// Copyright (C) 2013 Steve Taylor (steve98654@gmail.com) // License: Boost Software License See LICENSE.txt for the full license. // This function test battery is given in: // // Test functions taken from Pedro Gonnet's dissertation at ETH: // Adaptive Quadrature Re-Revisited // http://e-collection.library.ethz.ch/eserv/eth:65/eth-65-02.pdf #include #include #include #include #include "tester.h" namespace { using namespace test; using namespace dlib; using namespace std; logger dlog("test.numerical_integration"); class numerical_integration_tester : public tester { public: numerical_integration_tester ( ) : tester ("test_numerical_integration", "Runs tests on the numerical integration function.", 0 ) {} void perform_test() { dlog < m; double tol = 1e-10; double eps = 1e-8; m(0) = integrate_function_adapt_simp(&gg1, 0.0, 1.0, tol); m(1) = integrate_function_adapt_simp(&gg2, 0.0, 1.0, tol); m(2) = integrate_function_adapt_simp(&gg3, 0.0, 1.0, tol); m(3) = integrate_function_adapt_simp(&gg4, 0.0, 1.0, tol); m(4) = integrate_function_adapt_simp(&gg5, -1.0, 1.0, tol); m(5) = integrate_function_adapt_simp(&gg6, 0.0, 1.0, tol); m(6) = integrate_function_adapt_simp(&gg7, 0.0, 1.0, tol); m(7) = integrate_function_adapt_simp(&gg8, 0.0, 1.0, tol); m(8) = integrate_function_adapt_simp(&gg9, 0.0, 1.0, tol); m(9) = integrate_function_adapt_simp(&gg10, 0.0, 1.0, tol); m(10) = integrate_function_adapt_simp(&gg11, 0.0, 1.0, tol); m(11) = integrate_function_adapt_simp(&gg12, 1e-6, 1.0, tol); m(12) = integrate_function_adapt_simp(&gg13, 0.0, 10.0, tol); m(13) = integrate_function_adapt_simp(&gg14, 0.0, 10.0, tol); m(14) = integrate_function_adapt_simp(&gg15, 0.0, 10.0, tol); m(15) = integrate_function_adapt_simp(&gg16, 0.01, 1.0, tol); m(16) = integrate_function_adapt_simp(&gg17, 0.0, pi, tol); m(17) = integrate_function_adapt_simp(&gg18, 0.0, 1.0, tol); m(18) = integrate_function_adapt_simp(&gg19, -1.0, 1.0, tol); m(19) = integrate_function_adapt_simp(&gg20, 0.0, 1.0, tol); m(20) = integrate_function_adapt_simp(&gg21, 0.0, 1.0, tol); m(21) = integrate_function_adapt_simp(&gg22, 0.0, 5.0, tol); // Here we compare the approximated integrals against // highly accurate approximations generated either from // the exact integral values or Mathematica's NIntegrate // function using a working precision of 20. DLIB_TEST(abs(m(0) - 1.7182818284590452354) < 1e-11); DLIB_TEST(abs(m(1) - 0.7000000000000000000) < eps); DLIB_TEST(abs(m(2) - 0.6666666666666666667) < eps); DLIB_TEST(abs(m(3) - 0.2397141133444008336) < eps); DLIB_TEST(abs(m(4) - 1.5822329637296729331) < 1e-11); DLIB_TEST(abs(m(5) - 0.4000000000000000000) < eps); DLIB_TEST(abs(m(6) - 2.0000000000000000000) < 1e-4); DLIB_TEST(abs(m(7) - 0.8669729873399110375) < eps); DLIB_TEST(abs(m(8) - 1.1547005383792515290) < eps); DLIB_TEST(abs(m(9) - 0.6931471805599453094) < eps); DLIB_TEST(abs(m(10) - 0.3798854930417224753) < eps); DLIB_TEST(abs(m(11) - 0.7775036341124982763) < eps); DLIB_TEST(abs(m(12) - 0.5000000000000000000) < eps); DLIB_TEST(abs(m(13) - 1.0000000000000000000) < eps); DLIB_TEST(abs(m(14) - 0.4993633810764567446) < eps); DLIB_TEST(abs(m(15) - 0.1121393035410217 ) < eps); DLIB_TEST(abs(m(16) - 0.2910187828600526985) < eps); DLIB_TEST(abs(m(17) + 0.4342944819032518276) < 1e-5); DLIB_TEST(abs(m(18) - 1.56439644406905 ) < eps); DLIB_TEST(abs(m(19) - 0.1634949430186372261) < eps); DLIB_TEST(abs(m(20) - 0.0134924856494677726) < eps); } static double gg1(double x) { return pow(e,x); } static double gg2(double x) { if(x > 0.3) { return 1.0; } else { return 0; } } static double gg3(double x) { return pow(x,0.5); } static double gg4(double x) { return 23.0/25.0*cosh(x)-cos(x); } static double gg5(double x) { return 1/(pow(x,4) + pow(x,2) + 0.9); } static double gg6(double x) { return pow(x,1.5); } static double gg7(double x) { return pow(x,-0.5); } static double gg8(double x) { return 1/(1 + pow(x,4)); } static double gg9(double x) { return 2/(2 + sin(10*pi*x)); } static double gg10(double x) { return 1/(1+x); } static double gg11(double x) { return 1.0/(1 + pow(e,x)); } static double gg12(double x) { return x/(pow(e,x)-1.0); } static double gg13(double x) { return sqrt(50.0)*pow(e,-50.0*pi*x*x); } static double gg14(double x) { return 25.0*pow(e,-25.0*x); } static double gg15(double x) { return 50.0/(pi*(2500.0*x*x+1)); } static double gg16(double x) { return 50.0*pow((sin(50.0*pi*x)/(50.0*pi*x)),2); } static double gg17(double x) { return cos(cos(x)+3*sin(x)+2*cos(2*x)+3*cos(3*x)); } static double gg18(double x) { return log10(x); } static double gg19(double x) { return 1/(1.005+x*x); } static double gg20(double x) { return 1/cosh(20.0*(x-1.0/5.0)) + 1/cosh(400.0*(x-2.0/5.0)) + 1/cosh(8000.0*(x-3.0/5.0)); } static double gg21(double x) { return 1.0/(1.0+(230.0*x-30.0)*(230.0*x-30.0)); } static double gg22(double x) { if(x < 1) { return (x + 1.0); } else if(x >= 1 && x <= 3) { return (3.0 - x); } else { return 2.0; } } }; numerical_integration_tester a; }