// SPDX-License-Identifier: GPL-3.0-or-later #include "../libnetdata.h" static int clock_boottime_valid = 1; static int clock_monotonic_coarse_valid = 1; #ifndef HAVE_CLOCK_GETTIME inline int clock_gettime(clockid_t clk_id, struct timespec *ts) { struct timeval tv; if(unlikely(gettimeofday(&tv, NULL) == -1)) { error("gettimeofday() failed."); return -1; } ts->tv_sec = tv.tv_sec; ts->tv_nsec = (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC; return 0; } #endif void test_clock_boottime(void) { struct timespec ts; if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL) clock_boottime_valid = 0; } void test_clock_monotonic_coarse(void) { struct timespec ts; if(clock_gettime(CLOCK_MONOTONIC_COARSE, &ts) == -1 && errno == EINVAL) clock_monotonic_coarse_valid = 0; } static inline time_t now_sec(clockid_t clk_id) { struct timespec ts; if(unlikely(clock_gettime(clk_id, &ts) == -1)) { error("clock_gettime(%d, ×pec) failed.", clk_id); return 0; } return ts.tv_sec; } static inline usec_t now_usec(clockid_t clk_id) { struct timespec ts; if(unlikely(clock_gettime(clk_id, &ts) == -1)) { error("clock_gettime(%d, ×pec) failed.", clk_id); return 0; } return (usec_t)ts.tv_sec * USEC_PER_SEC + (ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC; } static inline int now_timeval(clockid_t clk_id, struct timeval *tv) { struct timespec ts; if(unlikely(clock_gettime(clk_id, &ts) == -1)) { error("clock_gettime(%d, ×pec) failed.", clk_id); tv->tv_sec = 0; tv->tv_usec = 0; return -1; } tv->tv_sec = ts.tv_sec; tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC); return 0; } inline time_t now_realtime_sec(void) { return now_sec(CLOCK_REALTIME); } inline usec_t now_realtime_usec(void) { return now_usec(CLOCK_REALTIME); } inline int now_realtime_timeval(struct timeval *tv) { return now_timeval(CLOCK_REALTIME, tv); } inline time_t now_monotonic_sec(void) { return now_sec(likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC); } inline usec_t now_monotonic_usec(void) { return now_usec(likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC); } inline int now_monotonic_timeval(struct timeval *tv) { return now_timeval(likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC, tv); } inline time_t now_monotonic_high_precision_sec(void) { return now_sec(CLOCK_MONOTONIC); } inline usec_t now_monotonic_high_precision_usec(void) { return now_usec(CLOCK_MONOTONIC); } inline int now_monotonic_high_precision_timeval(struct timeval *tv) { return now_timeval(CLOCK_MONOTONIC, tv); } inline time_t now_boottime_sec(void) { return now_sec(likely(clock_boottime_valid) ? CLOCK_BOOTTIME : likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC); } inline usec_t now_boottime_usec(void) { return now_usec(likely(clock_boottime_valid) ? CLOCK_BOOTTIME : likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC); } inline int now_boottime_timeval(struct timeval *tv) { return now_timeval(likely(clock_boottime_valid) ? CLOCK_BOOTTIME : likely(clock_monotonic_coarse_valid) ? CLOCK_MONOTONIC_COARSE : CLOCK_MONOTONIC, tv); } inline usec_t timeval_usec(struct timeval *tv) { return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC); } inline msec_t timeval_msec(struct timeval *tv) { return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC); } inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) { usec_t ts1 = timeval_usec(now); usec_t ts2 = timeval_usec(old); if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2); return -((susec_t)(ts2 - ts1)); } inline usec_t dt_usec(struct timeval *now, struct timeval *old) { usec_t ts1 = timeval_usec(now); usec_t ts2 = timeval_usec(old); return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1); } inline void heartbeat_init(heartbeat_t *hb) { hb->monotonic = hb->realtime = 0ULL; } // waits for the next heartbeat // it waits using the monotonic clock // it returns the dt using the realtime clock usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) { heartbeat_t now; now.monotonic = now_monotonic_usec(); now.realtime = now_realtime_usec(); usec_t next_monotonic = now.monotonic - (now.monotonic % tick) + tick; while(now.monotonic < next_monotonic) { sleep_usec(next_monotonic - now.monotonic); now.monotonic = now_monotonic_usec(); now.realtime = now_realtime_usec(); } if(likely(hb->realtime != 0ULL)) { usec_t dt_monotonic = now.monotonic - hb->monotonic; usec_t dt_realtime = now.realtime - hb->realtime; hb->monotonic = now.monotonic; hb->realtime = now.realtime; if(unlikely(dt_monotonic >= tick + tick / 2)) { errno = 0; error("heartbeat missed %llu monotonic microseconds", dt_monotonic - tick); } return dt_realtime; } else { hb->monotonic = now.monotonic; hb->realtime = now.realtime; return 0ULL; } } // returned the elapsed time, since the last heartbeat // using the monotonic clock inline usec_t heartbeat_monotonic_dt_to_now_usec(heartbeat_t *hb) { if(!hb || !hb->monotonic) return 0ULL; return now_monotonic_usec() - hb->monotonic; } int sleep_usec(usec_t usec) { #ifndef NETDATA_WITH_USLEEP // we expect microseconds (1.000.000 per second) // but timespec is nanoseconds (1.000.000.000 per second) struct timespec rem, req = { .tv_sec = (time_t) (usec / 1000000), .tv_nsec = (suseconds_t) ((usec % 1000000) * 1000) }; while (nanosleep(&req, &rem) == -1) { if (likely(errno == EINTR)) { debug(D_SYSTEM, "nanosleep() interrupted (while sleeping for %llu microseconds).", usec); req.tv_sec = rem.tv_sec; req.tv_nsec = rem.tv_nsec; } else { error("Cannot nanosleep() for %llu microseconds.", usec); break; } } return 0; #else int ret = usleep(usec); if(unlikely(ret == -1 && errno == EINVAL)) { // on certain systems, usec has to be up to 999999 if(usec > 999999) { int counter = usec / 999999; while(counter--) usleep(999999); usleep(usec % 999999); } else { error("Cannot usleep() for %llu microseconds.", usec); return ret; } } if(ret != 0) error("usleep() failed for %llu microseconds.", usec); return ret; #endif } static inline collected_number uptime_from_boottime(void) { #ifdef CLOCK_BOOTTIME_IS_AVAILABLE return now_boottime_usec() / 1000; #else error("uptime cannot be read from CLOCK_BOOTTIME on this system."); return 0; #endif } static procfile *read_proc_uptime_ff = NULL; static inline collected_number read_proc_uptime(char *filename) { if(unlikely(!read_proc_uptime_ff)) { read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT); if(unlikely(!read_proc_uptime_ff)) return 0; } read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff); if(unlikely(!read_proc_uptime_ff)) return 0; if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) { error("/proc/uptime has no lines."); return 0; } if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) { error("/proc/uptime has less than 1 word in it."); return 0; } return (collected_number)(strtold(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0); } inline collected_number uptime_msec(char *filename){ static int use_boottime = -1; if(unlikely(use_boottime == -1)) { collected_number uptime_boottime = uptime_from_boottime(); collected_number uptime_proc = read_proc_uptime(filename); long long delta = (long long)uptime_boottime - (long long)uptime_proc; if(delta < 0) delta = -delta; if(delta <= 1000 && uptime_boottime != 0) { procfile_close(read_proc_uptime_ff); info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta); use_boottime = 1; } else if(uptime_proc != 0) { info("Using /proc/uptime for uptime (dt is %lld ms)", delta); use_boottime = 0; } else { error("Cannot find any way to read uptime on this system."); return 1; } } collected_number uptime; if(use_boottime) uptime = uptime_from_boottime(); else uptime = read_proc_uptime(filename); return uptime; }