// Copyright (C) 2008 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_DRAW_IMAGe_ #define DLIB_DRAW_IMAGe_ #include "draw_abstract.h" #include "../algs.h" #include "../pixel.h" #include "../matrix.h" #include namespace dlib { // ---------------------------------------------------------------------------------------- template < typename image_type, typename pixel_type > void draw_line ( long x1, long y1, long x2, long y2, image_type& c_, const pixel_type& val ) { image_view c(c_); if (x1 == x2) { // make sure y1 comes before y2 if (y1 > y2) swap(y1,y2); if (x1 < 0 || x1 >= c.nc()) return; // this is a vertical line for (long y = y1; y <= y2; ++y) { if (y < 0 || y >= c.nr()) continue; assign_pixel(c[y][x1], val); } } else if (y1 == y2) { // make sure x1 comes before x2 if (x1 > x2) swap(x1,x2); if (y1 < 0 || y1 >= c.nr()) return; // this is a horizontal line for (long x = x1; x <= x2; ++x) { if (x < 0 || x >= c.nc()) continue; assign_pixel(c[y1][x] , val); } } else { // This part is a little more complicated because we are going to perform alpha // blending so the diagonal lines look nice. const rectangle valid_area = get_rect(c); rgb_alpha_pixel alpha_pixel; assign_pixel(alpha_pixel, val); const unsigned char max_alpha = alpha_pixel.alpha; const long rise = (((long)y2) - ((long)y1)); const long run = (((long)x2) - ((long)x1)); if (std::abs(rise) < std::abs(run)) { const double slope = ((double)rise)/run; double first, last; if (x1 > x2) { first = std::max(x2,valid_area.left()); last = std::min(x1,valid_area.right()); } else { first = std::max(x1,valid_area.left()); last = std::min(x2,valid_area.right()); } long y; long x; const double x1f = x1; const double y1f = y1; for (double i = first; i <= last; ++i) { const double dy = slope*(i-x1f) + y1f; const double dx = i; y = static_cast(dy); x = static_cast(dx); if (y >= valid_area.top() && y <= valid_area.bottom()) { alpha_pixel.alpha = static_cast((1.0-(dy-y))*max_alpha); assign_pixel(c[y][x], alpha_pixel); } if (y+1 >= valid_area.top() && y+1 <= valid_area.bottom()) { alpha_pixel.alpha = static_cast((dy-y)*max_alpha); assign_pixel(c[y+1][x], alpha_pixel); } } } else { const double slope = ((double)run)/rise; double first, last; if (y1 > y2) { first = std::max(y2,valid_area.top()); last = std::min(y1,valid_area.bottom()); } else { first = std::max(y1,valid_area.top()); last = std::min(y2,valid_area.bottom()); } long x; long y; const double x1f = x1; const double y1f = y1; for (double i = first; i <= last; ++i) { const double dx = slope*(i-y1f) + x1f; const double dy = i; y = static_cast(dy); x = static_cast(dx); if (x >= valid_area.left() && x <= valid_area.right()) { alpha_pixel.alpha = static_cast((1.0-(dx-x))*max_alpha); assign_pixel(c[y][x], alpha_pixel); } if (x+1 >= valid_area.left() && x+1 <= valid_area.right()) { alpha_pixel.alpha = static_cast((dx-x)*max_alpha); assign_pixel(c[y][x+1], alpha_pixel); } } } } } // ---------------------------------------------------------------------------------------- template < typename image_type, typename pixel_type > void draw_line ( image_type& c, const point& p1, const point& p2, const pixel_type& val ) { draw_line(p1.x(),p1.y(),p2.x(),p2.y(),c,val); } // ---------------------------------------------------------------------------------------- template < typename image_type, typename pixel_type > void draw_rectangle ( image_type& c, const rectangle& rect, const pixel_type& val ) { draw_line(c, rect.tl_corner(), rect.tr_corner(), val); draw_line(c, rect.bl_corner(), rect.br_corner(), val); draw_line(c, rect.tl_corner(), rect.bl_corner(), val); draw_line(c, rect.tr_corner(), rect.br_corner(), val); } // ---------------------------------------------------------------------------------------- template < typename image_type, typename pixel_type > void draw_rectangle ( image_type& c, const rectangle& rect, const pixel_type& val, unsigned int thickness ) { for (unsigned int i = 0; i < thickness; ++i) { if ((i%2)==0) draw_rectangle(c,shrink_rect(rect,(i+1)/2),val); else draw_rectangle(c,grow_rect(rect,(i+1)/2),val); } } // ---------------------------------------------------------------------------------------- template < typename image_type, typename pixel_type > void fill_rect ( image_type& img_, const rectangle& rect, const pixel_type& pixel ) { image_view img(img_); rectangle area = rect.intersect(get_rect(img)); for (long r = area.top(); r <= area.bottom(); ++r) { for (long c = area.left(); c <= area.right(); ++c) { assign_pixel(img[r][c], pixel); } } } // ---------------------------------------------------------------------------------------- template < typename image_array_type > matrix::pixel_type> tile_images ( const image_array_type& images ) { typedef typename image_traits::pixel_type T; if (images.size() == 0) return matrix(); const unsigned long size_nc = square_root(images.size()); const unsigned long size_nr = (size_nc*(size_nc-1)>=images.size())? size_nc-1 : size_nc; // Figure out the size we have to use for each chip in the big main image. We will // use the largest dimensions seen across all the chips. long nr = 0; long nc = 0; for (unsigned long i = 0; i < images.size(); ++i) { nr = std::max(num_rows(images[i]), nr); nc = std::max(num_columns(images[i]), nc); } matrix temp(size_nr*nr, size_nc*nc); T background_color; assign_pixel(background_color, 0); temp = background_color; unsigned long idx = 0; for (unsigned long r = 0; r < size_nr; ++r) { for (unsigned long c = 0; c < size_nc; ++c) { if (idx < images.size()) { set_subm(temp, r*nr, c*nc, nr, nc) = mat(images[idx]); } ++idx; } } return temp; } // ---------------------------------------------------------------------------------------- template < typename image_type, typename pixel_type > void draw_solid_circle ( image_type& img_, const dpoint& center_point, double radius, const pixel_type& pixel ) { image_view img(img_); using std::sqrt; const rectangle valid_area(get_rect(img)); const double x = center_point.x(); const double y = center_point.y(); const point cp(center_point); if (radius > 1) { long first_x = static_cast(x - radius + 0.5); long last_x = static_cast(x + radius + 0.5); const double rs = radius*radius; // ensure that we only loop over the part of the x dimension that this // image contains. if (first_x < valid_area.left()) first_x = valid_area.left(); if (last_x > valid_area.right()) last_x = valid_area.right(); long top, bottom; top = static_cast(sqrt(std::max(rs - (first_x-x-0.5)*(first_x-x-0.5),0.0))+0.5); top += y; long last = top; // draw the left half of the circle long middle = std::min(cp.x()-1,last_x); for (long i = first_x; i <= middle; ++i) { double a = i - x + 0.5; // find the top of the arc top = static_cast(sqrt(std::max(rs - a*a,0.0))+0.5); top += y; long temp = top; while(top >= last) { bottom = y - top + y; draw_line(img_, point(i,top),point(i,bottom),pixel); --top; } last = temp; } middle = std::max(cp.x(),first_x); top = static_cast(sqrt(std::max(rs - (last_x-x+0.5)*(last_x-x+0.5),0.0))+0.5); top += y; last = top; // draw the right half of the circle for (long i = last_x; i >= middle; --i) { double a = i - x - 0.5; // find the top of the arc top = static_cast(sqrt(std::max(rs - a*a,0.0))+0.5); top += y; long temp = top; while(top >= last) { bottom = y - top + y; draw_line(img_, point(i,top),point(i,bottom),pixel); --top; } last = temp; } } else if (valid_area.contains(cp)) { // For circles smaller than a pixel we will just alpha blend them in proportion // to how small they are. rgb_alpha_pixel temp; assign_pixel(temp, pixel); temp.alpha = static_cast(255*radius + 0.5); assign_pixel(img[cp.y()][cp.x()], temp); } } // ---------------------------------------------------------------------------------------- } #endif // DLIB_DRAW_IMAGe_