// SPDX-License-Identifier: GPL-3.0-or-later #include <dlib/clustering.h> #include "ml-private.h" #include <random> #include "ad_charts.h" #include "database/sqlite/sqlite3.h" #define ML_METADATA_VERSION 2 #define WORKER_TRAIN_QUEUE_POP 0 #define WORKER_TRAIN_ACQUIRE_DIMENSION 1 #define WORKER_TRAIN_QUERY 2 #define WORKER_TRAIN_KMEANS 3 #define WORKER_TRAIN_UPDATE_MODELS 4 #define WORKER_TRAIN_RELEASE_DIMENSION 5 #define WORKER_TRAIN_UPDATE_HOST 6 #define WORKER_TRAIN_FLUSH_MODELS 7 static sqlite3 *db = NULL; static netdata_mutex_t db_mutex = NETDATA_MUTEX_INITIALIZER; /* * Functions to convert enums to strings */ __attribute__((unused)) static const char * ml_machine_learning_status_to_string(enum ml_machine_learning_status mls) { switch (mls) { case MACHINE_LEARNING_STATUS_ENABLED: return "enabled"; case MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART: return "disabled-sp"; default: return "unknown"; } } __attribute__((unused)) static const char * ml_metric_type_to_string(enum ml_metric_type mt) { switch (mt) { case METRIC_TYPE_CONSTANT: return "constant"; case METRIC_TYPE_VARIABLE: return "variable"; default: return "unknown"; } } __attribute__((unused)) static const char * ml_training_status_to_string(enum ml_training_status ts) { switch (ts) { case TRAINING_STATUS_PENDING_WITH_MODEL: return "pending-with-model"; case TRAINING_STATUS_PENDING_WITHOUT_MODEL: return "pending-without-model"; case TRAINING_STATUS_TRAINED: return "trained"; case TRAINING_STATUS_UNTRAINED: return "untrained"; case TRAINING_STATUS_SILENCED: return "silenced"; default: return "unknown"; } } __attribute__((unused)) static const char * ml_training_result_to_string(enum ml_training_result tr) { switch (tr) { case TRAINING_RESULT_OK: return "ok"; case TRAINING_RESULT_INVALID_QUERY_TIME_RANGE: return "invalid-query"; case TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES: return "missing-values"; case TRAINING_RESULT_NULL_ACQUIRED_DIMENSION: return "null-acquired-dim"; case TRAINING_RESULT_CHART_UNDER_REPLICATION: return "chart-under-replication"; default: return "unknown"; } } /* * Features */ // subtract elements that are `diff_n` positions apart static void ml_features_diff(ml_features_t *features) { if (features->diff_n == 0) return; for (size_t idx = 0; idx != (features->src_n - features->diff_n); idx++) { size_t high = (features->src_n - 1) - idx; size_t low = high - features->diff_n; features->dst[low] = features->src[high] - features->src[low]; } size_t n = features->src_n - features->diff_n; memcpy(features->src, features->dst, n * sizeof(calculated_number_t)); for (size_t idx = features->src_n - features->diff_n; idx != features->src_n; idx++) features->src[idx] = 0.0; } // a function that computes the window average of an array inplace static void ml_features_smooth(ml_features_t *features) { calculated_number_t sum = 0.0; size_t idx = 0; for (; idx != features->smooth_n - 1; idx++) sum += features->src[idx]; for (; idx != (features->src_n - features->diff_n); idx++) { sum += features->src[idx]; calculated_number_t prev_cn = features->src[idx - (features->smooth_n - 1)]; features->src[idx - (features->smooth_n - 1)] = sum / features->smooth_n; sum -= prev_cn; } for (idx = 0; idx != features->smooth_n; idx++) features->src[(features->src_n - 1) - idx] = 0.0; } // create lag'd vectors out of the preprocessed buffer static void ml_features_lag(ml_features_t *features) { size_t n = features->src_n - features->diff_n - features->smooth_n + 1 - features->lag_n; features->preprocessed_features.resize(n); unsigned target_num_samples = Cfg.max_train_samples * Cfg.random_sampling_ratio; double sampling_ratio = std::min(static_cast<double>(target_num_samples) / n, 1.0); uint32_t max_mt = std::numeric_limits<uint32_t>::max(); uint32_t cutoff = static_cast<double>(max_mt) * sampling_ratio; size_t sample_idx = 0; for (size_t idx = 0; idx != n; idx++) { DSample &DS = features->preprocessed_features[sample_idx++]; DS.set_size(features->lag_n); if (Cfg.random_nums[idx] > cutoff) { sample_idx--; continue; } for (size_t feature_idx = 0; feature_idx != features->lag_n + 1; feature_idx++) DS(feature_idx) = features->src[idx + feature_idx]; } features->preprocessed_features.resize(sample_idx); } static void ml_features_preprocess(ml_features_t *features) { ml_features_diff(features); ml_features_smooth(features); ml_features_lag(features); } /* * KMeans */ static void ml_kmeans_init(ml_kmeans_t *kmeans) { kmeans->cluster_centers.reserve(2); kmeans->min_dist = std::numeric_limits<calculated_number_t>::max(); kmeans->max_dist = std::numeric_limits<calculated_number_t>::min(); } static void ml_kmeans_train(ml_kmeans_t *kmeans, const ml_features_t *features, time_t after, time_t before) { kmeans->after = (uint32_t) after; kmeans->before = (uint32_t) before; kmeans->min_dist = std::numeric_limits<calculated_number_t>::max(); kmeans->max_dist = std::numeric_limits<calculated_number_t>::min(); kmeans->cluster_centers.clear(); dlib::pick_initial_centers(2, kmeans->cluster_centers, features->preprocessed_features); dlib::find_clusters_using_kmeans(features->preprocessed_features, kmeans->cluster_centers, Cfg.max_kmeans_iters); for (const auto &preprocessed_feature : features->preprocessed_features) { calculated_number_t mean_dist = 0.0; for (const auto &cluster_center : kmeans->cluster_centers) { mean_dist += dlib::length(cluster_center - preprocessed_feature); } mean_dist /= kmeans->cluster_centers.size(); if (mean_dist < kmeans->min_dist) kmeans->min_dist = mean_dist; if (mean_dist > kmeans->max_dist) kmeans->max_dist = mean_dist; } } static calculated_number_t ml_kmeans_anomaly_score(const ml_kmeans_t *kmeans, const DSample &DS) { calculated_number_t mean_dist = 0.0; for (const auto &CC: kmeans->cluster_centers) mean_dist += dlib::length(CC - DS); mean_dist /= kmeans->cluster_centers.size(); if (kmeans->max_dist == kmeans->min_dist) return 0.0; calculated_number_t anomaly_score = 100.0 * std::abs((mean_dist - kmeans->min_dist) / (kmeans->max_dist - kmeans->min_dist)); return (anomaly_score > 100.0) ? 100.0 : anomaly_score; } /* * Queue */ static ml_queue_t * ml_queue_init() { ml_queue_t *q = new ml_queue_t(); netdata_mutex_init(&q->mutex); pthread_cond_init(&q->cond_var, NULL); q->exit = false; return q; } static void ml_queue_destroy(ml_queue_t *q) { netdata_mutex_destroy(&q->mutex); pthread_cond_destroy(&q->cond_var); delete q; } static void ml_queue_push(ml_queue_t *q, const ml_training_request_t req) { netdata_mutex_lock(&q->mutex); q->internal.push(req); pthread_cond_signal(&q->cond_var); netdata_mutex_unlock(&q->mutex); } static ml_training_request_t ml_queue_pop(ml_queue_t *q) { netdata_mutex_lock(&q->mutex); ml_training_request_t req = { {'\0'}, // machine_guid NULL, // chart id NULL, // dimension id 0, // current time 0, // first entry 0 // last entry }; while (q->internal.empty()) { pthread_cond_wait(&q->cond_var, &q->mutex); if (q->exit) { netdata_mutex_unlock(&q->mutex); // We return a dummy request because the queue has been signaled return req; } } req = q->internal.front(); q->internal.pop(); netdata_mutex_unlock(&q->mutex); return req; } static size_t ml_queue_size(ml_queue_t *q) { netdata_mutex_lock(&q->mutex); size_t size = q->internal.size(); netdata_mutex_unlock(&q->mutex); return size; } static void ml_queue_signal(ml_queue_t *q) { netdata_mutex_lock(&q->mutex); q->exit = true; pthread_cond_signal(&q->cond_var); netdata_mutex_unlock(&q->mutex); } /* * Dimension */ static std::pair<calculated_number_t *, ml_training_response_t> ml_dimension_calculated_numbers(ml_training_thread_t *training_thread, ml_dimension_t *dim, const ml_training_request_t &training_request) { ml_training_response_t training_response = {}; training_response.request_time = training_request.request_time; training_response.first_entry_on_request = training_request.first_entry_on_request; training_response.last_entry_on_request = training_request.last_entry_on_request; training_response.first_entry_on_response = rrddim_first_entry_s_of_tier(dim->rd, 0); training_response.last_entry_on_response = rrddim_last_entry_s_of_tier(dim->rd, 0); size_t min_n = Cfg.min_train_samples; size_t max_n = Cfg.max_train_samples; // Figure out what our time window should be. training_response.query_before_t = training_response.last_entry_on_response; training_response.query_after_t = std::max( training_response.query_before_t - static_cast<time_t>((max_n - 1) * dim->rd->rrdset->update_every), training_response.first_entry_on_response ); if (training_response.query_after_t >= training_response.query_before_t) { training_response.result = TRAINING_RESULT_INVALID_QUERY_TIME_RANGE; return { NULL, training_response }; } if (rrdset_is_replicating(dim->rd->rrdset)) { training_response.result = TRAINING_RESULT_CHART_UNDER_REPLICATION; return { NULL, training_response }; } /* * Execute the query */ struct storage_engine_query_handle handle; storage_engine_query_init(dim->rd->tiers[0].backend, dim->rd->tiers[0].db_metric_handle, &handle, training_response.query_after_t, training_response.query_before_t, STORAGE_PRIORITY_BEST_EFFORT); size_t idx = 0; memset(training_thread->training_cns, 0, sizeof(calculated_number_t) * max_n * (Cfg.lag_n + 1)); calculated_number_t last_value = std::numeric_limits<calculated_number_t>::quiet_NaN(); while (!storage_engine_query_is_finished(&handle)) { if (idx == max_n) break; STORAGE_POINT sp = storage_engine_query_next_metric(&handle); time_t timestamp = sp.end_time_s; calculated_number_t value = sp.sum / sp.count; if (netdata_double_isnumber(value)) { if (!training_response.db_after_t) training_response.db_after_t = timestamp; training_response.db_before_t = timestamp; training_thread->training_cns[idx] = value; last_value = training_thread->training_cns[idx]; training_response.collected_values++; } else training_thread->training_cns[idx] = last_value; idx++; } storage_engine_query_finalize(&handle); global_statistics_ml_query_completed(/* points_read */ idx); training_response.total_values = idx; if (training_response.collected_values < min_n) { training_response.result = TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES; return { NULL, training_response }; } // Find first non-NaN value. for (idx = 0; std::isnan(training_thread->training_cns[idx]); idx++, training_response.total_values--) { } // Overwrite NaN values. if (idx != 0) memmove(training_thread->training_cns, &training_thread->training_cns[idx], sizeof(calculated_number_t) * training_response.total_values); training_response.result = TRAINING_RESULT_OK; return { training_thread->training_cns, training_response }; } const char *db_models_create_table = "CREATE TABLE IF NOT EXISTS models(" " dim_id BLOB, after INT, before INT," " min_dist REAL, max_dist REAL," " c00 REAL, c01 REAL, c02 REAL, c03 REAL, c04 REAL, c05 REAL," " c10 REAL, c11 REAL, c12 REAL, c13 REAL, c14 REAL, c15 REAL," " PRIMARY KEY(dim_id, after)" ");"; const char *db_models_add_model = "INSERT OR REPLACE INTO models(" " dim_id, after, before," " min_dist, max_dist," " c00, c01, c02, c03, c04, c05," " c10, c11, c12, c13, c14, c15)" "VALUES(" " @dim_id, @after, @before," " @min_dist, @max_dist," " @c00, @c01, @c02, @c03, @c04, @c05," " @c10, @c11, @c12, @c13, @c14, @c15);"; const char *db_models_load = "SELECT * FROM models " "WHERE dim_id = @dim_id AND after >= @after ORDER BY before ASC;"; const char *db_models_delete = "DELETE FROM models " "WHERE dim_id = @dim_id AND before < @before;"; const char *db_models_prune = "DELETE FROM models " "WHERE after < @after LIMIT @n;"; static int ml_dimension_add_model(const uuid_t *metric_uuid, const ml_kmeans_t *km) { static __thread sqlite3_stmt *res = NULL; int param = 0; int rc = 0; if (unlikely(!db)) { error_report("Database has not been initialized"); return 1; } if (unlikely(!res)) { rc = prepare_statement(db, db_models_add_model, &res); if (unlikely(rc != SQLITE_OK)) { error_report("Failed to prepare statement to store model, rc = %d", rc); return 1; } } rc = sqlite3_bind_blob(res, ++param, metric_uuid, sizeof(*metric_uuid), SQLITE_STATIC); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = sqlite3_bind_int(res, ++param, (int) km->after); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = sqlite3_bind_int(res, ++param, (int) km->before); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = sqlite3_bind_double(res, ++param, km->min_dist); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = sqlite3_bind_double(res, ++param, km->max_dist); if (unlikely(rc != SQLITE_OK)) goto bind_fail; if (km->cluster_centers.size() != 2) fatal("Expected 2 cluster centers, got %zu", km->cluster_centers.size()); for (const DSample &ds : km->cluster_centers) { if (ds.size() != 6) fatal("Expected dsample with 6 dimensions, got %ld", ds.size()); for (long idx = 0; idx != ds.size(); idx++) { calculated_number_t cn = ds(idx); int rc = sqlite3_bind_double(res, ++param, cn); if (unlikely(rc != SQLITE_OK)) goto bind_fail; } } rc = execute_insert(res); if (unlikely(rc != SQLITE_DONE)) { error_report("Failed to store model, rc = %d", rc); return rc; } rc = sqlite3_reset(res); if (unlikely(rc != SQLITE_OK)) { error_report("Failed to reset statement when storing model, rc = %d", rc); return rc; } return 0; bind_fail: error_report("Failed to bind parameter %d to store model, rc = %d", param, rc); rc = sqlite3_reset(res); if (unlikely(rc != SQLITE_OK)) error_report("Failed to reset statement to store model, rc = %d", rc); return rc; } static int ml_dimension_delete_models(const uuid_t *metric_uuid, time_t before) { static __thread sqlite3_stmt *res = NULL; int rc = 0; int param = 0; if (unlikely(!db)) { error_report("Database has not been initialized"); return 1; } if (unlikely(!res)) { rc = prepare_statement(db, db_models_delete, &res); if (unlikely(rc != SQLITE_OK)) { error_report("Failed to prepare statement to delete models, rc = %d", rc); return rc; } } rc = sqlite3_bind_blob(res, ++param, metric_uuid, sizeof(*metric_uuid), SQLITE_STATIC); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = sqlite3_bind_int(res, ++param, (int) before); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = execute_insert(res); if (unlikely(rc != SQLITE_DONE)) { error_report("Failed to delete models, rc = %d", rc); return rc; } rc = sqlite3_reset(res); if (unlikely(rc != SQLITE_OK)) { error_report("Failed to reset statement when deleting models, rc = %d", rc); return rc; } return 0; bind_fail: error_report("Failed to bind parameter %d to delete models, rc = %d", param, rc); rc = sqlite3_reset(res); if (unlikely(rc != SQLITE_OK)) error_report("Failed to reset statement to delete models, rc = %d", rc); return rc; } static int ml_prune_old_models(size_t num_models_to_prune) { static __thread sqlite3_stmt *res = NULL; int rc = 0; int param = 0; if (unlikely(!db)) { error_report("Database has not been initialized"); return 1; } if (unlikely(!res)) { rc = prepare_statement(db, db_models_prune, &res); if (unlikely(rc != SQLITE_OK)) { error_report("Failed to prepare statement to prune models, rc = %d", rc); return rc; } } int after = (int) (now_realtime_sec() - Cfg.delete_models_older_than); rc = sqlite3_bind_int(res, ++param, after); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = sqlite3_bind_int(res, ++param, num_models_to_prune); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = execute_insert(res); if (unlikely(rc != SQLITE_DONE)) { error_report("Failed to prune old models, rc = %d", rc); return rc; } rc = sqlite3_reset(res); if (unlikely(rc != SQLITE_OK)) { error_report("Failed to reset statement when pruning old models, rc = %d", rc); return rc; } return 0; bind_fail: error_report("Failed to bind parameter %d to prune old models, rc = %d", param, rc); rc = sqlite3_reset(res); if (unlikely(rc != SQLITE_OK)) error_report("Failed to reset statement to prune old models, rc = %d", rc); return rc; } int ml_dimension_load_models(RRDDIM *rd, sqlite3_stmt **active_stmt) { ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension; if (!dim) return 0; spinlock_lock(&dim->slock); bool is_empty = dim->km_contexts.empty(); spinlock_unlock(&dim->slock); if (!is_empty) return 0; std::vector<ml_kmeans_t> V; sqlite3_stmt *res = active_stmt ? *active_stmt : NULL; int rc = 0; int param = 0; if (unlikely(!db)) { error_report("Database has not been initialized"); return 1; } if (unlikely(!res)) { rc = sqlite3_prepare_v2(db, db_models_load, -1, &res, NULL); if (unlikely(rc != SQLITE_OK)) { error_report("Failed to prepare statement to load models, rc = %d", rc); return 1; } if (active_stmt) *active_stmt = res; } rc = sqlite3_bind_blob(res, ++param, &dim->rd->metric_uuid, sizeof(dim->rd->metric_uuid), SQLITE_STATIC); if (unlikely(rc != SQLITE_OK)) goto bind_fail; rc = sqlite3_bind_int64(res, ++param, now_realtime_sec() - (Cfg.num_models_to_use * Cfg.max_train_samples)); if (unlikely(rc != SQLITE_OK)) goto bind_fail; spinlock_lock(&dim->slock); dim->km_contexts.reserve(Cfg.num_models_to_use); while ((rc = sqlite3_step_monitored(res)) == SQLITE_ROW) { ml_kmeans_t km; km.after = sqlite3_column_int(res, 2); km.before = sqlite3_column_int(res, 3); km.min_dist = sqlite3_column_int(res, 4); km.max_dist = sqlite3_column_int(res, 5); km.cluster_centers.resize(2); km.cluster_centers[0].set_size(Cfg.lag_n + 1); km.cluster_centers[0](0) = sqlite3_column_double(res, 6); km.cluster_centers[0](1) = sqlite3_column_double(res, 7); km.cluster_centers[0](2) = sqlite3_column_double(res, 8); km.cluster_centers[0](3) = sqlite3_column_double(res, 9); km.cluster_centers[0](4) = sqlite3_column_double(res, 10); km.cluster_centers[0](5) = sqlite3_column_double(res, 11); km.cluster_centers[1].set_size(Cfg.lag_n + 1); km.cluster_centers[1](0) = sqlite3_column_double(res, 12); km.cluster_centers[1](1) = sqlite3_column_double(res, 13); km.cluster_centers[1](2) = sqlite3_column_double(res, 14); km.cluster_centers[1](3) = sqlite3_column_double(res, 15); km.cluster_centers[1](4) = sqlite3_column_double(res, 16); km.cluster_centers[1](5) = sqlite3_column_double(res, 17); dim->km_contexts.push_back(km); } if (!dim->km_contexts.empty()) { dim->ts = TRAINING_STATUS_TRAINED; } spinlock_unlock(&dim->slock); if (unlikely(rc != SQLITE_DONE)) error_report("Failed to load models, rc = %d", rc); if (active_stmt) rc = sqlite3_reset(res); else rc = sqlite3_finalize(res); if (unlikely(rc != SQLITE_OK)) error_report("Failed to %s statement when loading models, rc = %d", active_stmt ? "reset" : "finalize", rc); return 0; bind_fail: error_report("Failed to bind parameter %d to load models, rc = %d", param, rc); rc = sqlite3_reset(res); if (unlikely(rc != SQLITE_OK)) error_report("Failed to reset statement to load models, rc = %d", rc); return 1; } static enum ml_training_result ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *dim, const ml_training_request_t &training_request) { worker_is_busy(WORKER_TRAIN_QUERY); auto P = ml_dimension_calculated_numbers(training_thread, dim, training_request); ml_training_response_t training_response = P.second; if (training_response.result != TRAINING_RESULT_OK) { spinlock_lock(&dim->slock); dim->mt = METRIC_TYPE_CONSTANT; switch (dim->ts) { case TRAINING_STATUS_PENDING_WITH_MODEL: dim->ts = TRAINING_STATUS_TRAINED; break; case TRAINING_STATUS_PENDING_WITHOUT_MODEL: dim->ts = TRAINING_STATUS_UNTRAINED; break; default: break; } dim->suppression_anomaly_counter = 0; dim->suppression_window_counter = 0; dim->tr = training_response; dim->last_training_time = training_response.last_entry_on_response; enum ml_training_result result = training_response.result; spinlock_unlock(&dim->slock); return result; } // compute kmeans worker_is_busy(WORKER_TRAIN_KMEANS); { memcpy(training_thread->scratch_training_cns, training_thread->training_cns, training_response.total_values * sizeof(calculated_number_t)); ml_features_t features = { Cfg.diff_n, Cfg.smooth_n, Cfg.lag_n, training_thread->scratch_training_cns, training_response.total_values, training_thread->training_cns, training_response.total_values, training_thread->training_samples }; ml_features_preprocess(&features); ml_kmeans_init(&dim->kmeans); ml_kmeans_train(&dim->kmeans, &features, training_response.query_after_t, training_response.query_before_t); } // update models worker_is_busy(WORKER_TRAIN_UPDATE_MODELS); { spinlock_lock(&dim->slock); if (dim->km_contexts.size() < Cfg.num_models_to_use) { dim->km_contexts.push_back(std::move(dim->kmeans)); } else { bool can_drop_middle_km = false; if (Cfg.num_models_to_use > 2) { const ml_kmeans_t *old_km = &dim->km_contexts[dim->km_contexts.size() - 1]; const ml_kmeans_t *middle_km = &dim->km_contexts[dim->km_contexts.size() - 2]; const ml_kmeans_t *new_km = &dim->kmeans; can_drop_middle_km = (middle_km->after < old_km->before) && (middle_km->before > new_km->after); } if (can_drop_middle_km) { dim->km_contexts.back() = dim->kmeans; } else { std::rotate(std::begin(dim->km_contexts), std::begin(dim->km_contexts) + 1, std::end(dim->km_contexts)); dim->km_contexts[dim->km_contexts.size() - 1] = std::move(dim->kmeans); } } dim->mt = METRIC_TYPE_CONSTANT; dim->ts = TRAINING_STATUS_TRAINED; dim->suppression_anomaly_counter = 0; dim->suppression_window_counter = 0; dim->tr = training_response; dim->last_training_time = rrddim_last_entry_s(dim->rd); // Add the newly generated model to the list of pending models to flush ml_model_info_t model_info; uuid_copy(model_info.metric_uuid, dim->rd->metric_uuid); model_info.kmeans = dim->km_contexts.back(); training_thread->pending_model_info.push_back(model_info); spinlock_unlock(&dim->slock); } return training_response.result; } static void ml_dimension_schedule_for_training(ml_dimension_t *dim, time_t curr_time) { switch (dim->mt) { case METRIC_TYPE_CONSTANT: return; default: break; } bool schedule_for_training = false; switch (dim->ts) { case TRAINING_STATUS_PENDING_WITH_MODEL: case TRAINING_STATUS_PENDING_WITHOUT_MODEL: schedule_for_training = false; break; case TRAINING_STATUS_UNTRAINED: schedule_for_training = true; dim->ts = TRAINING_STATUS_PENDING_WITHOUT_MODEL; break; case TRAINING_STATUS_SILENCED: case TRAINING_STATUS_TRAINED: if ((dim->last_training_time + (Cfg.train_every * dim->rd->rrdset->update_every)) < curr_time) { schedule_for_training = true; dim->ts = TRAINING_STATUS_PENDING_WITH_MODEL; } break; } if (schedule_for_training) { ml_training_request_t req; memcpy(req.machine_guid, dim->rd->rrdset->rrdhost->machine_guid, GUID_LEN + 1); req.chart_id = string_dup(dim->rd->rrdset->id); req.dimension_id = string_dup(dim->rd->id); req.request_time = curr_time; req.first_entry_on_request = rrddim_first_entry_s(dim->rd); req.last_entry_on_request = rrddim_last_entry_s(dim->rd); ml_host_t *host = (ml_host_t *) dim->rd->rrdset->rrdhost->ml_host; ml_queue_push(host->training_queue, req); } } static bool ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t value, bool exists) { // Nothing to do if ML is disabled for this dimension if (dim->mls != MACHINE_LEARNING_STATUS_ENABLED) return false; // Don't treat values that don't exist as anomalous if (!exists) { dim->cns.clear(); return false; } // Save the value and return if we don't have enough values for a sample unsigned n = Cfg.diff_n + Cfg.smooth_n + Cfg.lag_n; if (dim->cns.size() < n) { dim->cns.push_back(value); return false; } // Push the value and check if it's different from the last one bool same_value = true; std::rotate(std::begin(dim->cns), std::begin(dim->cns) + 1, std::end(dim->cns)); if (dim->cns[n - 1] != value) same_value = false; dim->cns[n - 1] = value; // Create the sample assert((n * (Cfg.lag_n + 1) <= 128) && "Static buffers too small to perform prediction. " "This should not be possible with the default clamping of feature extraction options"); calculated_number_t src_cns[128]; calculated_number_t dst_cns[128]; memset(src_cns, 0, n * (Cfg.lag_n + 1) * sizeof(calculated_number_t)); memcpy(src_cns, dim->cns.data(), n * sizeof(calculated_number_t)); memcpy(dst_cns, dim->cns.data(), n * sizeof(calculated_number_t)); ml_features_t features = { Cfg.diff_n, Cfg.smooth_n, Cfg.lag_n, dst_cns, n, src_cns, n, dim->feature }; ml_features_preprocess(&features); /* * Lock to predict and possibly schedule the dimension for training */ if (spinlock_trylock(&dim->slock) == 0) return false; // Mark the metric time as variable if we received different values if (!same_value) dim->mt = METRIC_TYPE_VARIABLE; // Decide if the dimension needs to be scheduled for training ml_dimension_schedule_for_training(dim, curr_time); // Nothing to do if we don't have a model switch (dim->ts) { case TRAINING_STATUS_UNTRAINED: case TRAINING_STATUS_PENDING_WITHOUT_MODEL: { case TRAINING_STATUS_SILENCED: spinlock_unlock(&dim->slock); return false; } default: break; } dim->suppression_window_counter++; /* * Use the KMeans models to check if the value is anomalous */ size_t sum = 0; size_t models_consulted = 0; for (const auto &km_ctx : dim->km_contexts) { models_consulted++; calculated_number_t anomaly_score = ml_kmeans_anomaly_score(&km_ctx, features.preprocessed_features[0]); if (anomaly_score == std::numeric_limits<calculated_number_t>::quiet_NaN()) continue; if (anomaly_score < (100 * Cfg.dimension_anomaly_score_threshold)) { global_statistics_ml_models_consulted(models_consulted); spinlock_unlock(&dim->slock); return false; } sum += 1; } dim->suppression_anomaly_counter += sum ? 1 : 0; if ((dim->suppression_anomaly_counter >= Cfg.suppression_threshold) && (dim->suppression_window_counter >= Cfg.suppression_window)) { dim->ts = TRAINING_STATUS_SILENCED; } spinlock_unlock(&dim->slock); global_statistics_ml_models_consulted(models_consulted); return sum; } /* * Chart */ static bool ml_chart_is_available_for_ml(ml_chart_t *chart) { return rrdset_is_available_for_exporting_and_alarms(chart->rs); } void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous) { switch (dim->mls) { case MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART: chart->mls.num_machine_learning_status_disabled_sp++; return; case MACHINE_LEARNING_STATUS_ENABLED: { chart->mls.num_machine_learning_status_enabled++; switch (dim->mt) { case METRIC_TYPE_CONSTANT: chart->mls.num_metric_type_constant++; chart->mls.num_training_status_trained++; chart->mls.num_normal_dimensions++; return; case METRIC_TYPE_VARIABLE: chart->mls.num_metric_type_variable++; break; } switch (dim->ts) { case TRAINING_STATUS_UNTRAINED: chart->mls.num_training_status_untrained++; return; case TRAINING_STATUS_PENDING_WITHOUT_MODEL: chart->mls.num_training_status_pending_without_model++; return; case TRAINING_STATUS_TRAINED: chart->mls.num_training_status_trained++; chart->mls.num_anomalous_dimensions += is_anomalous; chart->mls.num_normal_dimensions += !is_anomalous; return; case TRAINING_STATUS_PENDING_WITH_MODEL: chart->mls.num_training_status_pending_with_model++; chart->mls.num_anomalous_dimensions += is_anomalous; chart->mls.num_normal_dimensions += !is_anomalous; return; case TRAINING_STATUS_SILENCED: chart->mls.num_training_status_silenced++; chart->mls.num_training_status_trained++; chart->mls.num_anomalous_dimensions += is_anomalous; chart->mls.num_normal_dimensions += !is_anomalous; return; } return; } } } /* * Host detection & training functions */ #define WORKER_JOB_DETECTION_COLLECT_STATS 0 #define WORKER_JOB_DETECTION_DIM_CHART 1 #define WORKER_JOB_DETECTION_HOST_CHART 2 #define WORKER_JOB_DETECTION_STATS 3 static void ml_host_detect_once(ml_host_t *host) { worker_is_busy(WORKER_JOB_DETECTION_COLLECT_STATS); host->mls = {}; ml_machine_learning_stats_t mls_copy = {}; if (host->ml_running) { netdata_mutex_lock(&host->mutex); /* * prediction/detection stats */ void *rsp = NULL; rrdset_foreach_read(rsp, host->rh) { RRDSET *rs = static_cast<RRDSET *>(rsp); ml_chart_t *chart = (ml_chart_t *) rs->ml_chart; if (!chart) continue; if (!ml_chart_is_available_for_ml(chart)) continue; ml_machine_learning_stats_t chart_mls = chart->mls; host->mls.num_machine_learning_status_enabled += chart_mls.num_machine_learning_status_enabled; host->mls.num_machine_learning_status_disabled_sp += chart_mls.num_machine_learning_status_disabled_sp; host->mls.num_metric_type_constant += chart_mls.num_metric_type_constant; host->mls.num_metric_type_variable += chart_mls.num_metric_type_variable; host->mls.num_training_status_untrained += chart_mls.num_training_status_untrained; host->mls.num_training_status_pending_without_model += chart_mls.num_training_status_pending_without_model; host->mls.num_training_status_trained += chart_mls.num_training_status_trained; host->mls.num_training_status_pending_with_model += chart_mls.num_training_status_pending_with_model; host->mls.num_training_status_silenced += chart_mls.num_training_status_silenced; host->mls.num_anomalous_dimensions += chart_mls.num_anomalous_dimensions; host->mls.num_normal_dimensions += chart_mls.num_normal_dimensions; STRING *key = rs->parts.type; auto &um = host->type_anomaly_rate; auto it = um.find(key); if (it == um.end()) { um[key] = ml_type_anomaly_rate_t { .rd = NULL, .normal_dimensions = 0, .anomalous_dimensions = 0 }; it = um.find(key); } it->second.anomalous_dimensions += chart_mls.num_anomalous_dimensions; it->second.normal_dimensions += chart_mls.num_normal_dimensions; } rrdset_foreach_done(rsp); host->host_anomaly_rate = 0.0; size_t NumActiveDimensions = host->mls.num_anomalous_dimensions + host->mls.num_normal_dimensions; if (NumActiveDimensions) host->host_anomaly_rate = static_cast<double>(host->mls.num_anomalous_dimensions) / NumActiveDimensions; mls_copy = host->mls; netdata_mutex_unlock(&host->mutex); } else { host->host_anomaly_rate = 0.0; auto &um = host->type_anomaly_rate; for (auto &entry: um) { entry.second = ml_type_anomaly_rate_t { .rd = NULL, .normal_dimensions = 0, .anomalous_dimensions = 0 }; } } worker_is_busy(WORKER_JOB_DETECTION_DIM_CHART); ml_update_dimensions_chart(host, mls_copy); worker_is_busy(WORKER_JOB_DETECTION_HOST_CHART); ml_update_host_and_detection_rate_charts(host, host->host_anomaly_rate * 10000.0); } typedef struct { RRDHOST_ACQUIRED *acq_rh; RRDSET_ACQUIRED *acq_rs; RRDDIM_ACQUIRED *acq_rd; ml_dimension_t *dim; } ml_acquired_dimension_t; static ml_acquired_dimension_t ml_acquired_dimension_get(char *machine_guid, STRING *chart_id, STRING *dimension_id) { RRDHOST_ACQUIRED *acq_rh = NULL; RRDSET_ACQUIRED *acq_rs = NULL; RRDDIM_ACQUIRED *acq_rd = NULL; ml_dimension_t *dim = NULL; rrd_rdlock(); acq_rh = rrdhost_find_and_acquire(machine_guid); if (acq_rh) { RRDHOST *rh = rrdhost_acquired_to_rrdhost(acq_rh); if (rh && !rrdhost_flag_check(rh, RRDHOST_FLAG_ORPHAN | RRDHOST_FLAG_ARCHIVED)) { acq_rs = rrdset_find_and_acquire(rh, string2str(chart_id)); if (acq_rs) { RRDSET *rs = rrdset_acquired_to_rrdset(acq_rs); if (rs && !rrdset_flag_check(rs, RRDSET_FLAG_OBSOLETE)) { acq_rd = rrddim_find_and_acquire(rs, string2str(dimension_id)); if (acq_rd) { RRDDIM *rd = rrddim_acquired_to_rrddim(acq_rd); if (rd) dim = (ml_dimension_t *) rd->ml_dimension; } } } } } rrd_unlock(); ml_acquired_dimension_t acq_dim = { acq_rh, acq_rs, acq_rd, dim }; return acq_dim; } static void ml_acquired_dimension_release(ml_acquired_dimension_t acq_dim) { if (acq_dim.acq_rd) rrddim_acquired_release(acq_dim.acq_rd); if (acq_dim.acq_rs) rrdset_acquired_release(acq_dim.acq_rs); if (acq_dim.acq_rh) rrdhost_acquired_release(acq_dim.acq_rh); } static enum ml_training_result ml_acquired_dimension_train(ml_training_thread_t *training_thread, ml_acquired_dimension_t acq_dim, const ml_training_request_t &tr) { if (!acq_dim.dim) return TRAINING_RESULT_NULL_ACQUIRED_DIMENSION; return ml_dimension_train_model(training_thread, acq_dim.dim, tr); } static void * ml_detect_main(void *arg) { UNUSED(arg); worker_register("MLDETECT"); worker_register_job_name(WORKER_JOB_DETECTION_COLLECT_STATS, "collect stats"); worker_register_job_name(WORKER_JOB_DETECTION_DIM_CHART, "dim chart"); worker_register_job_name(WORKER_JOB_DETECTION_HOST_CHART, "host chart"); worker_register_job_name(WORKER_JOB_DETECTION_STATS, "training stats"); heartbeat_t hb; heartbeat_init(&hb); while (!Cfg.detection_stop) { worker_is_idle(); heartbeat_next(&hb, USEC_PER_SEC); RRDHOST *rh; rrd_rdlock(); rrdhost_foreach_read(rh) { if (!rh->ml_host) continue; ml_host_detect_once((ml_host_t *) rh->ml_host); } rrd_unlock(); if (Cfg.enable_statistics_charts) { // collect and update training thread stats for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) { ml_training_thread_t *training_thread = &Cfg.training_threads[idx]; netdata_mutex_lock(&training_thread->nd_mutex); ml_training_stats_t training_stats = training_thread->training_stats; training_thread->training_stats = {}; netdata_mutex_unlock(&training_thread->nd_mutex); // calc the avg values if (training_stats.num_popped_items) { training_stats.queue_size /= training_stats.num_popped_items; training_stats.allotted_ut /= training_stats.num_popped_items; training_stats.consumed_ut /= training_stats.num_popped_items; training_stats.remaining_ut /= training_stats.num_popped_items; } else { training_stats.queue_size = ml_queue_size(training_thread->training_queue); training_stats.consumed_ut = 0; training_stats.remaining_ut = training_stats.allotted_ut; training_stats.training_result_ok = 0; training_stats.training_result_invalid_query_time_range = 0; training_stats.training_result_not_enough_collected_values = 0; training_stats.training_result_null_acquired_dimension = 0; training_stats.training_result_chart_under_replication = 0; } ml_update_training_statistics_chart(training_thread, training_stats); } } } return NULL; } /* * Public API */ bool ml_capable() { return true; } bool ml_enabled(RRDHOST *rh) { if (!rh) return false; if (!Cfg.enable_anomaly_detection) return false; if (simple_pattern_matches(Cfg.sp_host_to_skip, rrdhost_hostname(rh))) return false; return true; } bool ml_streaming_enabled() { return Cfg.stream_anomaly_detection_charts; } void ml_host_new(RRDHOST *rh) { if (!ml_enabled(rh)) return; ml_host_t *host = new ml_host_t(); host->rh = rh; host->mls = ml_machine_learning_stats_t(); host->host_anomaly_rate = 0.0; host->anomaly_rate_rs = NULL; static std::atomic<size_t> times_called(0); host->training_queue = Cfg.training_threads[times_called++ % Cfg.num_training_threads].training_queue; netdata_mutex_init(&host->mutex); host->ml_running = true; rh->ml_host = (rrd_ml_host_t *) host; } void ml_host_delete(RRDHOST *rh) { ml_host_t *host = (ml_host_t *) rh->ml_host; if (!host) return; netdata_mutex_destroy(&host->mutex); delete host; rh->ml_host = NULL; } void ml_host_start(RRDHOST *rh) { ml_host_t *host = (ml_host_t *) rh->ml_host; if (!host) return; host->ml_running = true; } void ml_host_stop(RRDHOST *rh) { ml_host_t *host = (ml_host_t *) rh->ml_host; if (!host || !host->ml_running) return; netdata_mutex_lock(&host->mutex); // reset host stats host->mls = ml_machine_learning_stats_t(); // reset charts/dims void *rsp = NULL; rrdset_foreach_read(rsp, host->rh) { RRDSET *rs = static_cast<RRDSET *>(rsp); ml_chart_t *chart = (ml_chart_t *) rs->ml_chart; if (!chart) continue; // reset chart chart->mls = ml_machine_learning_stats_t(); void *rdp = NULL; rrddim_foreach_read(rdp, rs) { RRDDIM *rd = static_cast<RRDDIM *>(rdp); ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension; if (!dim) continue; spinlock_lock(&dim->slock); // reset dim // TODO: should we drop in-mem models, or mark them as stale? Is it // okay to resume training straight away? dim->mt = METRIC_TYPE_CONSTANT; dim->ts = TRAINING_STATUS_UNTRAINED; dim->last_training_time = 0; dim->suppression_anomaly_counter = 0; dim->suppression_window_counter = 0; dim->cns.clear(); ml_kmeans_init(&dim->kmeans); spinlock_unlock(&dim->slock); } rrddim_foreach_done(rdp); } rrdset_foreach_done(rsp); netdata_mutex_unlock(&host->mutex); host->ml_running = false; } void ml_host_get_info(RRDHOST *rh, BUFFER *wb) { ml_host_t *host = (ml_host_t *) rh->ml_host; if (!host) { buffer_json_member_add_boolean(wb, "enabled", false); return; } buffer_json_member_add_uint64(wb, "version", 1); buffer_json_member_add_boolean(wb, "enabled", Cfg.enable_anomaly_detection); buffer_json_member_add_uint64(wb, "min-train-samples", Cfg.min_train_samples); buffer_json_member_add_uint64(wb, "max-train-samples", Cfg.max_train_samples); buffer_json_member_add_uint64(wb, "train-every", Cfg.train_every); buffer_json_member_add_uint64(wb, "diff-n", Cfg.diff_n); buffer_json_member_add_uint64(wb, "smooth-n", Cfg.smooth_n); buffer_json_member_add_uint64(wb, "lag-n", Cfg.lag_n); buffer_json_member_add_double(wb, "random-sampling-ratio", Cfg.random_sampling_ratio); buffer_json_member_add_uint64(wb, "max-kmeans-iters", Cfg.random_sampling_ratio); buffer_json_member_add_double(wb, "dimension-anomaly-score-threshold", Cfg.dimension_anomaly_score_threshold); buffer_json_member_add_string(wb, "anomaly-detection-grouping-method", time_grouping_method2string(Cfg.anomaly_detection_grouping_method)); buffer_json_member_add_int64(wb, "anomaly-detection-query-duration", Cfg.anomaly_detection_query_duration); buffer_json_member_add_string(wb, "hosts-to-skip", Cfg.hosts_to_skip.c_str()); buffer_json_member_add_string(wb, "charts-to-skip", Cfg.charts_to_skip.c_str()); } void ml_host_get_detection_info(RRDHOST *rh, BUFFER *wb) { ml_host_t *host = (ml_host_t *) rh->ml_host; if (!host) return; netdata_mutex_lock(&host->mutex); buffer_json_member_add_uint64(wb, "version", 2); buffer_json_member_add_uint64(wb, "ml-running", host->ml_running); buffer_json_member_add_uint64(wb, "anomalous-dimensions", host->mls.num_anomalous_dimensions); buffer_json_member_add_uint64(wb, "normal-dimensions", host->mls.num_normal_dimensions); buffer_json_member_add_uint64(wb, "total-dimensions", host->mls.num_anomalous_dimensions + host->mls.num_normal_dimensions); buffer_json_member_add_uint64(wb, "trained-dimensions", host->mls.num_training_status_trained + host->mls.num_training_status_pending_with_model); netdata_mutex_unlock(&host->mutex); } bool ml_host_get_host_status(RRDHOST *rh, struct ml_metrics_statistics *mlm) { ml_host_t *host = (ml_host_t *) rh->ml_host; if (!host) { memset(mlm, 0, sizeof(*mlm)); return false; } netdata_mutex_lock(&host->mutex); mlm->anomalous = host->mls.num_anomalous_dimensions; mlm->normal = host->mls.num_normal_dimensions; mlm->trained = host->mls.num_training_status_trained + host->mls.num_training_status_pending_with_model; mlm->pending = host->mls.num_training_status_untrained + host->mls.num_training_status_pending_without_model; mlm->silenced = host->mls.num_training_status_silenced; netdata_mutex_unlock(&host->mutex); return true; } bool ml_host_running(RRDHOST *rh) { ml_host_t *host = (ml_host_t *) rh->ml_host; if(!host) return false; return true; } void ml_host_get_models(RRDHOST *rh, BUFFER *wb) { UNUSED(rh); UNUSED(wb); // TODO: To be implemented netdata_log_error("Fetching KMeans models is not supported yet"); } void ml_chart_new(RRDSET *rs) { ml_host_t *host = (ml_host_t *) rs->rrdhost->ml_host; if (!host) return; ml_chart_t *chart = new ml_chart_t(); chart->rs = rs; chart->mls = ml_machine_learning_stats_t(); rs->ml_chart = (rrd_ml_chart_t *) chart; } void ml_chart_delete(RRDSET *rs) { ml_host_t *host = (ml_host_t *) rs->rrdhost->ml_host; if (!host) return; ml_chart_t *chart = (ml_chart_t *) rs->ml_chart; delete chart; rs->ml_chart = NULL; } bool ml_chart_update_begin(RRDSET *rs) { ml_chart_t *chart = (ml_chart_t *) rs->ml_chart; if (!chart) return false; chart->mls = {}; return true; } void ml_chart_update_end(RRDSET *rs) { ml_chart_t *chart = (ml_chart_t *) rs->ml_chart; if (!chart) return; } void ml_dimension_new(RRDDIM *rd) { ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart; if (!chart) return; ml_dimension_t *dim = new ml_dimension_t(); dim->rd = rd; dim->mt = METRIC_TYPE_CONSTANT; dim->ts = TRAINING_STATUS_UNTRAINED; dim->last_training_time = 0; dim->suppression_anomaly_counter = 0; dim->suppression_window_counter = 0; ml_kmeans_init(&dim->kmeans); if (simple_pattern_matches(Cfg.sp_charts_to_skip, rrdset_name(rd->rrdset))) dim->mls = MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART; else dim->mls = MACHINE_LEARNING_STATUS_ENABLED; spinlock_init(&dim->slock); dim->km_contexts.reserve(Cfg.num_models_to_use); rd->ml_dimension = (rrd_ml_dimension_t *) dim; metaqueue_ml_load_models(rd); } void ml_dimension_delete(RRDDIM *rd) { ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension; if (!dim) return; delete dim; rd->ml_dimension = NULL; } bool ml_dimension_is_anomalous(RRDDIM *rd, time_t curr_time, double value, bool exists) { ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension; if (!dim) return false; ml_host_t *host = (ml_host_t *) rd->rrdset->rrdhost->ml_host; if (!host->ml_running) return false; ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart; bool is_anomalous = ml_dimension_predict(dim, curr_time, value, exists); ml_chart_update_dimension(chart, dim, is_anomalous); return is_anomalous; } static void ml_flush_pending_models(ml_training_thread_t *training_thread) { int op_no = 1; // begin transaction int rc = db_execute(db, "BEGIN TRANSACTION;"); // add/delete models if (!rc) { op_no++; for (const auto &pending_model: training_thread->pending_model_info) { if (!rc) rc = ml_dimension_add_model(&pending_model.metric_uuid, &pending_model.kmeans); if (!rc) rc = ml_dimension_delete_models(&pending_model.metric_uuid, pending_model.kmeans.before - (Cfg.num_models_to_use * Cfg.train_every)); } } // prune old models if (!rc) { if ((training_thread->num_db_transactions % 64) == 0) { rc = ml_prune_old_models(training_thread->num_models_to_prune); if (!rc) training_thread->num_models_to_prune = 0; } } // commit transaction if (!rc) { op_no++; rc = db_execute(db, "COMMIT TRANSACTION;"); } // rollback transaction on failure if (rc) { netdata_log_error("Trying to rollback ML transaction because it failed with rc=%d, op_no=%d", rc, op_no); op_no++; rc = db_execute(db, "ROLLBACK;"); if (rc) netdata_log_error("ML transaction rollback failed with rc=%d", rc); } if (!rc) { training_thread->num_db_transactions++; training_thread->num_models_to_prune += training_thread->pending_model_info.size(); } vacuum_database(db, "ML", 0, 0); training_thread->pending_model_info.clear(); } static void *ml_train_main(void *arg) { ml_training_thread_t *training_thread = (ml_training_thread_t *) arg; char worker_name[1024]; snprintfz(worker_name, 1024, "training_thread_%zu", training_thread->id); worker_register("MLTRAIN"); worker_register_job_name(WORKER_TRAIN_QUEUE_POP, "pop queue"); worker_register_job_name(WORKER_TRAIN_ACQUIRE_DIMENSION, "acquire"); worker_register_job_name(WORKER_TRAIN_QUERY, "query"); worker_register_job_name(WORKER_TRAIN_KMEANS, "kmeans"); worker_register_job_name(WORKER_TRAIN_UPDATE_MODELS, "update models"); worker_register_job_name(WORKER_TRAIN_RELEASE_DIMENSION, "release"); worker_register_job_name(WORKER_TRAIN_UPDATE_HOST, "update host"); worker_register_job_name(WORKER_TRAIN_FLUSH_MODELS, "flush models"); while (!Cfg.training_stop) { worker_is_busy(WORKER_TRAIN_QUEUE_POP); ml_training_request_t training_req = ml_queue_pop(training_thread->training_queue); // we know this thread has been cancelled, when the queue starts // returning "null" requests without blocking on queue's pop(). if (training_req.chart_id == NULL) break; size_t queue_size = ml_queue_size(training_thread->training_queue) + 1; usec_t allotted_ut = (Cfg.train_every * USEC_PER_SEC) / queue_size; if (allotted_ut > USEC_PER_SEC) allotted_ut = USEC_PER_SEC; usec_t start_ut = now_monotonic_usec(); enum ml_training_result training_res; { worker_is_busy(WORKER_TRAIN_ACQUIRE_DIMENSION); ml_acquired_dimension_t acq_dim = ml_acquired_dimension_get( training_req.machine_guid, training_req.chart_id, training_req.dimension_id); training_res = ml_acquired_dimension_train(training_thread, acq_dim, training_req); string_freez(training_req.chart_id); string_freez(training_req.dimension_id); worker_is_busy(WORKER_TRAIN_RELEASE_DIMENSION); ml_acquired_dimension_release(acq_dim); } usec_t consumed_ut = now_monotonic_usec() - start_ut; usec_t remaining_ut = 0; if (consumed_ut < allotted_ut) remaining_ut = allotted_ut - consumed_ut; if (Cfg.enable_statistics_charts) { worker_is_busy(WORKER_TRAIN_UPDATE_HOST); netdata_mutex_lock(&training_thread->nd_mutex); training_thread->training_stats.queue_size += queue_size; training_thread->training_stats.num_popped_items += 1; training_thread->training_stats.allotted_ut += allotted_ut; training_thread->training_stats.consumed_ut += consumed_ut; training_thread->training_stats.remaining_ut += remaining_ut; switch (training_res) { case TRAINING_RESULT_OK: training_thread->training_stats.training_result_ok += 1; break; case TRAINING_RESULT_INVALID_QUERY_TIME_RANGE: training_thread->training_stats.training_result_invalid_query_time_range += 1; break; case TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES: training_thread->training_stats.training_result_not_enough_collected_values += 1; break; case TRAINING_RESULT_NULL_ACQUIRED_DIMENSION: training_thread->training_stats.training_result_null_acquired_dimension += 1; break; case TRAINING_RESULT_CHART_UNDER_REPLICATION: training_thread->training_stats.training_result_chart_under_replication += 1; break; } netdata_mutex_unlock(&training_thread->nd_mutex); } if (training_thread->pending_model_info.size() >= Cfg.flush_models_batch_size) { worker_is_busy(WORKER_TRAIN_FLUSH_MODELS); netdata_mutex_lock(&db_mutex); ml_flush_pending_models(training_thread); netdata_mutex_unlock(&db_mutex); continue; } worker_is_idle(); std::this_thread::sleep_for(std::chrono::microseconds{remaining_ut}); } return NULL; } void ml_init() { // Read config values ml_config_load(&Cfg); if (!Cfg.enable_anomaly_detection) return; // Generate random numbers to efficiently sample the features we need // for KMeans clustering. std::random_device RD; std::mt19937 Gen(RD()); Cfg.random_nums.reserve(Cfg.max_train_samples); for (size_t Idx = 0; Idx != Cfg.max_train_samples; Idx++) Cfg.random_nums.push_back(Gen()); // init training thread-specific data Cfg.training_threads.resize(Cfg.num_training_threads); for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) { ml_training_thread_t *training_thread = &Cfg.training_threads[idx]; size_t max_elements_needed_for_training = (size_t) Cfg.max_train_samples * (size_t) (Cfg.lag_n + 1); training_thread->training_cns = new calculated_number_t[max_elements_needed_for_training](); training_thread->scratch_training_cns = new calculated_number_t[max_elements_needed_for_training](); training_thread->id = idx; training_thread->training_queue = ml_queue_init(); training_thread->pending_model_info.reserve(Cfg.flush_models_batch_size); netdata_mutex_init(&training_thread->nd_mutex); } // open sqlite db char path[FILENAME_MAX]; snprintfz(path, FILENAME_MAX - 1, "%s/%s", netdata_configured_cache_dir, "ml.db"); int rc = sqlite3_open(path, &db); if (rc != SQLITE_OK) { error_report("Failed to initialize database at %s, due to \"%s\"", path, sqlite3_errstr(rc)); sqlite3_close(db); db = NULL; } // create table if (db) { int target_version = perform_ml_database_migration(db, ML_METADATA_VERSION); if (configure_sqlite_database(db, target_version)) { error_report("Failed to setup ML database"); sqlite3_close(db); db = NULL; } else { char *err = NULL; int rc = sqlite3_exec(db, db_models_create_table, NULL, NULL, &err); if (rc != SQLITE_OK) { error_report("Failed to create models table (%s, %s)", sqlite3_errstr(rc), err ? err : ""); sqlite3_close(db); sqlite3_free(err); db = NULL; } } } } void ml_fini() { if (!Cfg.enable_anomaly_detection) return; int rc = sqlite3_close_v2(db); if (unlikely(rc != SQLITE_OK)) error_report("Error %d while closing the SQLite database, %s", rc, sqlite3_errstr(rc)); } void ml_start_threads() { if (!Cfg.enable_anomaly_detection) return; // start detection & training threads Cfg.detection_stop = false; Cfg.training_stop = false; char tag[NETDATA_THREAD_TAG_MAX + 1]; snprintfz(tag, NETDATA_THREAD_TAG_MAX, "%s", "PREDICT"); netdata_thread_create(&Cfg.detection_thread, tag, NETDATA_THREAD_OPTION_JOINABLE, ml_detect_main, NULL); for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) { ml_training_thread_t *training_thread = &Cfg.training_threads[idx]; snprintfz(tag, NETDATA_THREAD_TAG_MAX, "TRAIN[%zu]", training_thread->id); netdata_thread_create(&training_thread->nd_thread, tag, NETDATA_THREAD_OPTION_JOINABLE, ml_train_main, training_thread); } } void ml_stop_threads() { if (!Cfg.enable_anomaly_detection) return; Cfg.detection_stop = true; Cfg.training_stop = true; if (!Cfg.detection_thread) return; netdata_thread_cancel(Cfg.detection_thread); netdata_thread_join(Cfg.detection_thread, NULL); // signal the training queue of each thread for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) { ml_training_thread_t *training_thread = &Cfg.training_threads[idx]; ml_queue_signal(training_thread->training_queue); } // cancel training threads for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) { ml_training_thread_t *training_thread = &Cfg.training_threads[idx]; netdata_thread_cancel(training_thread->nd_thread); } // join training threads for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) { ml_training_thread_t *training_thread = &Cfg.training_threads[idx]; netdata_thread_join(training_thread->nd_thread, NULL); } // clear training thread data for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) { ml_training_thread_t *training_thread = &Cfg.training_threads[idx]; delete[] training_thread->training_cns; delete[] training_thread->scratch_training_cns; ml_queue_destroy(training_thread->training_queue); netdata_mutex_destroy(&training_thread->nd_mutex); } }