// SPDX-License-Identifier: GPL-3.0-or-later #include "Config.h" #include "ml-private.h" using namespace ml; /* * Global configuration instance to be shared between training and * prediction threads. */ Config ml::Cfg; template <typename T> static T clamp(const T& Value, const T& Min, const T& Max) { return std::max(Min, std::min(Value, Max)); } /* * Initialize global configuration variable. */ void Config::readMLConfig(void) { const char *ConfigSectionML = CONFIG_SECTION_ML; bool EnableAnomalyDetection = config_get_boolean(ConfigSectionML, "enabled", false); /* * Read values */ unsigned MaxTrainSamples = config_get_number(ConfigSectionML, "maximum num samples to train", 4 * 3600); unsigned MinTrainSamples = config_get_number(ConfigSectionML, "minimum num samples to train", 1 * 3600); unsigned TrainEvery = config_get_number(ConfigSectionML, "train every", 1 * 3600); unsigned DiffN = config_get_number(ConfigSectionML, "num samples to diff", 1); unsigned SmoothN = config_get_number(ConfigSectionML, "num samples to smooth", 3); unsigned LagN = config_get_number(ConfigSectionML, "num samples to lag", 5); unsigned MaxKMeansIters = config_get_number(ConfigSectionML, "maximum number of k-means iterations", 1000); double DimensionAnomalyScoreThreshold = config_get_float(ConfigSectionML, "dimension anomaly score threshold", 0.99); double HostAnomalyRateThreshold = config_get_float(ConfigSectionML, "host anomaly rate threshold", 0.01); double ADMinWindowSize = config_get_float(ConfigSectionML, "minimum window size", 30); double ADMaxWindowSize = config_get_float(ConfigSectionML, "maximum window size", 600); double ADIdleWindowSize = config_get_float(ConfigSectionML, "idle window size", 30); double ADWindowRateThreshold = config_get_float(ConfigSectionML, "window minimum anomaly rate", 0.25); double ADDimensionRateThreshold = config_get_float(ConfigSectionML, "anomaly event min dimension rate threshold", 0.05); std::stringstream SS; SS << netdata_configured_cache_dir << "/anomaly-detection.db"; Cfg.AnomalyDBPath = SS.str(); /* * Clamp */ MaxTrainSamples = clamp(MaxTrainSamples, 1 * 3600u, 6 * 3600u); MinTrainSamples = clamp(MinTrainSamples, 1 * 3600u, 6 * 3600u); TrainEvery = clamp(TrainEvery, 1 * 3600u, 6 * 3600u); DiffN = clamp(DiffN, 0u, 1u); SmoothN = clamp(SmoothN, 0u, 5u); LagN = clamp(LagN, 0u, 5u); MaxKMeansIters = clamp(MaxKMeansIters, 500u, 1000u); DimensionAnomalyScoreThreshold = clamp(DimensionAnomalyScoreThreshold, 0.01, 5.00); HostAnomalyRateThreshold = clamp(HostAnomalyRateThreshold, 0.01, 1.0); ADMinWindowSize = clamp(ADMinWindowSize, 30.0, 300.0); ADMaxWindowSize = clamp(ADMaxWindowSize, 60.0, 900.0); ADIdleWindowSize = clamp(ADIdleWindowSize, 30.0, 900.0); ADWindowRateThreshold = clamp(ADWindowRateThreshold, 0.01, 0.99); ADDimensionRateThreshold = clamp(ADDimensionRateThreshold, 0.01, 0.99); /* * Validate */ if (MinTrainSamples >= MaxTrainSamples) { error("invalid min/max train samples found (%u >= %u)", MinTrainSamples, MaxTrainSamples); MinTrainSamples = 1 * 3600; MaxTrainSamples = 4 * 3600; } if (ADMinWindowSize >= ADMaxWindowSize) { error("invalid min/max anomaly window size found (%lf >= %lf)", ADMinWindowSize, ADMaxWindowSize); ADMinWindowSize = 30.0; ADMaxWindowSize = 600.0; } /* * Assign to config instance */ Cfg.EnableAnomalyDetection = EnableAnomalyDetection; Cfg.MaxTrainSamples = MaxTrainSamples; Cfg.MinTrainSamples = MinTrainSamples; Cfg.TrainEvery = TrainEvery; Cfg.DiffN = DiffN; Cfg.SmoothN = SmoothN; Cfg.LagN = LagN; Cfg.MaxKMeansIters = MaxKMeansIters; Cfg.DimensionAnomalyScoreThreshold = DimensionAnomalyScoreThreshold; Cfg.HostAnomalyRateThreshold = HostAnomalyRateThreshold; Cfg.ADMinWindowSize = ADMinWindowSize; Cfg.ADMaxWindowSize = ADMaxWindowSize; Cfg.ADIdleWindowSize = ADIdleWindowSize; Cfg.ADWindowRateThreshold = ADWindowRateThreshold; Cfg.ADDimensionRateThreshold = ADDimensionRateThreshold; Cfg.HostsToSkip = config_get(ConfigSectionML, "hosts to skip from training", "!*"); Cfg.SP_HostsToSkip = simple_pattern_create(Cfg.HostsToSkip.c_str(), NULL, SIMPLE_PATTERN_EXACT); Cfg.ChartsToSkip = config_get(ConfigSectionML, "charts to skip from training", "!system.* !cpu.* !mem.* !disk.* !disk_* " "!ip.* !ipv4.* !ipv6.* !net.* !net_* !netfilter.* " "!services.* !apps.* !groups.* !user.* !ebpf.* !netdata.* *"); Cfg.SP_ChartsToSkip = simple_pattern_create(ChartsToSkip.c_str(), NULL, SIMPLE_PATTERN_EXACT); }