#ifndef _JUDYL_INCLUDED #define _JUDYL_INCLUDED // _________________ // // Copyright (C) 2000 - 2002 Hewlett-Packard Company // // This program is free software; you can redistribute it and/or modify it // under the term of the GNU Lesser General Public License as published by the // Free Software Foundation; either version 2 of the License, or (at your // option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License // for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // _________________ // @(#) $Revision: 4.41 $ $Source: /judy/src/JudyL/JudyL.h $ // **************************************************************************** // JUDYL -- SMALL/LARGE AND/OR CLUSTERED/SPARSE ARRAYS // // -by- // // Douglas L. Baskins // doug@sourcejudy.com // // Judy arrays are designed to be used instead of arrays. The performance // suggests the reason why Judy arrays are thought of as arrays, instead of // trees. They are remarkably memory efficient at all populations. // Implemented as a hybrid digital tree (but really a state machine, see // below), Judy arrays feature fast insert/retrievals, fast near neighbor // searching, and contain a population tree for extremely fast ordinal related // retrievals. // // CONVENTIONS: // // - The comments here refer to 32-bit [64-bit] systems. // // - BranchL, LeafL refer to linear branches and leaves (small populations), // except LeafL does not actually appear as such; rather, Leaf1..3 [Leaf1..7] // is used to represent leaf Index sizes, and LeafW refers to a Leaf with // full (Long) word Indexes, which is also a type of linear leaf. Note that // root-level LeafW (Leaf4 [Leaf8]) leaves are called LEAFW. // // - BranchB, LeafB1 refer to bitmap branches and leaves (intermediate // populations). // // - BranchU refers to uncompressed branches. An uncompressed branch has 256 // JPs, some of which could be null. Note: All leaves are compressed (and // sorted), or else an expanse is full (FullPopu), so there is no LeafU // equivalent to BranchU. // // - "Popu" is short for "Population". // - "Pop1" refers to actual population (base 1). // - "Pop0" refers to Pop1 - 1 (base 0), the way populations are stored in data // structures. // // - Branches and Leaves are both named by the number of bytes in their Pop0 // field. In the case of Leaves, the same number applies to the Index sizes. // // - The representation of many numbers as hex is a relatively safe and // portable way to get desired bitpatterns as unsigned longs. // // - Some preprocessors cant handle single apostrophe characters within // #ifndef code, so here, delete all instead. #include "JudyPrivate.h" // includes Judy.h in turn. #include "JudyPrivateBranch.h" // support for branches. // **************************************************************************** // JUDYL ROOT POINTER (JRP) AND JUDYL POINTER (JP) TYPE FIELDS // **************************************************************************** typedef enum // uint8_t -- but C does not support this type of enum. { // JP NULL TYPES: // // There is a series of cJL_JPNULL* Types because each one pre-records a // different Index Size for when the first Index is inserted in the previously // null JP. They must start >= 8 (three bits). // // Note: These Types must be in sequential order for doing relative // calculations between them. cJL_JPNULL1 = 1, // Index Size 1[1] byte when 1 Index inserted. cJL_JPNULL2, // Index Size 2[2] bytes when 1 Index inserted. cJL_JPNULL3, // Index Size 3[3] bytes when 1 Index inserted. #ifndef JU_64BIT #define cJL_JPNULLMAX cJL_JPNULL3 #else cJL_JPNULL4, // Index Size 4[4] bytes when 1 Index inserted. cJL_JPNULL5, // Index Size 5[5] bytes when 1 Index inserted. cJL_JPNULL6, // Index Size 6[6] bytes when 1 Index inserted. cJL_JPNULL7, // Index Size 7[7] bytes when 1 Index inserted. #define cJL_JPNULLMAX cJL_JPNULL7 #endif // JP BRANCH TYPES: // // Note: There are no state-1 branches; only leaves reside at state 1. // Linear branches: // // Note: These Types must be in sequential order for doing relative // calculations between them. cJL_JPBRANCH_L2, // 2[2] bytes Pop0, 1[5] bytes Dcd. cJL_JPBRANCH_L3, // 3[3] bytes Pop0, 0[4] bytes Dcd. #ifdef JU_64BIT cJL_JPBRANCH_L4, // [4] bytes Pop0, [3] bytes Dcd. cJL_JPBRANCH_L5, // [5] bytes Pop0, [2] bytes Dcd. cJL_JPBRANCH_L6, // [6] bytes Pop0, [1] byte Dcd. cJL_JPBRANCH_L7, // [7] bytes Pop0, [0] bytes Dcd. #endif cJL_JPBRANCH_L, // note: DcdPopO field not used. // Bitmap branches: // // Note: These Types must be in sequential order for doing relative // calculations between them. cJL_JPBRANCH_B2, // 2[2] bytes Pop0, 1[5] bytes Dcd. cJL_JPBRANCH_B3, // 3[3] bytes Pop0, 0[4] bytes Dcd. #ifdef JU_64BIT cJL_JPBRANCH_B4, // [4] bytes Pop0, [3] bytes Dcd. cJL_JPBRANCH_B5, // [5] bytes Pop0, [2] bytes Dcd. cJL_JPBRANCH_B6, // [6] bytes Pop0, [1] byte Dcd. cJL_JPBRANCH_B7, // [7] bytes Pop0, [0] bytes Dcd. #endif cJL_JPBRANCH_B, // note: DcdPopO field not used. // Uncompressed branches: // // Note: These Types must be in sequential order for doing relative // calculations between them. cJL_JPBRANCH_U2, // 2[2] bytes Pop0, 1[5] bytes Dcd. cJL_JPBRANCH_U3, // 3[3] bytes Pop0, 0[4] bytes Dcd. #ifdef JU_64BIT cJL_JPBRANCH_U4, // [4] bytes Pop0, [3] bytes Dcd. cJL_JPBRANCH_U5, // [5] bytes Pop0, [2] bytes Dcd. cJL_JPBRANCH_U6, // [6] bytes Pop0, [1] byte Dcd. cJL_JPBRANCH_U7, // [7] bytes Pop0, [0] bytes Dcd. #endif cJL_JPBRANCH_U, // note: DcdPopO field not used. // JP LEAF TYPES: // Linear leaves: // // Note: These Types must be in sequential order for doing relative // calculations between them. // // Note: There is no full-word (4-byte [8-byte]) Index leaf under a JP because // non-root-state leaves only occur under branches that decode at least one // byte. Full-word, root-state leaves are under a JRP, not a JP. However, in // the code a "fake" JP can be created temporarily above a root-state leaf. cJL_JPLEAF1, // 1[1] byte Pop0, 2 bytes Dcd. cJL_JPLEAF2, // 2[2] bytes Pop0, 1[5] bytes Dcd. cJL_JPLEAF3, // 3[3] bytes Pop0, 0[4] bytes Dcd. #ifdef JU_64BIT cJL_JPLEAF4, // [4] bytes Pop0, [3] bytes Dcd. cJL_JPLEAF5, // [5] bytes Pop0, [2] bytes Dcd. cJL_JPLEAF6, // [6] bytes Pop0, [1] byte Dcd. cJL_JPLEAF7, // [7] bytes Pop0, [0] bytes Dcd. #endif // Bitmap leaf; Index Size == 1: // // Note: These are currently only supported at state 1. At other states the // bitmap would grow from 256 to 256^2, 256^3, ... bits, which would not be // efficient.. cJL_JPLEAF_B1, // 1[1] byte Pop0, 2[6] bytes Dcd. // Full population; Index Size == 1 virtual leaf: // // Note: JudyL has no cJL_JPFULLPOPU1 equivalent to cJ1_JPFULLPOPU1, because // in the JudyL case this could result in a values-only leaf of up to 256 words // (value areas) that would be slow to insert/delete. // JP IMMEDIATES; leaves (Indexes) stored inside a JP: // // The second numeric suffix is the Pop1 for each type. As the Index Size // increases, the maximum possible population decreases. // // Note: These Types must be in sequential order in each group (Index Size), // and the groups in correct order too, for doing relative calculations between // them. For example, since these Types enumerate the Pop1 values (unlike // other JP Types where there is a Pop0 value in the JP), the maximum Pop1 for // each Index Size is computable. // // All enums equal or above this point are cJL_JPIMMEDs. cJL_JPIMMED_1_01, // Index Size = 1, Pop1 = 1. cJL_JPIMMED_2_01, // Index Size = 2, Pop1 = 1. cJL_JPIMMED_3_01, // Index Size = 3, Pop1 = 1. #ifdef JU_64BIT cJL_JPIMMED_4_01, // Index Size = 4, Pop1 = 1. cJL_JPIMMED_5_01, // Index Size = 5, Pop1 = 1. cJL_JPIMMED_6_01, // Index Size = 6, Pop1 = 1. cJL_JPIMMED_7_01, // Index Size = 7, Pop1 = 1. #endif cJL_JPIMMED_1_02, // Index Size = 1, Pop1 = 2. cJL_JPIMMED_1_03, // Index Size = 1, Pop1 = 3. #ifdef JU_64BIT cJL_JPIMMED_1_04, // Index Size = 1, Pop1 = 4. cJL_JPIMMED_1_05, // Index Size = 1, Pop1 = 5. cJL_JPIMMED_1_06, // Index Size = 1, Pop1 = 6. cJL_JPIMMED_1_07, // Index Size = 1, Pop1 = 7. cJL_JPIMMED_2_02, // Index Size = 2, Pop1 = 2. cJL_JPIMMED_2_03, // Index Size = 2, Pop1 = 3. cJL_JPIMMED_3_02, // Index Size = 3, Pop1 = 2. #endif // This special Type is merely a sentinel for doing relative calculations. // This value should not be used in switch statements (to avoid allocating code // for it), which is also why it appears at the end of the enum list. cJL_JPIMMED_CAP } jpL_Type_t; // RELATED VALUES: // Index Size (state) for leaf JP, and JP type based on Index Size (state): #define JL_LEAFINDEXSIZE(jpType) ((jpType) - cJL_JPLEAF1 + 1) #define JL_LEAFTYPE(IndexSize) ((IndexSize) + cJL_JPLEAF1 - 1) // MAXIMUM POPULATIONS OF LINEAR LEAVES: #ifndef JU_64BIT // 32-bit #define J_L_MAXB (sizeof(Word_t) * 64) #define ALLOCSIZES { 3, 5, 7, 11, 15, 23, 32, 47, 64, TERMINATOR } // in words. #define cJL_LEAF1_MAXWORDS (32) // max Leaf1 size in words. // Note: cJL_LEAF1_MAXPOP1 is chosen such that the index portion is less than // 32 bytes -- the number of bytes the index takes in a bitmap leaf. #define cJL_LEAF1_MAXPOP1 \ ((cJL_LEAF1_MAXWORDS * cJU_BYTESPERWORD)/(1 + cJU_BYTESPERWORD)) #define cJL_LEAF2_MAXPOP1 (J_L_MAXB / (2 + cJU_BYTESPERWORD)) #define cJL_LEAF3_MAXPOP1 (J_L_MAXB / (3 + cJU_BYTESPERWORD)) #define cJL_LEAFW_MAXPOP1 \ ((J_L_MAXB - cJU_BYTESPERWORD) / (2 * cJU_BYTESPERWORD)) #else // 64-bit #define J_L_MAXB (sizeof(Word_t) * 64) #define ALLOCSIZES { 3, 5, 7, 11, 15, 23, 32, 47, 64, TERMINATOR } // in words. #define cJL_LEAF1_MAXWORDS (15) // max Leaf1 size in words. #define cJL_LEAF1_MAXPOP1 \ ((cJL_LEAF1_MAXWORDS * cJU_BYTESPERWORD)/(1 + cJU_BYTESPERWORD)) #define cJL_LEAF2_MAXPOP1 (J_L_MAXB / (2 + cJU_BYTESPERWORD)) #define cJL_LEAF3_MAXPOP1 (J_L_MAXB / (3 + cJU_BYTESPERWORD)) #define cJL_LEAF4_MAXPOP1 (J_L_MAXB / (4 + cJU_BYTESPERWORD)) #define cJL_LEAF5_MAXPOP1 (J_L_MAXB / (5 + cJU_BYTESPERWORD)) #define cJL_LEAF6_MAXPOP1 (J_L_MAXB / (6 + cJU_BYTESPERWORD)) #define cJL_LEAF7_MAXPOP1 (J_L_MAXB / (7 + cJU_BYTESPERWORD)) #define cJL_LEAFW_MAXPOP1 \ ((J_L_MAXB - cJU_BYTESPERWORD) / (2 * cJU_BYTESPERWORD)) #endif // 64-bit // MAXIMUM POPULATIONS OF IMMEDIATE JPs: // // These specify the maximum Population of immediate JPs with various Index // Sizes (== sizes of remaining undecoded Index bits). Since the JP Types enum // already lists all the immediates in order by state and size, calculate these // values from it to avoid redundancy. #define cJL_IMMED1_MAXPOP1 ((cJU_BYTESPERWORD - 1) / 1) // 3 [7]. #define cJL_IMMED2_MAXPOP1 ((cJU_BYTESPERWORD - 1) / 2) // 1 [3]. #define cJL_IMMED3_MAXPOP1 ((cJU_BYTESPERWORD - 1) / 3) // 1 [2]. #ifdef JU_64BIT #define cJL_IMMED4_MAXPOP1 ((cJU_BYTESPERWORD - 1) / 4) // [1]. #define cJL_IMMED5_MAXPOP1 ((cJU_BYTESPERWORD - 1) / 5) // [1]. #define cJL_IMMED6_MAXPOP1 ((cJU_BYTESPERWORD - 1) / 6) // [1]. #define cJL_IMMED7_MAXPOP1 ((cJU_BYTESPERWORD - 1) / 7) // [1]. #endif // **************************************************************************** // JUDYL LEAF BITMAP (JLLB) SUPPORT // **************************************************************************** // // Assemble bitmap leaves out of smaller units that put bitmap subexpanses // close to their associated pointers. Why not just use a bitmap followed by a // series of pointers? (See 4.27.) Turns out this wastes a cache fill on // systems with smaller cache lines than the assumed value cJU_WORDSPERCL. #define JL_JLB_BITMAP(Pjlb, Subexp) ((Pjlb)->jLlb_jLlbs[Subexp].jLlbs_Bitmap) #define JL_JLB_PVALUE(Pjlb, Subexp) ((Pjlb)->jLlb_jLlbs[Subexp].jLlbs_PValue) typedef struct J__UDYL_LEAF_BITMAP_SUBEXPANSE { BITMAPL_t jLlbs_Bitmap; Pjv_t jLlbs_PValue; } jLlbs_t; typedef struct J__UDYL_LEAF_BITMAP { jLlbs_t jLlb_jLlbs[cJU_NUMSUBEXPL]; } jLlb_t, * PjLlb_t; // Words per bitmap leaf: #define cJL_WORDSPERLEAFB1 (sizeof(jLlb_t) / cJU_BYTESPERWORD) // **************************************************************************** // MEMORY ALLOCATION SUPPORT // **************************************************************************** // ARRAY-GLOBAL INFORMATION: // // At the cost of an occasional additional cache fill, this object, which is // pointed at by a JRP and in turn points to a JP_BRANCH*, carries array-global // information about a JudyL array that has sufficient population to amortize // the cost. The jpm_Pop0 field prevents having to add up the total population // for the array in insert, delete, and count code. The jpm_JP field prevents // having to build a fake JP for entry to a state machine; however, the // jp_DcdPopO field in jpm_JP, being one byte too small, is not used. // // Note: Struct fields are ordered to keep "hot" data in the first 8 words // (see left-margin comments) for machines with 8-word cache lines, and to keep // sub-word fields together for efficient packing. typedef struct J_UDYL_POPULATION_AND_MEMORY { /* 1 */ Word_t jpm_Pop0; // total population-1 in array. /* 2 */ jp_t jpm_JP; // JP to first branch; see above. /* 4 */ Word_t jpm_LastUPop0; // last jpm_Pop0 when convert to BranchU /* 7 */ Pjv_t jpm_PValue; // pointer to value to return. // Note: Field names match PJError_t for convenience in macros: /* 8 */ char je_Errno; // one of the enums in Judy.h. /* 8/9 */ int je_ErrID; // often an internal source line number. /* 9/10 */ Word_t jpm_TotalMemWords; // words allocated in array. } jLpm_t, *PjLpm_t; // TABLES FOR DETERMINING IF LEAVES HAVE ROOM TO GROW: // // These tables indicate if a given memory chunk can support growth of a given // object into wasted (rounded-up) memory in the chunk. Note: This violates // the hiddenness of the JudyMalloc code. extern const uint8_t j__L_Leaf1PopToWords[cJL_LEAF1_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf2PopToWords[cJL_LEAF2_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf3PopToWords[cJL_LEAF3_MAXPOP1 + 1]; #ifdef JU_64BIT extern const uint8_t j__L_Leaf4PopToWords[cJL_LEAF4_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf5PopToWords[cJL_LEAF5_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf6PopToWords[cJL_LEAF6_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf7PopToWords[cJL_LEAF7_MAXPOP1 + 1]; #endif extern const uint8_t j__L_LeafWPopToWords[cJL_LEAFW_MAXPOP1 + 1]; extern const uint8_t j__L_LeafVPopToWords[]; // These tables indicate where value areas start: extern const uint8_t j__L_Leaf1Offset [cJL_LEAF1_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf2Offset [cJL_LEAF2_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf3Offset [cJL_LEAF3_MAXPOP1 + 1]; #ifdef JU_64BIT extern const uint8_t j__L_Leaf4Offset [cJL_LEAF4_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf5Offset [cJL_LEAF5_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf6Offset [cJL_LEAF6_MAXPOP1 + 1]; extern const uint8_t j__L_Leaf7Offset [cJL_LEAF7_MAXPOP1 + 1]; #endif extern const uint8_t j__L_LeafWOffset [cJL_LEAFW_MAXPOP1 + 1]; // Also define macros to hide the details in the code using these tables. #define JL_LEAF1GROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJL_LEAF1_MAXPOP1, j__L_Leaf1PopToWords) #define JL_LEAF2GROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJL_LEAF2_MAXPOP1, j__L_Leaf2PopToWords) #define JL_LEAF3GROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJL_LEAF3_MAXPOP1, j__L_Leaf3PopToWords) #ifdef JU_64BIT #define JL_LEAF4GROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJL_LEAF4_MAXPOP1, j__L_Leaf4PopToWords) #define JL_LEAF5GROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJL_LEAF5_MAXPOP1, j__L_Leaf5PopToWords) #define JL_LEAF6GROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJL_LEAF6_MAXPOP1, j__L_Leaf6PopToWords) #define JL_LEAF7GROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJL_LEAF7_MAXPOP1, j__L_Leaf7PopToWords) #endif #define JL_LEAFWGROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJL_LEAFW_MAXPOP1, j__L_LeafWPopToWords) #define JL_LEAFVGROWINPLACE(Pop1) \ J__U_GROWCK(Pop1, cJU_BITSPERSUBEXPL, j__L_LeafVPopToWords) #define JL_LEAF1VALUEAREA(Pjv,Pop1) (((PWord_t)(Pjv)) + j__L_Leaf1Offset[Pop1]) #define JL_LEAF2VALUEAREA(Pjv,Pop1) (((PWord_t)(Pjv)) + j__L_Leaf2Offset[Pop1]) #define JL_LEAF3VALUEAREA(Pjv,Pop1) (((PWord_t)(Pjv)) + j__L_Leaf3Offset[Pop1]) #ifdef JU_64BIT #define JL_LEAF4VALUEAREA(Pjv,Pop1) (((PWord_t)(Pjv)) + j__L_Leaf4Offset[Pop1]) #define JL_LEAF5VALUEAREA(Pjv,Pop1) (((PWord_t)(Pjv)) + j__L_Leaf5Offset[Pop1]) #define JL_LEAF6VALUEAREA(Pjv,Pop1) (((PWord_t)(Pjv)) + j__L_Leaf6Offset[Pop1]) #define JL_LEAF7VALUEAREA(Pjv,Pop1) (((PWord_t)(Pjv)) + j__L_Leaf7Offset[Pop1]) #endif #define JL_LEAFWVALUEAREA(Pjv,Pop1) (((PWord_t)(Pjv)) + j__L_LeafWOffset[Pop1]) #define JL_LEAF1POPTOWORDS(Pop1) (j__L_Leaf1PopToWords[Pop1]) #define JL_LEAF2POPTOWORDS(Pop1) (j__L_Leaf2PopToWords[Pop1]) #define JL_LEAF3POPTOWORDS(Pop1) (j__L_Leaf3PopToWords[Pop1]) #ifdef JU_64BIT #define JL_LEAF4POPTOWORDS(Pop1) (j__L_Leaf4PopToWords[Pop1]) #define JL_LEAF5POPTOWORDS(Pop1) (j__L_Leaf5PopToWords[Pop1]) #define JL_LEAF6POPTOWORDS(Pop1) (j__L_Leaf6PopToWords[Pop1]) #define JL_LEAF7POPTOWORDS(Pop1) (j__L_Leaf7PopToWords[Pop1]) #endif #define JL_LEAFWPOPTOWORDS(Pop1) (j__L_LeafWPopToWords[Pop1]) #define JL_LEAFVPOPTOWORDS(Pop1) (j__L_LeafVPopToWords[Pop1]) // FUNCTIONS TO ALLOCATE OBJECTS: PjLpm_t j__udyLAllocJLPM(void); // constant size. Pjbl_t j__udyLAllocJBL( PjLpm_t); // constant size. Pjbb_t j__udyLAllocJBB( PjLpm_t); // constant size. Pjp_t j__udyLAllocJBBJP(Word_t, PjLpm_t); Pjbu_t j__udyLAllocJBU( PjLpm_t); // constant size. Pjll_t j__udyLAllocJLL1( Word_t, PjLpm_t); Pjll_t j__udyLAllocJLL2( Word_t, PjLpm_t); Pjll_t j__udyLAllocJLL3( Word_t, PjLpm_t); #ifdef JU_64BIT Pjll_t j__udyLAllocJLL4( Word_t, PjLpm_t); Pjll_t j__udyLAllocJLL5( Word_t, PjLpm_t); Pjll_t j__udyLAllocJLL6( Word_t, PjLpm_t); Pjll_t j__udyLAllocJLL7( Word_t, PjLpm_t); #endif Pjlw_t j__udyLAllocJLW( Word_t ); // no PjLpm_t needed. PjLlb_t j__udyLAllocJLB1( PjLpm_t); // constant size. Pjv_t j__udyLAllocJV( Word_t, PjLpm_t); // FUNCTIONS TO FREE OBJECTS: void j__udyLFreeJLPM( PjLpm_t, PjLpm_t); // constant size. void j__udyLFreeJBL( Pjbl_t, PjLpm_t); // constant size. void j__udyLFreeJBB( Pjbb_t, PjLpm_t); // constant size. void j__udyLFreeJBBJP(Pjp_t, Word_t, PjLpm_t); void j__udyLFreeJBU( Pjbu_t, PjLpm_t); // constant size. void j__udyLFreeJLL1( Pjll_t, Word_t, PjLpm_t); void j__udyLFreeJLL2( Pjll_t, Word_t, PjLpm_t); void j__udyLFreeJLL3( Pjll_t, Word_t, PjLpm_t); #ifdef JU_64BIT void j__udyLFreeJLL4( Pjll_t, Word_t, PjLpm_t); void j__udyLFreeJLL5( Pjll_t, Word_t, PjLpm_t); void j__udyLFreeJLL6( Pjll_t, Word_t, PjLpm_t); void j__udyLFreeJLL7( Pjll_t, Word_t, PjLpm_t); #endif void j__udyLFreeJLW( Pjlw_t, Word_t, PjLpm_t); void j__udyLFreeJLB1( PjLlb_t, PjLpm_t); // constant size. void j__udyLFreeJV( Pjv_t, Word_t, PjLpm_t); void j__udyLFreeSM( Pjp_t, PjLpm_t); // everything below Pjp. #endif // ! _JUDYL_INCLUDED