// SPDX-License-Identifier: GPL-3.0-or-later #ifndef NETDATA_STORAGE_NUMBER_H #define NETDATA_STORAGE_NUMBER_H 1 #include "../libnetdata.h" #ifdef NETDATA_WITHOUT_LONG_DOUBLE #define powl pow #define modfl modf #define llrintl llrint #define roundl round #define sqrtl sqrt #define copysignl copysign #define strtold strtod typedef double calculated_number; #define CALCULATED_NUMBER_FORMAT "%0.7f" #define CALCULATED_NUMBER_FORMAT_ZERO "%0.0f" #define CALCULATED_NUMBER_FORMAT_AUTO "%f" #define LONG_DOUBLE_MODIFIER "f" typedef double LONG_DOUBLE; #else // NETDATA_WITHOUT_LONG_DOUBLE typedef long double calculated_number; #define CALCULATED_NUMBER_FORMAT "%0.7Lf" #define CALCULATED_NUMBER_FORMAT_ZERO "%0.0Lf" #define CALCULATED_NUMBER_FORMAT_AUTO "%Lf" #define LONG_DOUBLE_MODIFIER "Lf" typedef long double LONG_DOUBLE; #endif // NETDATA_WITHOUT_LONG_DOUBLE //typedef long long calculated_number; //#define CALCULATED_NUMBER_FORMAT "%lld" typedef long long collected_number; #define COLLECTED_NUMBER_FORMAT "%lld" /* typedef long double collected_number; #define COLLECTED_NUMBER_FORMAT "%0.7Lf" */ #define calculated_number_modf(x, y) modfl(x, y) #define calculated_number_llrint(x) llrintl(x) #define calculated_number_round(x) roundl(x) #define calculated_number_fabs(x) fabsl(x) #define calculated_number_pow(x, y) powl(x, y) #define calculated_number_epsilon (calculated_number)0.0000001 #define calculated_number_equal(a, b) (calculated_number_fabs((a) - (b)) < calculated_number_epsilon) #define calculated_number_isnumber(a) (!(fpclassify(a) & (FP_NAN|FP_INFINITE))) typedef uint32_t storage_number; #define STORAGE_NUMBER_FORMAT "%u" #define SN_ANOMALY_BIT (1 << 24) // the anomaly bit of the value #define SN_EXISTS_RESET (1 << 25) // the value has been overflown #define SN_EXISTS_100 (1 << 26) // very large value (multiplier is 100 instead of 10) #define SN_DEFAULT_FLAGS SN_ANOMALY_BIT #define SN_EMPTY_SLOT 0x00000000 // When the calculated number is zero and the value is anomalous (ie. it's bit // is zero) we want to return a storage_number representation that is // different from the empty slot. We achieve this by mapping zero to // SN_EXISTS_100. Unpacking the SN_EXISTS_100 value will return zero because // its fraction field (as well as its exponent factor field) will be zero. #define SN_ANOMALOUS_ZERO SN_EXISTS_100 // checks #define does_storage_number_exist(value) (((storage_number) (value)) != SN_EMPTY_SLOT) #define did_storage_number_reset(value) ((((storage_number) (value)) & SN_EXISTS_RESET) != 0) storage_number pack_storage_number(calculated_number value, uint32_t flags); static inline calculated_number unpack_storage_number(storage_number value) __attribute__((const)); int print_calculated_number(char *str, calculated_number value); // sign div/mul <--- multiplier / divider ---> 10/100 RESET EXISTS VALUE #define STORAGE_NUMBER_POSITIVE_MAX_RAW (storage_number)( (0 << 31) | (1 << 30) | (1 << 29) | (1 << 28) | (1<<27) | (1 << 26) | (0 << 25) | (1 << 24) | 0x00ffffff ) #define STORAGE_NUMBER_POSITIVE_MIN_RAW (storage_number)( (0 << 31) | (0 << 30) | (1 << 29) | (1 << 28) | (1<<27) | (0 << 26) | (0 << 25) | (1 << 24) | 0x00000001 ) #define STORAGE_NUMBER_NEGATIVE_MAX_RAW (storage_number)( (1 << 31) | (0 << 30) | (1 << 29) | (1 << 28) | (1<<27) | (0 << 26) | (0 << 25) | (1 << 24) | 0x00000001 ) #define STORAGE_NUMBER_NEGATIVE_MIN_RAW (storage_number)( (1 << 31) | (1 << 30) | (1 << 29) | (1 << 28) | (1<<27) | (1 << 26) | (0 << 25) | (1 << 24) | 0x00ffffff ) // accepted accuracy loss #define ACCURACY_LOSS_ACCEPTED_PERCENT 0.0001 #define accuracy_loss(t1, t2) (((t1) == (t2) || (t1) == 0.0 || (t2) == 0.0) ? 0.0 : (100.0 - (((t1) > (t2)) ? ((t2) * 100.0 / (t1) ) : ((t1) * 100.0 / (t2))))) // Maximum acceptable rate of increase for counters. With a rate of 10% netdata can safely detect overflows with a // period of at least every other 10 samples. #define MAX_INCREMENTAL_PERCENT_RATE 10 static inline calculated_number unpack_storage_number(storage_number value) { extern calculated_number unpack_storage_number_lut10x[4 * 8]; if(!value) return 0; int sign = 1, exp = 0; int factor = 0; // bit 32 = 0:positive, 1:negative if(unlikely(value & (1 << 31))) sign = -1; // bit 31 = 0:divide, 1:multiply if(unlikely(value & (1 << 30))) exp = 1; // bit 27 SN_EXISTS_100 if(unlikely(value & (1 << 26))) factor = 1; // bit 26 SN_EXISTS_RESET // bit 25 SN_ANOMALY_BIT // bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total) int mul = (value & ((1<<29)|(1<<28)|(1<<27))) >> 27; // bit 24 to bit 1 = the value, so remove all other bits value ^= value & ((1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(1<<26)|(1<<25)|(1<<24)); calculated_number n = value; // fprintf(stderr, "UNPACK: %08X, sign = %d, exp = %d, mul = %d, factor = %d, n = " CALCULATED_NUMBER_FORMAT "\n", value, sign, exp, mul, factor, n); return sign * unpack_storage_number_lut10x[(factor * 16) + (exp * 8) + mul] * n; } #endif /* NETDATA_STORAGE_NUMBER_H */