// SPDX-License-Identifier: GPL-3.0
/********************************************************************
*
* File: KolmogorovSmirnovDist.c
* Environment: ISO C99 or ANSI C89
* Author: Richard Simard
* Organization: DIRO, Université de Montréal
* Date: 1 February 2012
* Version 1.1
* Copyright 1 march 2010 by Université de Montréal,
Richard Simard and Pierre L'Ecuyer
=====================================================================
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
=====================================================================*/
#include "KolmogorovSmirnovDist.h"
#include
#include
#define num_Pi 3.14159265358979323846 /* PI */
#define num_Ln2 0.69314718055994530941 /* log(2) */
/* For x close to 0 or 1, we use the exact formulae of Ruben-Gambino in all
cases. For n <= NEXACT, we use exact algorithms: the Durbin matrix and
the Pomeranz algorithms. For n > NEXACT, we use asymptotic methods
except for x close to 0 where we still use the method of Durbin
for n <= NKOLMO. For n > NKOLMO, we use asymptotic methods only and
so the precision is less for x close to 0.
We could increase the limit NKOLMO to 10^6 to get better precision
for x close to 0, but at the price of a slower speed. */
#define NEXACT 500
#define NKOLMO 100000
/* The Durbin matrix algorithm for the Kolmogorov-Smirnov distribution */
static double DurbinMatrix (int n, double d);
/*========================================================================*/
#if 0
/* For ANSI C89 only, not for ISO C99 */
#define MAXI 50
#define EPSILON 1.0e-15
double log1p (double x)
{
/* returns a value equivalent to log(1 + x) accurate also for small x. */
if (fabs (x) > 0.1) {
return log (1.0 + x);
} else {
double term = x;
double sum = x;
int s = 2;
while ((fabs (term) > EPSILON * fabs (sum)) && (s < MAXI)) {
term *= -x;
sum += term / s;
s++;
}
return sum;
}
}
#undef MAXI
#undef EPSILON
#endif
/*========================================================================*/
#define MFACT 30
/* The natural logarithm of factorial n! for 0 <= n <= MFACT */
static double LnFactorial[MFACT + 1] = {
0.,
0.,
0.6931471805599453,
1.791759469228055,
3.178053830347946,
4.787491742782046,
6.579251212010101,
8.525161361065415,
10.60460290274525,
12.80182748008147,
15.10441257307552,
17.50230784587389,
19.98721449566188,
22.55216385312342,
25.19122118273868,
27.89927138384088,
30.67186010608066,
33.50507345013688,
36.39544520803305,
39.33988418719949,
42.33561646075348,
45.3801388984769,
48.47118135183522,
51.60667556776437,
54.7847293981123,
58.00360522298051,
61.26170176100199,
64.55753862700632,
67.88974313718154,
71.257038967168,
74.65823634883016
};
/*------------------------------------------------------------------------*/
static double getLogFactorial (int n)
{
/* Returns the natural logarithm of factorial n! */
if (n <= MFACT) {
return LnFactorial[n];
} else {
double x = (double) (n + 1);
double y = 1.0 / (x * x);
double z = ((-(5.95238095238E-4 * y) + 7.936500793651E-4) * y -
2.7777777777778E-3) * y + 8.3333333333333E-2;
z = ((x - 0.5) * log (x) - x) + 9.1893853320467E-1 + z / x;
return z;
}
}
/*------------------------------------------------------------------------*/
static double rapfac (int n)
{
/* Computes n! / n^n */
int i;
double res = 1.0 / n;
for (i = 2; i <= n; i++) {
res *= (double) i / n;
}
return res;
}
/*========================================================================*/
static double **CreateMatrixD (int N, int M)
{
int i;
double **T2;
T2 = (double **) malloc (N * sizeof (double *));
T2[0] = (double *) malloc ((size_t) N * M * sizeof (double));
for (i = 1; i < N; i++)
T2[i] = T2[0] + i * M;
return T2;
}
static void DeleteMatrixD (double **T)
{
free (T[0]);
free (T);
}
/*========================================================================*/
static double KSPlusbarAsymp (int n, double x)
{
/* Compute the probability of the KS+ distribution using an asymptotic
formula */
double t = (6.0 * n * x + 1);
double z = t * t / (18.0 * n);
double v = 1.0 - (2.0 * z * z - 4.0 * z - 1.0) / (18.0 * n);
if (v <= 0.0)
return 0.0;
v = v * exp (-z);
if (v >= 1.0)
return 1.0;
return v;
}
/*-------------------------------------------------------------------------*/
static double KSPlusbarUpper (int n, double x)
{
/* Compute the probability of the KS+ distribution in the upper tail using
Smirnov's stable formula */
const double EPSILON = 1.0E-12;
double q;
double Sum = 0.0;
double term;
double t;
double LogCom;
double LOGJMAX;
int j;
int jdiv;
int jmax = (int) (n * (1.0 - x));
if (n > 200000)
return KSPlusbarAsymp (n, x);
/* Avoid log(0) for j = jmax and q ~ 1.0 */
if ((1.0 - x - (double) jmax / n) <= 0.0)
jmax--;
if (n > 3000)
jdiv = 2;
else
jdiv = 3;
j = jmax / jdiv + 1;
LogCom = getLogFactorial (n) - getLogFactorial (j) -
getLogFactorial (n - j);
LOGJMAX = LogCom;
while (j <= jmax) {
q = (double) j / n + x;
term = LogCom + (j - 1) * log (q) + (n - j) * log1p (-q);
t = exp (term);
Sum += t;
LogCom += log ((double) (n - j) / (j + 1));
if (t <= Sum * EPSILON)
break;
j++;
}
j = jmax / jdiv;
LogCom = LOGJMAX + log ((double) (j + 1) / (n - j));
while (j > 0) {
q = (double) j / n + x;
term = LogCom + (j - 1) * log (q) + (n - j) * log1p (-q);
t = exp (term);
Sum += t;
LogCom += log ((double) j / (n - j + 1));
if (t <= Sum * EPSILON)
break;
j--;
}
Sum *= x;
/* add the term j = 0 */
Sum += exp (n * log1p (-x));
return Sum;
}
/*========================================================================*/
static double Pelz (int n, double x)
{
/* Approximating the Lower Tail-Areas of the Kolmogorov-Smirnov One-Sample
Statistic,
Wolfgang Pelz and I. J. Good,
Journal of the Royal Statistical Society, Series B.
Vol. 38, No. 2 (1976), pp. 152-156
*/
const int JMAX = 20;
const double EPS = 1.0e-10;
const double C = 2.506628274631001; /* sqrt(2*Pi) */
const double C2 = 1.2533141373155001; /* sqrt(Pi/2) */
const double PI2 = num_Pi * num_Pi;
const double PI4 = PI2 * PI2;
const double RACN = sqrt ((double) n);
const double z = RACN * x;
const double z2 = z * z;
const double z4 = z2 * z2;
const double z6 = z4 * z2;
const double w = PI2 / (2.0 * z * z);
double ti, term, tom;
double sum;
int j;
term = 1;
j = 0;
sum = 0;
while (j <= JMAX && term > EPS * sum) {
ti = j + 0.5;
term = exp (-ti * ti * w);
sum += term;
j++;
}
sum *= C / z;
term = 1;
tom = 0;
j = 0;
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
ti = j + 0.5;
term = (PI2 * ti * ti - z2) * exp (-ti * ti * w);
tom += term;
j++;
}
sum += tom * C2 / (RACN * 3.0 * z4);
term = 1;
tom = 0;
j = 0;
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
ti = j + 0.5;
term = 6 * z6 + 2 * z4 + PI2 * (2 * z4 - 5 * z2) * ti * ti +
PI4 * (1 - 2 * z2) * ti * ti * ti * ti;
term *= exp (-ti * ti * w);
tom += term;
j++;
}
sum += tom * C2 / (n * 36.0 * z * z6);
term = 1;
tom = 0;
j = 1;
while (j <= JMAX && term > EPS * tom) {
ti = j;
term = PI2 * ti * ti * exp (-ti * ti * w);
tom += term;
j++;
}
sum -= tom * C2 / (n * 18.0 * z * z2);
term = 1;
tom = 0;
j = 0;
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
ti = j + 0.5;
ti = ti * ti;
term = -30 * z6 - 90 * z6 * z2 + PI2 * (135 * z4 - 96 * z6) * ti +
PI4 * (212 * z4 - 60 * z2) * ti * ti + PI2 * PI4 * ti * ti * ti * (5 -
30 * z2);
term *= exp (-ti * w);
tom += term;
j++;
}
sum += tom * C2 / (RACN * n * 3240.0 * z4 * z6);
term = 1;
tom = 0;
j = 1;
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
ti = j * j;
term = (3 * PI2 * ti * z2 - PI4 * ti * ti) * exp (-ti * w);
tom += term;
j++;
}
sum += tom * C2 / (RACN * n * 108.0 * z6);
return sum;
}
/*=========================================================================*/
static void CalcFloorCeil (
int n, /* sample size */
double t, /* = nx */
double *A, /* A_i */
double *Atflo, /* floor (A_i - t) */
double *Atcei /* ceiling (A_i + t) */
)
{
/* Precompute A_i, floors, and ceilings for limits of sums in the Pomeranz
algorithm */
int i;
int ell = (int) t; /* floor (t) */
double z = t - ell; /* t - floor (t) */
double w = ceil (t) - t;
if (z > 0.5) {
for (i = 2; i <= 2 * n + 2; i += 2)
Atflo[i] = i / 2 - 2 - ell;
for (i = 1; i <= 2 * n + 2; i += 2)
Atflo[i] = i / 2 - 1 - ell;
for (i = 2; i <= 2 * n + 2; i += 2)
Atcei[i] = i / 2 + ell;
for (i = 1; i <= 2 * n + 2; i += 2)
Atcei[i] = i / 2 + 1 + ell;
} else if (z > 0.0) {
for (i = 1; i <= 2 * n + 2; i++)
Atflo[i] = i / 2 - 1 - ell;
for (i = 2; i <= 2 * n + 2; i++)
Atcei[i] = i / 2 + ell;
Atcei[1] = 1 + ell;
} else { /* z == 0 */
for (i = 2; i <= 2 * n + 2; i += 2)
Atflo[i] = i / 2 - 1 - ell;
for (i = 1; i <= 2 * n + 2; i += 2)
Atflo[i] = i / 2 - ell;
for (i = 2; i <= 2 * n + 2; i += 2)
Atcei[i] = i / 2 - 1 + ell;
for (i = 1; i <= 2 * n + 2; i += 2)
Atcei[i] = i / 2 + ell;
}
if (w < z)
z = w;
A[0] = A[1] = 0;
A[2] = z;
A[3] = 1 - A[2];
for (i = 4; i <= 2 * n + 1; i++)
A[i] = A[i - 2] + 1;
A[2 * n + 2] = n;
}
/*========================================================================*/
static double Pomeranz (int n, double x)
{
/* The Pomeranz algorithm to compute the KS distribution */
const double EPS = 1.0e-15;
const int ENO = 350;
const double RENO = ldexp (1.0, ENO); /* for renormalization of V */
int coreno; /* counter: how many renormalizations */
const double t = n * x;
double w, sum, minsum;
int i, j, k, s;
int r1, r2; /* Indices i and i-1 for V[i][] */
int jlow, jup, klow, kup, kup0;
double *A;
double *Atflo;
double *Atcei;
double **V;
double **H; /* = pow(w, j) / Factorial(j) */
A = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
Atflo = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
Atcei = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
V = (double **) CreateMatrixD (2, n + 2);
H = (double **) CreateMatrixD (4, n + 2);
CalcFloorCeil (n, t, A, Atflo, Atcei);
for (j = 1; j <= n + 1; j++)
V[0][j] = 0;
for (j = 2; j <= n + 1; j++)
V[1][j] = 0;
V[1][1] = RENO;
coreno = 1;
/* Precompute H[][] = (A[j] - A[j-1]^k / k! for speed */
H[0][0] = 1;
w = 2.0 * A[2] / n;
for (j = 1; j <= n + 1; j++)
H[0][j] = w * H[0][j - 1] / j;
H[1][0] = 1;
w = (1.0 - 2.0 * A[2]) / n;
for (j = 1; j <= n + 1; j++)
H[1][j] = w * H[1][j - 1] / j;
H[2][0] = 1;
w = A[2] / n;
for (j = 1; j <= n + 1; j++)
H[2][j] = w * H[2][j - 1] / j;
H[3][0] = 1;
for (j = 1; j <= n + 1; j++)
H[3][j] = 0;
r1 = 0;
r2 = 1;
for (i = 2; i <= 2 * n + 2; i++) {
jlow = 2 + (int) Atflo[i];
if (jlow < 1)
jlow = 1;
jup = (int) Atcei[i];
if (jup > n + 1)
jup = n + 1;
klow = 2 + (int) Atflo[i - 1];
if (klow < 1)
klow = 1;
kup0 = (int) Atcei[i - 1];
/* Find to which case it corresponds */
w = (A[i] - A[i - 1]) / n;
s = -1;
for (j = 0; j < 4; j++) {
if (fabs (w - H[j][1]) <= EPS) {
s = j;
break;
}
}
/* assert (s >= 0, "Pomeranz: s < 0"); */
minsum = RENO;
r1 = (r1 + 1) & 1; /* i - 1 */
r2 = (r2 + 1) & 1; /* i */
for (j = jlow; j <= jup; j++) {
kup = kup0;
if (kup > j)
kup = j;
sum = 0;
for (k = kup; k >= klow; k--)
sum += V[r1][k] * H[s][j - k];
V[r2][j] = sum;
if (sum < minsum)
minsum = sum;
}
if (minsum < 1.0e-280) {
/* V is too small: renormalize to avoid underflow of probabilities */
for (j = jlow; j <= jup; j++)
V[r2][j] *= RENO;
coreno++; /* keep track of log of RENO */
}
}
sum = V[r2][n + 1];
free (A);
free (Atflo);
free (Atcei);
DeleteMatrixD (H);
DeleteMatrixD (V);
w = getLogFactorial (n) - coreno * ENO * num_Ln2 + log (sum);
if (w >= 0.)
return 1.;
return exp (w);
}
/*========================================================================*/
static double cdfSpecial (int n, double x)
{
/* The KS distribution is known exactly for these cases */
/* For nx^2 > 18, KSfbar(n, x) is smaller than 5e-16 */
if ((n * x * x >= 18.0) || (x >= 1.0))
return 1.0;
if (x <= 0.5 / n)
return 0.0;
if (n == 1)
return 2.0 * x - 1.0;
if (x <= 1.0 / n) {
double t = 2.0 * x * n - 1.0;
double w;
if (n <= NEXACT) {
w = rapfac (n);
return w * pow (t, (double) n);
}
w = getLogFactorial (n) + n * log (t / n);
return exp (w);
}
if (x >= 1.0 - 1.0 / n) {
return 1.0 - 2.0 * pow (1.0 - x, (double) n);
}
return -1.0;
}
/*========================================================================*/
double KScdf (int n, double x)
{
const double w = n * x * x;
double u = cdfSpecial (n, x);
if (u >= 0.0)
return u;
if (n <= NEXACT) {
if (w < 0.754693)
return DurbinMatrix (n, x);
if (w < 4.0)
return Pomeranz (n, x);
return 1.0 - KSfbar (n, x);
}
if ((w * x * n <= 7.0) && (n <= NKOLMO))
return DurbinMatrix (n, x);
return Pelz (n, x);
}
/*=========================================================================*/
static double fbarSpecial (int n, double x)
{
const double w = n * x * x;
if ((w >= 370.0) || (x >= 1.0))
return 0.0;
if ((w <= 0.0274) || (x <= 0.5 / n))
return 1.0;
if (n == 1)
return 2.0 - 2.0 * x;
if (x <= 1.0 / n) {
double z;
double t = 2.0 * x * n - 1.0;
if (n <= NEXACT) {
z = rapfac (n);
return 1.0 - z * pow (t, (double) n);
}
z = getLogFactorial (n) + n * log (t / n);
return 1.0 - exp (z);
}
if (x >= 1.0 - 1.0 / n) {
return 2.0 * pow (1.0 - x, (double) n);
}
return -1.0;
}
/*========================================================================*/
double KSfbar (int n, double x)
{
const double w = n * x * x;
double v = fbarSpecial (n, x);
if (v >= 0.0)
return v;
if (n <= NEXACT) {
if (w < 4.0)
return 1.0 - KScdf (n, x);
else
return 2.0 * KSPlusbarUpper (n, x);
}
if (w >= 2.65)
return 2.0 * KSPlusbarUpper (n, x);
return 1.0 - KScdf (n, x);
}
/*=========================================================================
The following implements the Durbin matrix algorithm and was programmed by
G. Marsaglia, Wai Wan Tsang and Jingbo Wong.
I have made small modifications in their program. (Richard Simard)
=========================================================================*/
/*
The C program to compute Kolmogorov's distribution
K(n,d) = Prob(D_n < d), where
D_n = max(x_1-0/n,x_2-1/n...,x_n-(n-1)/n,1/n-x_1,2/n-x_2,...,n/n-x_n)
with x_17 DIGIT ACCURACY IN THE RIGHT TAIL */
#if 0
s = d * d * n;
if (s > 7.24 || (s > 3.76 && n > 99))
return 1 - 2 * exp (-(2.000071 + .331 / sqrt (n) + 1.409 / n) * s);
#endif
k = (int) (n * d) + 1;
m = 2 * k - 1;
h = k - n * d;
H = (double *) calloc ((m * m), sizeof (double));
Q = (double *) calloc ((m * m), sizeof (double));
for (i = 0; i < m; i++)
for (j = 0; j < m; j++)
if (i - j + 1 < 0)
H[i * m + j] = 0;
else
H[i * m + j] = 1;
for (i = 0; i < m; i++) {
H[i * m] -= pow (h, (double) (i + 1));
H[(m - 1) * m + i] -= pow (h, (double) (m - i));
}
H[(m - 1) * m] += (2 * h - 1 > 0 ? pow (2 * h - 1, (double) m) : 0);
for (i = 0; i < m; i++)
for (j = 0; j < m; j++)
if (i - j + 1 > 0)
for (g = 1; g <= i - j + 1; g++)
H[i * m + j] /= g;
eH = 0;
mPower (H, eH, Q, &eQ, m, n);
s = Q[(k - 1) * m + k - 1];
for (i = 1; i <= n; i++) {
s = s * (double) i / n;
if (s < INORM) {
s *= NORM;
eQ -= LOGNORM;
}
}
s *= pow (10., (double) eQ);
free (H);
free (Q);
return s;
}
static void mMultiply (double *A, double *B, double *C, int m)
{
int i, j, k;
double s;
for (i = 0; i < m; i++)
for (j = 0; j < m; j++) {
s = 0.;
for (k = 0; k < m; k++)
s += A[i * m + k] * B[k * m + j];
C[i * m + j] = s;
}
}
static void renormalize (double *V, int m, int *p)
{
int i;
for (i = 0; i < m * m; i++)
V[i] *= INORM;
*p += LOGNORM;
}
static void mPower (double *A, int eA, double *V, int *eV, int m, int n)
{
double *B;
int eB, i;
if (n == 1) {
for (i = 0; i < m * m; i++)
V[i] = A[i];
*eV = eA;
return;
}
mPower (A, eA, V, eV, m, n / 2);
B = (double *) malloc ((m * m) * sizeof (double));
mMultiply (V, V, B, m);
eB = 2 * (*eV);
if (B[(m / 2) * m + (m / 2)] > NORM)
renormalize (B, m, &eB);
if (n % 2 == 0) {
for (i = 0; i < m * m; i++)
V[i] = B[i];
*eV = eB;
} else {
mMultiply (A, B, V, m);
*eV = eA + eB;
}
if (V[(m / 2) * m + (m / 2)] > NORM)
renormalize (V, m, eV);
free (B);
}