// SPDX-License-Identifier: GPL-3.0-or-later #ifndef NETDATA_STORAGE_NUMBER_H #define NETDATA_STORAGE_NUMBER_H 1 #include #include "../libnetdata.h" #ifdef NETDATA_WITH_LONG_DOUBLE typedef long double NETDATA_DOUBLE; #define NETDATA_DOUBLE_FORMAT "%0.7Lf" #define NETDATA_DOUBLE_FORMAT_ZERO "%0.0Lf" #define NETDATA_DOUBLE_FORMAT_AUTO "%Lf" #define NETDATA_DOUBLE_MODIFIER "Lf" #define NETDATA_DOUBLE_FORMAT_G "%0.19Le" #define NETDATA_DOUBLE_MAX LDBL_MAX #define strtondd(s, endptr) strtold(s, endptr) #define powndd(x, y) powl(x, y) #define llrintndd(x) llrintl(x) #define roundndd(x) roundl(x) #define sqrtndd(x) sqrtl(x) #define copysignndd(x, y) copysignl(x, y) #define modfndd(x, y) modfl(x, y) #define fabsndd(x) fabsl(x) #define floorndd(x) floorl(x) #define ceilndd(x) ceill(x) #define log10ndd(x) log10l(x) #else // NETDATA_WITH_LONG_DOUBLE typedef double NETDATA_DOUBLE; #define NETDATA_DOUBLE_FORMAT "%0.7f" #define NETDATA_DOUBLE_FORMAT_ZERO "%0.0f" #define NETDATA_DOUBLE_FORMAT_AUTO "%f" #define NETDATA_DOUBLE_MODIFIER "f" #define NETDATA_DOUBLE_FORMAT_G "%0.19e" #define NETDATA_DOUBLE_MAX DBL_MAX #define strtondd(s, endptr) strtod(s, endptr) #define powndd(x, y) pow(x, y) #define llrintndd(x) llrint(x) #define roundndd(x) round(x) #define sqrtndd(x) sqrt(x) #define copysignndd(x, y) copysign(x, y) #define modfndd(x, y) modf(x, y) #define fabsndd(x) fabs(x) #define floorndd(x) floor(x) #define ceilndd(x) ceil(x) #define log10ndd(x) log10(x) #endif // NETDATA_WITH_LONG_DOUBLE typedef long long collected_number; #define COLLECTED_NUMBER_FORMAT "%lld" #define epsilonndd (NETDATA_DOUBLE)0.0000001 #define considered_equal_ndd(a, b) (fabsndd((a) - (b)) < epsilonndd) #if defined(HAVE_ISFINITE) || defined(isfinite) // The isfinite() macro shall determine whether its argument has a // finite value (zero, subnormal, or normal, and not infinite or NaN). #define netdata_double_isnumber(a) (isfinite(a)) #elif defined(HAVE_FINITE) || defined(finite) #define netdata_double_isnumber(a) (finite(a)) #else #define netdata_double_isnumber(a) (fpclassify(a) != FP_NAN && fpclassify(a) != FP_INFINITE) #endif #define netdata_double_is_zero(a) (!netdata_double_isnumber(a) || considered_equal_ndd(a, 0.0)) #define netdata_double_is_nonzero(a) (!netdata_double_is_zero(a)) typedef uint32_t storage_number; typedef struct storage_number_tier1 { float sum_value; float min_value; float max_value; uint16_t count; uint16_t anomaly_count; } storage_number_tier1_t; #define STORAGE_NUMBER_FORMAT "%u" typedef enum { SN_FLAG_NONE = 0, SN_FLAG_NOT_ANOMALOUS = (1 << 24), // the anomaly bit of the value (0:anomalous, 1:not anomalous) SN_FLAG_RESET = (1 << 25), // the value has been overflown SN_FLAG_NOT_EXISTS_MUL100 = (1 << 26), // very large value (multiplier is 100 instead of 10) SN_FLAG_MULTIPLY = (1 << 30), // multiply, else divide SN_FLAG_NEGATIVE = (1 << 31), // negative, else positive } SN_FLAGS; #define SN_USER_FLAGS (SN_FLAG_NOT_ANOMALOUS | SN_FLAG_RESET) // default flags for all storage numbers // anomaly bit is reversed, so we set it by default #define SN_DEFAULT_FLAGS SN_FLAG_NOT_ANOMALOUS // When the calculated number is zero and the value is anomalous (ie. it's bit // is zero) we want to return a storage_number representation that is // different from the empty slot. We achieve this by mapping zero to // SN_EXISTS_100. Unpacking the SN_EXISTS_100 value will return zero because // its fraction field (as well as its exponent factor field) will be zero. #define SN_EMPTY_SLOT SN_FLAG_NOT_EXISTS_MUL100 // checks #define does_storage_number_exist(value) (((storage_number)(value)) != SN_EMPTY_SLOT) #define did_storage_number_reset(value) ((((storage_number)(value)) & SN_FLAG_RESET)) #define is_storage_number_anomalous(value) (does_storage_number_exist(value) && !(((storage_number)(value)) & SN_FLAG_NOT_ANOMALOUS)) storage_number pack_storage_number(NETDATA_DOUBLE value, SN_FLAGS flags) __attribute__((const)); static inline NETDATA_DOUBLE unpack_storage_number(storage_number value) __attribute__((const)); // sign div/mul <--- multiplier / divider ---> 10/100 RESET EXISTS VALUE #define STORAGE_NUMBER_POSITIVE_MAX_RAW (storage_number)( (0 << 31) | (1 << 30) | (1 << 29) | (1 << 28) | (1 << 27) | (1 << 26) | (0 << 25) | (1 << 24) | 0x00ffffff ) #define STORAGE_NUMBER_POSITIVE_MIN_RAW (storage_number)( (0 << 31) | (0 << 30) | (1 << 29) | (1 << 28) | (1 << 27) | (0 << 26) | (0 << 25) | (1 << 24) | 0x00000001 ) #define STORAGE_NUMBER_NEGATIVE_MAX_RAW (storage_number)( (1 << 31) | (0 << 30) | (1 << 29) | (1 << 28) | (1 << 27) | (0 << 26) | (0 << 25) | (1 << 24) | 0x00000001 ) #define STORAGE_NUMBER_NEGATIVE_MIN_RAW (storage_number)( (1 << 31) | (1 << 30) | (1 << 29) | (1 << 28) | (1 << 27) | (1 << 26) | (0 << 25) | (1 << 24) | 0x00ffffff ) // accepted accuracy loss #define ACCURACY_LOSS_ACCEPTED_PERCENT 0.0001 #define accuracy_loss(t1, t2) (((t1) == (t2) || (t1) == 0.0 || (t2) == 0.0) ? 0.0 : (100.0 - (((t1) > (t2)) ? ((t2) * 100.0 / (t1) ) : ((t1) * 100.0 / (t2))))) // Maximum acceptable rate of increase for counters. With a rate of 10% netdata can safely detect overflows with a // period of at least every other 10 samples. #define MAX_INCREMENTAL_PERCENT_RATE 10 static inline NETDATA_DOUBLE unpack_storage_number(storage_number value) { extern NETDATA_DOUBLE unpack_storage_number_lut10x[4 * 8]; if(unlikely(value == SN_EMPTY_SLOT)) return NAN; int sign = 1, exp = 0; int factor = 0; // bit 32 = 0:positive, 1:negative if(unlikely(value & SN_FLAG_NEGATIVE)) sign = -1; // bit 31 = 0:divide, 1:multiply if(unlikely(value & SN_FLAG_MULTIPLY)) exp = 1; // bit 27 SN_FLAG_NOT_EXISTS_MUL100 if(unlikely(value & SN_FLAG_NOT_EXISTS_MUL100)) factor = 1; // bit 26 SN_FLAG_RESET // bit 25 SN_FLAG_NOT_ANOMALOUS // bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total) int mul = (int)((value & ((1<<29)|(1<<28)|(1<<27))) >> 27); // bit 24 to bit 1 = the value, so remove all other bits value ^= value & ((1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(1<<26)|(1<<25)|(1<<24)); NETDATA_DOUBLE n = value; // fprintf(stderr, "UNPACK: %08X, sign = %d, exp = %d, mul = %d, factor = %d, n = " CALCULATED_NUMBER_FORMAT "\n", value, sign, exp, mul, factor, n); return sign * unpack_storage_number_lut10x[(factor * 16) + (exp * 8) + mul] * n; } // all these prefixes should use characters that are not allowed in the numbers they represent #define HEX_PREFIX "0x" // we check 2 characters when parsing #define IEEE754_UINT64_B64_PREFIX "#" // we check the 1st character during parsing #define IEEE754_DOUBLE_B64_PREFIX "@" // we check the 1st character during parsing #define IEEE754_DOUBLE_HEX_PREFIX "%" // we check the 1st character during parsing bool is_system_ieee754_double(void); #endif /* NETDATA_STORAGE_NUMBER_H */