_nsec); } } sleep_usec(usec); } } }; #endif #define HEARTBEAT_ALIGNMENT_STATISTICS_SIZE 10 netdata_mutex_t heartbeat_alignment_mutex = NETDATA_MUTEX_INITIALIZER; static size_t heartbeat_alignment_id = 0; struct heartbeat_thread_statistics { size_t sequence; usec_t dt; }; static struct heartbeat_thread_statistics heartbeat_alignment_values[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 }; void heartbeat_statistics(usec_t *min_ptr, usec_t *max_ptr, usec_t *average_ptr, size_t *count_ptr) { struct heartbeat_thread_statistics current[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE]; static struct heartbeat_thread_statistics old[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 }; memcpy(current, heartbeat_alignment_values, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE); usec_t min = 0, max = 0, total = 0, average = 0; size_t i, count = 0; for(i = 0; i < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE ;i++) { if(current[i].sequence == old[i].sequence) continue; usec_t value = current[i].dt - old[i].dt; if(!count) { min = max = total = value; count = 1; } else { total += value; if(value < min) min = value; if(value > max) max = value; count++; } } if(count) average = total / count; if(min_ptr) *min_ptr = min; if(max_ptr) *max_ptr = max; if(average_ptr) *average_ptr = average; if(count_ptr) *count_ptr = count; memcpy(old, current, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE); } inline void heartbeat_init(heartbeat_t *hb) { hb->realtime = 0ULL; hb->randomness = 250 * USEC_PER_MS + ((now_realtime_usec() * clock_realtime_resolution) % (250 * USEC_PER_MS)); hb->randomness -= (hb->randomness % clock_realtime_resolution); netdata_mutex_lock(&heartbeat_alignment_mutex); hb->statistics_id = heartbeat_alignment_id; heartbeat_alignment_id++; netdata_mutex_unlock(&heartbeat_alignment_mutex); if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) { heartbeat_alignment_values[hb->statistics_id].dt = 0; heartbeat_alignment_values[hb->statistics_id].sequence = 0; } } // waits for the next heartbeat // it waits using the monotonic clock // it returns the dt using the realtime clock usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) { if(unlikely(hb->randomness > tick / 2)) { // TODO: The heartbeat tick should be specified at the heartbeat_init() function usec_t tmp = (now_realtime_usec() * clock_realtime_resolution) % (tick / 2); info("heartbeat randomness of %llu is too big for a tick of %llu - setting it to %llu", hb->randomness, tick, tmp); hb->randomness = tmp; } usec_t dt; usec_t now = now_realtime_usec(); usec_t next = now - (now % tick) + tick + hb->randomness; // align the next time we want to the clock resolution if(next % clock_realtime_resolution) next = next - (next % clock_realtime_resolution) + clock_realtime_resolution; // sleep_usec() has a loop to guarantee we will sleep for at least the requested time. // According the specs, when we sleep for a relative time, clock adjustments should not affect the duration // we sleep. sleep_usec(next - now); now = now_realtime_usec(); dt = now - hb->realtime; if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) { heartbeat_alignment_values[hb->statistics_id].dt += now - next; heartbeat_alignment_values[hb->statistics_id].sequence++; } if(unlikely(now < next)) { errno = 0; error("heartbeat clock: woke up %llu microseconds earlier than expected (can be due to the CLOCK_REALTIME set to the past).", next - now); } else if(unlikely(now - next > tick / 2)) { errno = 0; error("heartbeat clock: woke up %llu microseconds later than expected (can be due to system load or the CLOCK_REALTIME set to the future).", now - next); } if(unlikely(!hb->realtime)) { // the first time return zero dt = 0; } hb->realtime = now; return dt; } void sleep_usec(usec_t usec) { // we expect microseconds (1.000.000 per second) // but timespec is nanoseconds (1.000.000.000 per second) struct timespec rem, req = { .tv_sec = (time_t) (usec / USEC_PER_SEC), .tv_nsec = (suseconds_t) ((usec % USEC_PER_SEC) * NSEC_PER_USEC) }; #ifdef __linux__ while ((errno = clock_nanosleep(CLOCK_REALTIME, 0, &req, &rem)) != 0) { #else while ((errno = nanosleep(&req, &rem)) != 0) { #endif if (likely(errno == EINTR)) { req.tv_sec = rem.tv_sec; req.tv_nsec = rem.tv_nsec; } else { #ifdef __linux__ error("Cannot clock_nanosleep(CLOCK_REALTIME) for %llu microseconds.", usec); #else error("Cannot nanosleep() for %llu microseconds.", usec); #endif break; } } } static inline collected_number uptime_from_boottime(void) { #ifdef CLOCK_BOOTTIME_IS_AVAILABLE return (collected_number)(now_boottime_usec() / USEC_PER_MS); #else error("uptime cannot be read from CLOCK_BOOTTIME on this system."); return 0; #endif } static procfile *read_proc_uptime_ff = NULL; static inline collected_number read_proc_uptime(char *filename) { if(unlikely(!read_proc_uptime_ff)) { read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT); if(unlikely(!read_proc_uptime_ff)) return 0; } read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff); if(unlikely(!read_proc_uptime_ff)) return 0; if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) { error("/proc/uptime has no lines."); return 0; } if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) { error("/proc/uptime has less than 1 word in it."); return 0; } return (collected_number)(strtold(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0); } inline collected_number uptime_msec(char *filename){ static int use_boottime = -1; if(unlikely(use_boottime == -1)) { collected_number uptime_boottime = uptime_from_boottime(); collected_number uptime_proc = read_proc_uptime(filename); long long delta = (long long)uptime_boottime - (long long)uptime_proc; if(delta < 0) delta = -delta; if(delta <= 1000 && uptime_boottime != 0) { procfile_close(read_proc_uptime_ff); info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta); use_boottime = 1; } else if(uptime_proc != 0) { info("Using /proc/uptime for uptime (dt is %lld ms)", delta); use_boottime = 0; } else { error("Cannot find any way to read uptime on this system."); return 1; } } collected_number uptime; if(use_boottime) uptime = uptime_from_boottime(); else uptime = read_proc_uptime(filename); return uptime; }