// SPDX-License-Identifier: GPL-3.0-or-later #include "../libnetdata.h" storage_number pack_storage_number(NETDATA_DOUBLE value, SN_FLAGS flags) { // bit 32 = sign 0:positive, 1:negative // bit 31 = 0:divide, 1:multiply // bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total) // bit 27 SN_EXISTS_100 // bit 26 SN_EXISTS_RESET // bit 25 SN_ANOMALY_BIT = 0: anomalous, 1: not anomalous // bit 24 to bit 1 = the value if(unlikely(fpclassify(value) == FP_NAN || fpclassify(value) == FP_INFINITE)) return SN_EMPTY_SLOT; storage_number r = flags & SN_USER_FLAGS; if(unlikely(fpclassify(value) == FP_ZERO || fpclassify(value) == FP_SUBNORMAL)) return r; int m = 0; NETDATA_DOUBLE n = value, factor = 10; // if the value is negative // add the sign bit and make it positive if(n < 0) { r += SN_FLAG_NEGATIVE; // the sign bit 32 n = -n; } if(n / 10000000.0 > 0x00ffffff) { factor = 100; r |= SN_FLAG_NOT_EXISTS_MUL100; } // make its integer part fit in 0x00ffffff // by dividing it by 10 up to 7 times // and increasing the multiplier while(m < 7 && n > (NETDATA_DOUBLE)0x00ffffff) { n /= factor; m++; } if(m) { // the value was too big, and we divided it // so, we add a multiplier to unpack it r += SN_FLAG_MULTIPLY + (m << 27); // the multiplier m if(n > (NETDATA_DOUBLE)0x00ffffff) { #ifdef NETDATA_INTERNAL_CHECKS error("Number " NETDATA_DOUBLE_FORMAT " is too big.", value); #endif r += 0x00ffffff; return r; } } else { // 0x0019999e is the number that can be multiplied // by 10 to give 0x00ffffff // while the value is below 0x0019999e we can // multiply it by 10, up to 7 times, increasing // the multiplier while(m < 7 && n < (NETDATA_DOUBLE)0x0019999e) { n *= 10; m++; } if (unlikely(n > (NETDATA_DOUBLE)0x00ffffff)) { n /= 10; m--; } // the value was small enough, and we multiplied it // so, we add a divider to unpack it r += (m << 27); // the divider m } #ifdef STORAGE_WITH_MATH // without this there are rounding problems // example: 0.9 becomes 0.89 r += lrint((double) n); #else r += (storage_number)n; #endif return r; } // Lookup table to make storage number unpacking efficient. NETDATA_DOUBLE unpack_storage_number_lut10x[4 * 8]; __attribute__((constructor)) void initialize_lut(void) { // The lookup table is partitioned in 4 subtables based on the // values of the factor and exp bits. for (int i = 0; i < 8; i++) { // factor = 0 unpack_storage_number_lut10x[0 * 8 + i] = 1 / pow(10, i); // exp = 0 unpack_storage_number_lut10x[1 * 8 + i] = pow(10, i); // exp = 1 // factor = 1 unpack_storage_number_lut10x[2 * 8 + i] = 1 / pow(100, i); // exp = 0 unpack_storage_number_lut10x[3 * 8 + i] = pow(100, i); // exp = 1 } } /* int print_netdata_double(char *str, NETDATA_DOUBLE value) { char *wstr = str; int sign = (value < 0) ? 1 : 0; if(sign) value = -value; #ifdef STORAGE_WITH_MATH // without llrintl() there are rounding problems // for example 0.9 becomes 0.89 unsigned long long uvalue = (unsigned long long int) llrintl(value * (NETDATA_DOUBLE)100000); #else unsigned long long uvalue = value * (NETDATA_DOUBLE)100000; #endif wstr = print_number_llu_r_smart(str, uvalue); // make sure we have 6 bytes at least while((wstr - str) < 6) *wstr++ = '0'; // put the sign back if(sign) *wstr++ = '-'; // reverse it char *begin = str, *end = --wstr, aux; while (end > begin) aux = *end, *end-- = *begin, *begin++ = aux; // wstr--; // strreverse(str, wstr); // remove trailing zeros int decimal = 5; while(decimal > 0 && *wstr == '0') { *wstr-- = '\0'; decimal--; } // terminate it, one position to the right // to let space for a dot wstr[2] = '\0'; // make space for the dot int i; for(i = 0; i < decimal ;i++) { wstr[1] = wstr[0]; wstr--; } // put the dot if(wstr[2] == '\0') { wstr[1] = '\0'; decimal--; } else wstr[1] = '.'; // return the buffer length return (int) ((wstr - str) + 2 + decimal ); } */ int print_netdata_double(char *str, NETDATA_DOUBLE value) { // info("printing number " NETDATA_DOUBLE_FORMAT, value); char integral_str[50], fractional_str[50]; char *wstr = str; if(unlikely(value < 0)) { *wstr++ = '-'; value = -value; } NETDATA_DOUBLE integral, fractional; #ifdef STORAGE_WITH_MATH fractional = modfndd(value, &integral) * 10000000.0; #else fractional = ((unsigned long long)(value * 10000000ULL) % 10000000ULL); #endif unsigned long long integral_int = (unsigned long long)integral; unsigned long long fractional_int = (unsigned long long)llrintndd(fractional); if(unlikely(fractional_int >= 10000000)) { integral_int += 1; fractional_int -= 10000000; } // info("integral " NETDATA_DOUBLE_FORMAT " (%llu), fractional " NETDATA_DOUBLE_FORMAT " (%llu)", integral, integral_int, fractional, fractional_int); char *istre; if(unlikely(integral_int == 0)) { integral_str[0] = '0'; istre = &integral_str[1]; } else // convert the integral part to string (reversed) istre = print_number_llu_r_smart(integral_str, integral_int); // copy reversed the integral string istre--; while( istre >= integral_str ) *wstr++ = *istre--; if(likely(fractional_int != 0)) { // add a dot *wstr++ = '.'; // convert the fractional part to string (reversed) char *fstre = print_number_llu_r_smart(fractional_str, fractional_int); // prepend zeros to reach 7 digits length int decimal = 7; int len = (int)(fstre - fractional_str); while(len < decimal) { *wstr++ = '0'; len++; } char *begin = fractional_str; while(begin < fstre && *begin == '0') begin++; // copy reversed the fractional string fstre--; while( fstre >= begin ) *wstr++ = *fstre--; } *wstr = '\0'; // info("printed number '%s'", str); return (int)(wstr - str); }