// Copyright (C) 2013 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_sIMD8F_Hh_ #define DLIB_sIMD8F_Hh_ #include "simd_check.h" #include "simd4f.h" #include "simd8i.h" namespace dlib { #ifdef DLIB_HAVE_AVX class simd8f { public: typedef float type; inline simd8f() {} inline simd8f(const simd4f& low, const simd4f& high) { x = _mm256_insertf128_ps(_mm256_castps128_ps256(low),high,1); } inline simd8f(float f) { x = _mm256_set1_ps(f); } inline simd8f(float r0, float r1, float r2, float r3, float r4, float r5, float r6, float r7) { x = _mm256_setr_ps(r0,r1,r2,r3,r4,r5,r6,r7); } inline simd8f(const simd8i& val):x(_mm256_cvtepi32_ps(val)) {} inline simd8f(const __m256& val):x(val) {} inline simd8f& operator=(const __m256& val) { x = val; return *this; } inline operator __m256() const { return x; } // truncate to 32bit integers inline operator __m256i() const { return _mm256_cvttps_epi32(x); } inline void load_aligned(const type* ptr) { x = _mm256_load_ps(ptr); } inline void store_aligned(type* ptr) const { _mm256_store_ps(ptr, x); } inline void load(const type* ptr) { x = _mm256_loadu_ps(ptr); } inline void store(type* ptr) const { _mm256_storeu_ps(ptr, x); } inline simd8f& operator=(const simd8i& rhs) { *this = simd8f(rhs); return *this; } inline simd8f& operator=(const float& val) { x = simd8f(val); return *this; } inline unsigned int size() const { return 8; } inline float operator[](unsigned int idx) const { float temp[8]; store(temp); return temp[idx]; } inline simd4f low() const { return _mm256_castps256_ps128(x); } inline simd4f high() const { return _mm256_extractf128_ps(x,1); } private: __m256 x; }; class simd8f_bool { public: typedef float type; inline simd8f_bool() {} inline simd8f_bool(const __m256& val):x(val) {} inline simd8f_bool(const simd4f_bool& low, const simd4f_bool& high) { x = _mm256_insertf128_ps(_mm256_castps128_ps256(low),high,1); } inline simd8f_bool& operator=(const __m256& val) { x = val; return *this; } inline operator __m256() const { return x; } private: __m256 x; }; #else class simd8f { public: typedef float type; inline simd8f() {} inline simd8f(const simd4f& low_, const simd4f& high_): _low(low_),_high(high_){} inline simd8f(float f) :_low(f),_high(f) {} inline simd8f(float r0, float r1, float r2, float r3, float r4, float r5, float r6, float r7) : _low(r0,r1,r2,r3), _high(r4,r5,r6,r7) {} inline simd8f(const simd8i& val) : _low(val.low()), _high(val.high()) { } // truncate to 32bit integers inline operator simd8i::rawarray() const { simd8i::rawarray temp; temp.low = simd4i(_low); temp.high = simd4i(_high); return temp; } inline void load_aligned(const type* ptr) { _low.load_aligned(ptr); _high.load_aligned(ptr+4); } inline void store_aligned(type* ptr) const { _low.store_aligned(ptr); _high.store_aligned(ptr+4); } inline void load(const type* ptr) { _low.load(ptr); _high.load(ptr+4); } inline void store(type* ptr) const { _low.store(ptr); _high.store(ptr+4); } inline unsigned int size() const { return 8; } inline float operator[](unsigned int idx) const { if (idx < 4) return _low[idx]; else return _high[idx-4]; } inline const simd4f& low() const { return _low; } inline const simd4f& high() const { return _high; } private: simd4f _low, _high; }; class simd8f_bool { public: typedef float type; inline simd8f_bool() {} inline simd8f_bool(const simd4f_bool& low_, const simd4f_bool& high_): _low(low_),_high(high_){} inline const simd4f_bool& low() const { return _low; } inline const simd4f_bool& high() const { return _high; } private: simd4f_bool _low,_high; }; #endif // ---------------------------------------------------------------------------------------- inline std::ostream& operator<<(std::ostream& out, const simd8f& item) { float temp[8]; item.store(temp); out << "(" << temp[0] << ", " << temp[1] << ", " << temp[2] << ", " << temp[3] << ", " << temp[4] << ", " << temp[5] << ", " << temp[6] << ", " << temp[7] << ")"; return out; } // ---------------------------------------------------------------------------------------- inline simd8f operator+ (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_add_ps(lhs, rhs); #else return simd8f(lhs.low()+rhs.low(), lhs.high()+rhs.high()); #endif } inline simd8f& operator+= (simd8f& lhs, const simd8f& rhs) { lhs = lhs + rhs; return lhs; } // ---------------------------------------------------------------------------------------- inline simd8f operator- (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_sub_ps(lhs, rhs); #else return simd8f(lhs.low()-rhs.low(), lhs.high()-rhs.high()); #endif } inline simd8f& operator-= (simd8f& lhs, const simd8f& rhs) { lhs = lhs - rhs; return lhs; } // ---------------------------------------------------------------------------------------- inline simd8f operator* (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_mul_ps(lhs, rhs); #else return simd8f(lhs.low()*rhs.low(), lhs.high()*rhs.high()); #endif } inline simd8f& operator*= (simd8f& lhs, const simd8f& rhs) { lhs = lhs * rhs; return lhs; } // ---------------------------------------------------------------------------------------- inline simd8f operator/ (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_div_ps(lhs, rhs); #else return simd8f(lhs.low()/rhs.low(), lhs.high()/rhs.high()); #endif } inline simd8f& operator/= (simd8f& lhs, const simd8f& rhs) { lhs = lhs / rhs; return lhs; } // ---------------------------------------------------------------------------------------- inline simd8f_bool operator== (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_cmp_ps(lhs, rhs, 0); #else return simd8f_bool(lhs.low() ==rhs.low(), lhs.high()==rhs.high()); #endif } // ---------------------------------------------------------------------------------------- inline simd8f_bool operator!= (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_cmp_ps(lhs, rhs, 4); #else return simd8f_bool(lhs.low() !=rhs.low(), lhs.high()!=rhs.high()); #endif } // ---------------------------------------------------------------------------------------- inline simd8f_bool operator< (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_cmp_ps(lhs, rhs, 1); #else return simd8f_bool(lhs.low() (const simd8f& lhs, const simd8f& rhs) { return rhs < lhs; } // ---------------------------------------------------------------------------------------- inline simd8f_bool operator<= (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_cmp_ps(lhs, rhs, 2); #else return simd8f_bool(lhs.low() <=rhs.low(), lhs.high()<=rhs.high()); #endif } // ---------------------------------------------------------------------------------------- inline simd8f_bool operator>= (const simd8f& lhs, const simd8f& rhs) { return rhs <= lhs; } // ---------------------------------------------------------------------------------------- inline simd8f min (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_min_ps(lhs, rhs); #else return simd8f(min(lhs.low(), rhs.low()), min(lhs.high(),rhs.high())); #endif } // ---------------------------------------------------------------------------------------- inline simd8f max (const simd8f& lhs, const simd8f& rhs) { #ifdef DLIB_HAVE_AVX return _mm256_max_ps(lhs, rhs); #else return simd8f(max(lhs.low(), rhs.low()), max(lhs.high(),rhs.high())); #endif } // ---------------------------------------------------------------------------------------- inline simd8f reciprocal (const simd8f& item) { #ifdef DLIB_HAVE_AVX return _mm256_rcp_ps(item); #else return simd8f(reciprocal(item.low()), reciprocal(item.high())); #endif } // ---------------------------------------------------------------------------------------- inline simd8f reciprocal_sqrt (const simd8f& item) { #ifdef DLIB_HAVE_AVX return _mm256_rsqrt_ps(item); #else return simd8f(reciprocal_sqrt(item.low()), reciprocal_sqrt(item.high())); #endif } // ---------------------------------------------------------------------------------------- inline float sum(const simd8f& item) { #ifdef DLIB_HAVE_AVX simd8f temp = _mm256_hadd_ps(item,item); simd8f temp2 = _mm256_hadd_ps(temp,temp); return _mm_cvtss_f32(_mm_add_ss(_mm256_castps256_ps128(temp2),_mm256_extractf128_ps(temp2,1))); #else return sum(item.low()+item.high()); #endif } // ---------------------------------------------------------------------------------------- inline float dot(const simd8f& lhs, const simd8f& rhs) { return sum(lhs*rhs); } // ---------------------------------------------------------------------------------------- inline simd8f sqrt(const simd8f& item) { #ifdef DLIB_HAVE_AVX return _mm256_sqrt_ps(item); #else return simd8f(sqrt(item.low()), sqrt(item.high())); #endif } // ---------------------------------------------------------------------------------------- inline simd8f ceil(const simd8f& item) { #ifdef DLIB_HAVE_AVX return _mm256_ceil_ps(item); #else return simd8f(ceil(item.low()), ceil(item.high())); #endif } // ---------------------------------------------------------------------------------------- inline simd8f floor(const simd8f& item) { #ifdef DLIB_HAVE_AVX return _mm256_floor_ps(item); #else return simd8f(floor(item.low()), floor(item.high())); #endif } // ---------------------------------------------------------------------------------------- // perform cmp ? a : b inline simd8f select(const simd8f_bool& cmp, const simd8f& a, const simd8f& b) { #ifdef DLIB_HAVE_AVX return _mm256_blendv_ps(b,a,cmp); #else return simd8f(select(cmp.low(), a.low(), b.low()), select(cmp.high(), a.high(), b.high())); #endif } // ---------------------------------------------------------------------------------------- } #endif // DLIB_sIMD8F_Hh_