plugin_name: python.d.plugin modules: - meta: plugin_name: python.d.plugin module_name: pandas monitored_instance: name: Pandas link: https://pandas.pydata.org/ categories: - data-collection.generic-data-collection icon_filename: pandas.png related_resources: integrations: list: [] info_provided_to_referring_integrations: description: "" keywords: - pandas - python most_popular: false overview: data_collection: metrics_description: | [Pandas](https://pandas.pydata.org/) is a de-facto standard in reading and processing most types of structured data in Python. If you have metrics appearing in a CSV, JSON, XML, HTML, or [other supported format](https://pandas.pydata.org/docs/user_guide/io.html), either locally or via some HTTP endpoint, you can easily ingest and present those metrics in Netdata, by leveraging the Pandas collector. This collector can be used to collect pretty much anything that can be read by Pandas, and then processed by Pandas. method_description: | The collector uses [pandas](https://pandas.pydata.org/) to pull data and do pandas-based preprocessing, before feeding to Netdata. supported_platforms: include: [] exclude: [] multi_instance: true additional_permissions: description: "" default_behavior: auto_detection: description: "" limits: description: "" performance_impact: description: "" setup: prerequisites: list: - title: Python Requirements description: | This collector depends on some Python (Python 3 only) packages that can usually be installed via `pip` or `pip3`. ```bash sudo pip install pandas requests ``` Note: If you would like to use [`pandas.read_sql`](https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html) to query a database, you will need to install the below packages as well. ```bash sudo pip install 'sqlalchemy<2.0' psycopg2-binary ``` configuration: file: name: python.d/pandas.conf description: "" options: description: | There are 2 sections: * Global variables * One or more JOBS that can define multiple different instances to monitor. The following options can be defined globally: priority, penalty, autodetection_retry, update_every, but can also be defined per JOB to override the global values. Additionally, the following collapsed table contains all the options that can be configured inside a JOB definition. Every configuration JOB starts with a `job_name` value which will appear in the dashboard, unless a `name` parameter is specified. folding: title: Config options enabled: true list: - name: chart_configs description: an array of chart configuration dictionaries default_value: "[]" required: true - name: chart_configs.name description: name of the chart to be displayed in the dashboard. default_value: None required: true - name: chart_configs.title description: title of the chart to be displayed in the dashboard. default_value: None required: true - name: chart_configs.family description: "[family](/docs/dashboards-and-charts/netdata-charts.md#families) of the chart to be displayed in the dashboard." default_value: None required: true - name: chart_configs.context description: "[context](/docs/dashboards-and-charts/netdata-charts.md#contexts) of the chart to be displayed in the dashboard." default_value: None required: true - name: chart_configs.type description: the type of the chart to be displayed in the dashboard. default_value: None required: true - name: chart_configs.units description: the units of the chart to be displayed in the dashboard. default_value: None required: true - name: chart_configs.df_steps description: a series of pandas operations (one per line) that each returns a dataframe. default_value: None required: true - name: update_every description: Sets the default data collection frequency. default_value: 5 required: false - name: priority description: Controls the order of charts at the netdata dashboard. default_value: 60000 required: false - name: autodetection_retry description: Sets the job re-check interval in seconds. default_value: 0 required: false - name: penalty description: Indicates whether to apply penalty to update_every in case of failures. default_value: yes required: false - name: name description: Job name. This value will overwrite the `job_name` value. JOBS with the same name are mutually exclusive. Only one of them will be allowed running at any time. This allows autodetection to try several alternatives and pick the one that works. default_value: "" required: false examples: folding: enabled: true title: Config list: - name: Temperature API Example folding: enabled: true description: example pulling some hourly temperature data, a chart for today forecast (mean,min,max) and another chart for current. config: | temperature: name: "temperature" update_every: 5 chart_configs: - name: "temperature_forecast_by_city" title: "Temperature By City - Today Forecast" family: "temperature.today" context: "pandas.temperature" type: "line" units: "Celsius" df_steps: > pd.DataFrame.from_dict( {city: requests.get(f'https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lng}&hourly=temperature_2m').json()['hourly']['temperature_2m'] for (city,lat,lng) in [ ('dublin', 53.3441, -6.2675), ('athens', 37.9792, 23.7166), ('london', 51.5002, -0.1262), ('berlin', 52.5235, 13.4115), ('paris', 48.8567, 2.3510), ('madrid', 40.4167, -3.7033), ('new_york', 40.71, -74.01), ('los_angeles', 34.05, -118.24), ] } ); df.describe(); # get aggregate stats for each city; df.transpose()[['mean', 'max', 'min']].reset_index(); # just take mean, min, max; df.rename(columns={'index':'city'}); # some column renaming; df.pivot(columns='city').mean().to_frame().reset_index(); # force to be one row per city; df.rename(columns={0:'degrees'}); # some column renaming; pd.concat([df, df['city']+'_'+df['level_0']], axis=1); # add new column combining city and summary measurement label; df.rename(columns={0:'measurement'}); # some column renaming; df[['measurement', 'degrees']].set_index('measurement'); # just take two columns we want; df.sort_index(); # sort by city name; df.transpose(); # transpose so its just one wide row; - name: "temperature_current_by_city" title: "Temperature By City - Current" family: "temperature.current" context: "pandas.temperature" type: "line" units: "Celsius" df_steps: > pd.DataFrame.from_dict( {city: requests.get(f'https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lng}¤t_weather=true').json()['current_weather'] for (city,lat,lng) in [ ('dublin', 53.3441, -6.2675), ('athens', 37.9792, 23.7166), ('london', 51.5002, -0.1262), ('berlin', 52.5235, 13.4115), ('paris', 48.8567, 2.3510), ('madrid', 40.4167, -3.7033), ('new_york', 40.71, -74.01), ('los_angeles', 34.05, -118.24), ] } ); df.transpose(); df[['temperature']]; df.transpose(); - name: API CSV Example folding: enabled: true description: example showing a read_csv from a url and some light pandas data wrangling. config: | example_csv: name: "example_csv" update_every: 2 chart_configs: - name: "london_system_cpu" title: "London System CPU - Ratios" family: "london_system_cpu" context: "pandas" type: "line" units: "n" df_steps: > pd.read_csv('https://london.my-netdata.io/api/v1/data?chart=system.cpu&format=csv&after=-60', storage_options={'User-Agent': 'netdata'}); df.drop('time', axis=1); df.mean().to_frame().transpose(); df.apply(lambda row: (row.user / row.system), axis = 1).to_frame(); df.rename(columns={0:'average_user_system_ratio'}); df*100; - name: API JSON Example folding: enabled: true description: example showing a read_json from a url and some light pandas data wrangling. config: | example_json: name: "example_json" update_every: 2 chart_configs: - name: "london_system_net" title: "London System Net - Total Bandwidth" family: "london_system_net" context: "pandas" type: "area" units: "kilobits/s" df_steps: > pd.DataFrame(requests.get('https://london.my-netdata.io/api/v1/data?chart=system.net&format=json&after=-1').json()['data'], columns=requests.get('https://london.my-netdata.io/api/v1/data?chart=system.net&format=json&after=-1').json()['labels']); df.drop('time', axis=1); abs(df); df.sum(axis=1).to_frame(); df.rename(columns={0:'total_bandwidth'}); - name: XML Example folding: enabled: true description: example showing a read_xml from a url and some light pandas data wrangling. config: | example_xml: name: "example_xml" update_every: 2 line_sep: "|" chart_configs: - name: "temperature_forcast" title: "Temperature Forecast" family: "temp" context: "pandas.temp" type: "line" units: "celsius" df_steps: > pd.read_xml('http://metwdb-openaccess.ichec.ie/metno-wdb2ts/locationforecast?lat=54.7210798611;long=-8.7237392806', xpath='./product/time[1]/location/temperature', parser='etree')| df.rename(columns={'value': 'dublin'})| df[['dublin']]| - name: SQL Example folding: enabled: true description: example showing a read_sql from a postgres database using sqlalchemy. config: | sql: name: "sql" update_every: 5 chart_configs: - name: "sql" title: "SQL Example" family: "sql.example" context: "example" type: "line" units: "percent" df_steps: > pd.read_sql_query( sql='\ select \ random()*100 as metric_1, \ random()*100 as metric_2 \ ', con=create_engine('postgresql://localhost/postgres?user=netdata&password=netdata') ); troubleshooting: problems: list: [] alerts: [] metrics: folding: title: Metrics enabled: false description: | This collector is expecting one row in the final pandas DataFrame. It is that first row that will be taken as the most recent values for each dimension on each chart using (`df.to_dict(orient='records')[0]`). See [pd.to_dict()](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_dict.html)." availability: [] scopes: - name: global description: | These metrics refer to the entire monitored application. labels: [] metrics: []