// SPDX-License-Identifier: GPL-3.0-or-later #include "libnetdata.h" #define MALLOC_ALIGNMENT (sizeof(uintptr_t) * 2) #define size_t_atomic_count(op, var, size) __atomic_## op ##_fetch(&(var), size, __ATOMIC_RELAXED) #define size_t_atomic_bytes(op, var, size) __atomic_## op ##_fetch(&(var), ((size) % MALLOC_ALIGNMENT)?((size) + MALLOC_ALIGNMENT - ((size) % MALLOC_ALIGNMENT)):(size), __ATOMIC_RELAXED) #if !defined(MADV_DONTFORK) #define MADV_DONTFORK 0 #endif #if !defined(O_NOATIME) #define O_NOATIME 0 #endif struct rlimit rlimit_nofile = { .rlim_cur = 1024, .rlim_max = 1024 }; #if defined(MADV_MERGEABLE) int enable_ksm = CONFIG_BOOLEAN_AUTO; #else int enable_ksm = 0; #endif volatile sig_atomic_t netdata_exit = 0; // ---------------------------------------------------------------------------- // memory allocation functions that handle failures // although netdata does not use memory allocations too often (netdata tries to // maintain its memory footprint stable during runtime, i.e. all buffers are // allocated during initialization and are adapted to current use throughout // its lifetime), these can be used to override the default system allocation // routines. #ifdef NETDATA_TRACE_ALLOCATIONS #warning NETDATA_TRACE_ALLOCATIONS ENABLED #include "Judy.h" #if defined(HAVE_DLSYM) && defined(ENABLE_DLSYM) #include typedef void (*libc_function_t)(void); static void *malloc_first_run(size_t size); static void *(*libc_malloc)(size_t) = malloc_first_run; static void *calloc_first_run(size_t n, size_t size); static void *(*libc_calloc)(size_t, size_t) = calloc_first_run; static void *realloc_first_run(void *ptr, size_t size); static void *(*libc_realloc)(void *, size_t) = realloc_first_run; static void free_first_run(void *ptr); static void (*libc_free)(void *) = free_first_run; static char *strdup_first_run(const char *s); static char *(*libc_strdup)(const char *) = strdup_first_run; static char *strndup_first_run(const char *s, size_t len); static char *(*libc_strndup)(const char *, size_t) = strndup_first_run; static size_t malloc_usable_size_first_run(void *ptr); #ifdef HAVE_MALLOC_USABLE_SIZE static size_t (*libc_malloc_usable_size)(void *) = malloc_usable_size_first_run; #else static size_t (*libc_malloc_usable_size)(void *) = NULL; #endif static void link_system_library_function(libc_function_t *func_pptr, const char *name, bool required) { *func_pptr = dlsym(RTLD_NEXT, name); if(!*func_pptr && required) { fprintf(stderr, "FATAL: Cannot find system's %s() function.\n", name); abort(); } } static void *malloc_first_run(size_t size) { link_system_library_function((libc_function_t *) &libc_malloc, "malloc", true); return libc_malloc(size); } static void *calloc_first_run(size_t n, size_t size) { link_system_library_function((libc_function_t *) &libc_calloc, "calloc", true); return libc_calloc(n, size); } static void *realloc_first_run(void *ptr, size_t size) { link_system_library_function((libc_function_t *) &libc_realloc, "realloc", true); return libc_realloc(ptr, size); } static void free_first_run(void *ptr) { link_system_library_function((libc_function_t *) &libc_free, "free", true); libc_free(ptr); } static char *strdup_first_run(const char *s) { link_system_library_function((libc_function_t *) &libc_strdup, "strdup", true); return libc_strdup(s); } static char *strndup_first_run(const char *s, size_t len) { link_system_library_function((libc_function_t *) &libc_strndup, "strndup", true); return libc_strndup(s, len); } static size_t malloc_usable_size_first_run(void *ptr) { link_system_library_function((libc_function_t *) &libc_malloc_usable_size, "malloc_usable_size", false); if(libc_malloc_usable_size) return libc_malloc_usable_size(ptr); else return 0; } void *malloc(size_t size) { return mallocz(size); } void *calloc(size_t n, size_t size) { return callocz(n, size); } void *realloc(void *ptr, size_t size) { return reallocz(ptr, size); } void *reallocarray(void *ptr, size_t n, size_t size) { return reallocz(ptr, n * size); } void free(void *ptr) { freez(ptr); } char *strdup(const char *s) { return strdupz(s); } char *strndup(const char *s, size_t len) { return strndupz(s, len); } size_t malloc_usable_size(void *ptr) { return mallocz_usable_size(ptr); } #else // !HAVE_DLSYM static void *(*libc_malloc)(size_t) = malloc; static void *(*libc_calloc)(size_t, size_t) = calloc; static void *(*libc_realloc)(void *, size_t) = realloc; static void (*libc_free)(void *) = free; #ifdef HAVE_MALLOC_USABLE_SIZE static size_t (*libc_malloc_usable_size)(void *) = malloc_usable_size; #else static size_t (*libc_malloc_usable_size)(void *) = NULL; #endif #endif // HAVE_DLSYM void posix_memfree(void *ptr) { libc_free(ptr); } struct malloc_header_signature { uint32_t magic; uint32_t size; struct malloc_trace *trace; }; struct malloc_header { struct malloc_header_signature signature; uint8_t padding[(sizeof(struct malloc_header_signature) % MALLOC_ALIGNMENT) ? MALLOC_ALIGNMENT - (sizeof(struct malloc_header_signature) % MALLOC_ALIGNMENT) : 0]; uint8_t data[]; }; static size_t malloc_header_size = sizeof(struct malloc_header); int malloc_trace_compare(void *A, void *B) { struct malloc_trace *a = A; struct malloc_trace *b = B; return strcmp(a->function, b->function); } static avl_tree_lock malloc_trace_index = { .avl_tree = { .root = NULL, .compar = malloc_trace_compare}, .rwlock = AVL_LOCK_INITIALIZER }; int malloc_trace_walkthrough(int (*callback)(void *item, void *data), void *data) { return avl_traverse_lock(&malloc_trace_index, callback, data); } NEVERNULL WARNUNUSED static struct malloc_trace *malloc_trace_find_or_create(const char *file, const char *function, size_t line) { struct malloc_trace tmp = { .line = line, .function = function, .file = file, }; struct malloc_trace *t = (struct malloc_trace *)avl_search_lock(&malloc_trace_index, (avl_t *)&tmp); if(!t) { t = libc_calloc(1, sizeof(struct malloc_trace)); if(!t) fatal("No memory"); t->line = line; t->function = function; t->file = file; struct malloc_trace *t2 = (struct malloc_trace *)avl_insert_lock(&malloc_trace_index, (avl_t *)t); if(t2 != t) free(t); t = t2; } if(!t) fatal("Cannot insert to AVL"); return t; } void malloc_trace_mmap(size_t size) { struct malloc_trace *p = malloc_trace_find_or_create("unknown", "netdata_mmap", 1); size_t_atomic_count(add, p->mmap_calls, 1); size_t_atomic_count(add, p->allocations, 1); size_t_atomic_bytes(add, p->bytes, size); } void malloc_trace_munmap(size_t size) { struct malloc_trace *p = malloc_trace_find_or_create("unknown", "netdata_mmap", 1); size_t_atomic_count(add, p->munmap_calls, 1); size_t_atomic_count(sub, p->allocations, 1); size_t_atomic_bytes(sub, p->bytes, size); } void *mallocz_int(size_t size, const char *file, const char *function, size_t line) { struct malloc_trace *p = malloc_trace_find_or_create(file, function, line); size_t_atomic_count(add, p->malloc_calls, 1); size_t_atomic_count(add, p->allocations, 1); size_t_atomic_bytes(add, p->bytes, size); struct malloc_header *t = (struct malloc_header *)libc_malloc(malloc_header_size + size); if (unlikely(!t)) fatal("mallocz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size); t->signature.magic = 0x0BADCAFE; t->signature.trace = p; t->signature.size = size; #ifdef NETDATA_INTERNAL_CHECKS for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded t->padding[i] = 0xFF; #endif return (void *)&t->data; } void *callocz_int(size_t nmemb, size_t size, const char *file, const char *function, size_t line) { struct malloc_trace *p = malloc_trace_find_or_create(file, function, line); size = nmemb * size; size_t_atomic_count(add, p->calloc_calls, 1); size_t_atomic_count(add, p->allocations, 1); size_t_atomic_bytes(add, p->bytes, size); struct malloc_header *t = (struct malloc_header *)libc_calloc(1, malloc_header_size + size); if (unlikely(!t)) fatal("mallocz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size); t->signature.magic = 0x0BADCAFE; t->signature.trace = p; t->signature.size = size; #ifdef NETDATA_INTERNAL_CHECKS for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded t->padding[i] = 0xFF; #endif return &t->data; } char *strdupz_int(const char *s, const char *file, const char *function, size_t line) { struct malloc_trace *p = malloc_trace_find_or_create(file, function, line); size_t size = strlen(s) + 1; size_t_atomic_count(add, p->strdup_calls, 1); size_t_atomic_count(add, p->allocations, 1); size_t_atomic_bytes(add, p->bytes, size); struct malloc_header *t = (struct malloc_header *)libc_malloc(malloc_header_size + size); if (unlikely(!t)) fatal("strdupz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size); t->signature.magic = 0x0BADCAFE; t->signature.trace = p; t->signature.size = size; #ifdef NETDATA_INTERNAL_CHECKS for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded t->padding[i] = 0xFF; #endif memcpy(&t->data, s, size); return (char *)&t->data; } char *strndupz_int(const char *s, size_t len, const char *file, const char *function, size_t line) { struct malloc_trace *p = malloc_trace_find_or_create(file, function, line); size_t size = len + 1; size_t_atomic_count(add, p->strdup_calls, 1); size_t_atomic_count(add, p->allocations, 1); size_t_atomic_bytes(add, p->bytes, size); struct malloc_header *t = (struct malloc_header *)libc_malloc(malloc_header_size + size); if (unlikely(!t)) fatal("strndupz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size); t->signature.magic = 0x0BADCAFE; t->signature.trace = p; t->signature.size = size; #ifdef NETDATA_INTERNAL_CHECKS for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded t->padding[i] = 0xFF; #endif memcpy(&t->data, s, size); t->data[len] = '\0'; return (char *)&t->data; } static struct malloc_header *malloc_get_header(void *ptr, const char *caller, const char *file, const char *function, size_t line) { uint8_t *ret = (uint8_t *)ptr - malloc_header_size; struct malloc_header *t = (struct malloc_header *)ret; if(t->signature.magic != 0x0BADCAFE) { netdata_log_error("pointer %p is not our pointer (called %s() from %zu@%s, %s()).", ptr, caller, line, file, function); return NULL; } return t; } void *reallocz_int(void *ptr, size_t size, const char *file, const char *function, size_t line) { if(!ptr) return mallocz_int(size, file, function, line); struct malloc_header *t = malloc_get_header(ptr, __FUNCTION__, file, function, line); if(!t) return libc_realloc(ptr, size); if(t->signature.size == size) return ptr; size_t_atomic_count(add, t->signature.trace->free_calls, 1); size_t_atomic_count(sub, t->signature.trace->allocations, 1); size_t_atomic_bytes(sub, t->signature.trace->bytes, t->signature.size); struct malloc_trace *p = malloc_trace_find_or_create(file, function, line); size_t_atomic_count(add, p->realloc_calls, 1); size_t_atomic_count(add, p->allocations, 1); size_t_atomic_bytes(add, p->bytes, size); t = (struct malloc_header *)libc_realloc(t, malloc_header_size + size); if (unlikely(!t)) fatal("reallocz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size); t->signature.magic = 0x0BADCAFE; t->signature.trace = p; t->signature.size = size; #ifdef NETDATA_INTERNAL_CHECKS for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded t->padding[i] = 0xFF; #endif return (void *)&t->data; } size_t mallocz_usable_size_int(void *ptr, const char *file, const char *function, size_t line) { if(unlikely(!ptr)) return 0; struct malloc_header *t = malloc_get_header(ptr, __FUNCTION__, file, function, line); if(!t) { if(libc_malloc_usable_size) return libc_malloc_usable_size(ptr); else return 0; } return t->signature.size; } void freez_int(void *ptr, const char *file, const char *function, size_t line) { if(unlikely(!ptr)) return; struct malloc_header *t = malloc_get_header(ptr, __FUNCTION__, file, function, line); if(!t) { libc_free(ptr); return; } size_t_atomic_count(add, t->signature.trace->free_calls, 1); size_t_atomic_count(sub, t->signature.trace->allocations, 1); size_t_atomic_bytes(sub, t->signature.trace->bytes, t->signature.size); #ifdef NETDATA_INTERNAL_CHECKS // it should crash if it is used after freeing it memset(t, 0, malloc_header_size + t->signature.size); #endif libc_free(t); } #else char *strdupz(const char *s) { char *t = strdup(s); if (unlikely(!t)) fatal("Cannot strdup() string '%s'", s); return t; } char *strndupz(const char *s, size_t len) { char *t = strndup(s, len); if (unlikely(!t)) fatal("Cannot strndup() string '%s' of len %zu", s, len); return t; } // If ptr is NULL, no operation is performed. void freez(void *ptr) { if(likely(ptr)) free(ptr); } void *mallocz(size_t size) { void *p = malloc(size); if (unlikely(!p)) fatal("Cannot allocate %zu bytes of memory.", size); return p; } void *callocz(size_t nmemb, size_t size) { void *p = calloc(nmemb, size); if (unlikely(!p)) fatal("Cannot allocate %zu bytes of memory.", nmemb * size); return p; } void *reallocz(void *ptr, size_t size) { void *p = realloc(ptr, size); if (unlikely(!p)) fatal("Cannot re-allocate memory to %zu bytes.", size); return p; } void posix_memfree(void *ptr) { free(ptr); } #endif // -------------------------------------------------------------------------------------------------------------------- void json_escape_string(char *dst, const char *src, size_t size) { const char *t; char *d = dst, *e = &dst[size - 1]; for(t = src; *t && d < e ;t++) { if(unlikely(*t == '\\' || *t == '"')) { if(unlikely(d + 1 >= e)) break; *d++ = '\\'; } *d++ = *t; } *d = '\0'; } void json_fix_string(char *s) { unsigned char c; while((c = (unsigned char)*s)) { if(unlikely(c == '\\')) *s++ = '/'; else if(unlikely(c == '"')) *s++ = '\''; else if(unlikely(isspace(c) || iscntrl(c))) *s++ = ' '; else if(unlikely(!isprint(c) || c > 127)) *s++ = '_'; else s++; } } static int memory_file_open(const char *filename, size_t size) { // netdata_log_info("memory_file_open('%s', %zu", filename, size); int fd = open(filename, O_RDWR | O_CREAT | O_NOATIME | O_CLOEXEC, 0664); if (fd != -1) { if (lseek(fd, size, SEEK_SET) == (off_t) size) { if (write(fd, "", 1) == 1) { if (ftruncate(fd, size)) netdata_log_error("Cannot truncate file '%s' to size %zu. Will use the larger file.", filename, size); } else netdata_log_error("Cannot write to file '%s' at position %zu.", filename, size); } else netdata_log_error("Cannot seek file '%s' to size %zu.", filename, size); } else netdata_log_error("Cannot create/open file '%s'.", filename); return fd; } inline int madvise_sequential(void *mem, size_t len) { static int logger = 1; int ret = madvise(mem, len, MADV_SEQUENTIAL); if (ret != 0 && logger-- > 0) netdata_log_error("madvise(MADV_SEQUENTIAL) failed."); return ret; } inline int madvise_random(void *mem, size_t len) { static int logger = 1; int ret = madvise(mem, len, MADV_RANDOM); if (ret != 0 && logger-- > 0) netdata_log_error("madvise(MADV_RANDOM) failed."); return ret; } inline int madvise_dontfork(void *mem, size_t len) { static int logger = 1; int ret = madvise(mem, len, MADV_DONTFORK); if (ret != 0 && logger-- > 0) netdata_log_error("madvise(MADV_DONTFORK) failed."); return ret; } inline int madvise_willneed(void *mem, size_t len) { static int logger = 1; int ret = madvise(mem, len, MADV_WILLNEED); if (ret != 0 && logger-- > 0) netdata_log_error("madvise(MADV_WILLNEED) failed."); return ret; } inline int madvise_dontneed(void *mem, size_t len) { static int logger = 1; int ret = madvise(mem, len, MADV_DONTNEED); if (ret != 0 && logger-- > 0) netdata_log_error("madvise(MADV_DONTNEED) failed."); return ret; } inline int madvise_dontdump(void *mem __maybe_unused, size_t len __maybe_unused) { #if __linux__ static int logger = 1; int ret = madvise(mem, len, MADV_DONTDUMP); if (ret != 0 && logger-- > 0) netdata_log_error("madvise(MADV_DONTDUMP) failed."); return ret; #else return 0; #endif } inline int madvise_mergeable(void *mem __maybe_unused, size_t len __maybe_unused) { #ifdef MADV_MERGEABLE static int logger = 1; int ret = madvise(mem, len, MADV_MERGEABLE); if (ret != 0 && logger-- > 0) netdata_log_error("madvise(MADV_MERGEABLE) failed."); return ret; #else return 0; #endif } void *netdata_mmap(const char *filename, size_t size, int flags, int ksm, bool read_only, int *open_fd) { // netdata_log_info("netdata_mmap('%s', %zu", filename, size); // MAP_SHARED is used in memory mode map // MAP_PRIVATE is used in memory mode ram and save if(unlikely(!(flags & MAP_SHARED) && !(flags & MAP_PRIVATE))) fatal("Neither MAP_SHARED or MAP_PRIVATE were given to netdata_mmap()"); if(unlikely((flags & MAP_SHARED) && (flags & MAP_PRIVATE))) fatal("Both MAP_SHARED and MAP_PRIVATE were given to netdata_mmap()"); if(unlikely((flags & MAP_SHARED) && (!filename || !*filename))) fatal("MAP_SHARED requested, without a filename to netdata_mmap()"); // don't enable ksm is the global setting is disabled if(unlikely(!enable_ksm)) ksm = 0; // KSM only merges anonymous (private) pages, never pagecache (file) pages // but MAP_PRIVATE without MAP_ANONYMOUS it fails too, so we need it always if((flags & MAP_PRIVATE)) flags |= MAP_ANONYMOUS; int fd = -1; void *mem = MAP_FAILED; if(filename && *filename) { // open/create the file to be used fd = memory_file_open(filename, size); if(fd == -1) goto cleanup; } int fd_for_mmap = fd; if(fd != -1 && (flags & MAP_PRIVATE)) { // this is MAP_PRIVATE allocation // no need for mmap() to use our fd // we will copy the file into the memory allocated fd_for_mmap = -1; } mem = mmap(NULL, size, read_only ? PROT_READ : PROT_READ | PROT_WRITE, flags, fd_for_mmap, 0); if (mem != MAP_FAILED) { #ifdef NETDATA_TRACE_ALLOCATIONS malloc_trace_mmap(size); #endif // if we have a file open, but we didn't give it to mmap(), // we have to read the file into the memory block we allocated if(fd != -1 && fd_for_mmap == -1) { if (lseek(fd, 0, SEEK_SET) == 0) { if (read(fd, mem, size) != (ssize_t) size) netdata_log_info("Cannot read from file '%s'", filename); } else netdata_log_info("Cannot seek to beginning of file '%s'.", filename); } // madvise_sequential(mem, size); madvise_dontfork(mem, size); madvise_dontdump(mem, size); // if(flags & MAP_SHARED) madvise_willneed(mem, size); if(ksm) madvise_mergeable(mem, size); } cleanup: if(fd != -1) { if (open_fd) *open_fd = fd; else close(fd); } if(mem == MAP_FAILED) return NULL; errno_clear(); return mem; } int netdata_munmap(void *ptr, size_t size) { #ifdef NETDATA_TRACE_ALLOCATIONS malloc_trace_munmap(size); #endif return munmap(ptr, size); } char *fgets_trim_len(char *buf, size_t buf_size, FILE *fp, size_t *len) { char *s = fgets(buf, (int)buf_size, fp); if (!s) return NULL; char *t = s; if (*t != '\0') { // find the string end while (*++t != '\0'); // trim trailing spaces/newlines/tabs while (--t > s && *t == '\n') *t = '\0'; } if (len) *len = t - s + 1; return s; } // vsnprintfz() returns the number of bytes actually written - after possible truncation int vsnprintfz(char *dst, size_t n, const char *fmt, va_list args) { if(unlikely(!n)) return 0; int size = vsnprintf(dst, n, fmt, args); dst[n - 1] = '\0'; if (unlikely((size_t) size >= n)) size = (int)(n - 1); return size; } // snprintfz() returns the number of bytes actually written - after possible truncation int snprintfz(char *dst, size_t n, const char *fmt, ...) { va_list args; va_start(args, fmt); int ret = vsnprintfz(dst, n, fmt, args); va_end(args); return ret; } // Returns the number of bytes read from the file if file_size is not NULL. // The actual buffer has an extra byte set to zero (not included in the count). char *read_by_filename(const char *filename, long *file_size) { FILE *f = fopen(filename, "r"); if (!f) return NULL; if (fseek(f, 0, SEEK_END) < 0) { fclose(f); return NULL; } long size = ftell(f); if (size <= 0 || fseek(f, 0, SEEK_END) < 0) { fclose(f); return NULL; } char *contents = callocz(size + 1, 1); if (fseek(f, 0, SEEK_SET) < 0) { fclose(f); freez(contents); return NULL; } size_t res = fread(contents, 1, size, f); if ( res != (size_t)size) { freez(contents); fclose(f); return NULL; } fclose(f); if (file_size) *file_size = size; return contents; } char *find_and_replace(const char *src, const char *find, const char *replace, const char *where) { size_t size = strlen(src) + 1; size_t find_len = strlen(find); size_t repl_len = strlen(replace); char *value, *dst; if (likely(where)) size += (repl_len - find_len); value = mallocz(size); dst = value; if (likely(where)) { size_t count = where - src; memmove(dst, src, count); src += count; dst += count; memmove(dst, replace, repl_len); src += find_len; dst += repl_len; } strcpy(dst, src); return value; } BUFFER *run_command_and_get_output_to_buffer(const char *command, int max_line_length) { BUFFER *wb = buffer_create(0, NULL); POPEN_INSTANCE *pi = spawn_popen_run(command); if(pi) { char buffer[max_line_length + 1]; while (fgets(buffer, max_line_length, spawn_popen_stdout(pi))) { buffer[max_line_length] = '\0'; buffer_strcat(wb, buffer); } spawn_popen_kill(pi); } else { buffer_free(wb); netdata_log_error("Failed to execute command '%s'.", command); return NULL; } return wb; } bool run_command_and_copy_output_to_stdout(const char *command, int max_line_length) { POPEN_INSTANCE *pi = spawn_popen_run(command); if(pi) { char buffer[max_line_length + 1]; while (fgets(buffer, max_line_length, spawn_popen_stdout(pi))) fprintf(stdout, "%s", buffer); spawn_popen_kill(pi); } else { netdata_log_error("Failed to execute command '%s'.", command); return false; } return true; } struct timing_steps { const char *name; usec_t time; size_t count; } timing_steps[TIMING_STEP_MAX + 1] = { [TIMING_STEP_INTERNAL] = { .name = "internal", .time = 0, }, [TIMING_STEP_BEGIN2_PREPARE] = { .name = "BEGIN2 prepare", .time = 0, }, [TIMING_STEP_BEGIN2_FIND_CHART] = { .name = "BEGIN2 find chart", .time = 0, }, [TIMING_STEP_BEGIN2_PARSE] = { .name = "BEGIN2 parse", .time = 0, }, [TIMING_STEP_BEGIN2_ML] = { .name = "BEGIN2 ml", .time = 0, }, [TIMING_STEP_BEGIN2_PROPAGATE] = { .name = "BEGIN2 propagate", .time = 0, }, [TIMING_STEP_BEGIN2_STORE] = { .name = "BEGIN2 store", .time = 0, }, [TIMING_STEP_SET2_PREPARE] = { .name = "SET2 prepare", .time = 0, }, [TIMING_STEP_SET2_LOOKUP_DIMENSION] = { .name = "SET2 find dimension", .time = 0, }, [TIMING_STEP_SET2_PARSE] = { .name = "SET2 parse", .time = 0, }, [TIMING_STEP_SET2_ML] = { .name = "SET2 ml", .time = 0, }, [TIMING_STEP_SET2_PROPAGATE] = { .name = "SET2 propagate", .time = 0, }, [TIMING_STEP_RRDSET_STORE_METRIC] = { .name = "SET2 rrdset store", .time = 0, }, [TIMING_STEP_DBENGINE_FIRST_CHECK] = { .name = "db 1st check", .time = 0, }, [TIMING_STEP_DBENGINE_CHECK_DATA] = { .name = "db check data", .time = 0, }, [TIMING_STEP_DBENGINE_PACK] = { .name = "db pack", .time = 0, }, [TIMING_STEP_DBENGINE_PAGE_FIN] = { .name = "db page fin", .time = 0, }, [TIMING_STEP_DBENGINE_MRG_UPDATE] = { .name = "db mrg update", .time = 0, }, [TIMING_STEP_DBENGINE_PAGE_ALLOC] = { .name = "db page alloc", .time = 0, }, [TIMING_STEP_DBENGINE_CREATE_NEW_PAGE] = { .name = "db new page", .time = 0, }, [TIMING_STEP_DBENGINE_FLUSH_PAGE] = { .name = "db page flush", .time = 0, }, [TIMING_STEP_SET2_STORE] = { .name = "SET2 store", .time = 0, }, [TIMING_STEP_END2_PREPARE] = { .name = "END2 prepare", .time = 0, }, [TIMING_STEP_END2_PUSH_V1] = { .name = "END2 push v1", .time = 0, }, [TIMING_STEP_END2_ML] = { .name = "END2 ml", .time = 0, }, [TIMING_STEP_END2_RRDSET] = { .name = "END2 rrdset", .time = 0, }, [TIMING_STEP_END2_PROPAGATE] = { .name = "END2 propagate", .time = 0, }, [TIMING_STEP_END2_STORE] = { .name = "END2 store", .time = 0, }, // terminator [TIMING_STEP_MAX] = { .name = NULL, .time = 0, }, }; void timing_action(TIMING_ACTION action, TIMING_STEP step) { static __thread usec_t last_action_time = 0; static struct timing_steps timings2[TIMING_STEP_MAX + 1] = {}; switch(action) { case TIMING_ACTION_INIT: last_action_time = now_monotonic_usec(); break; case TIMING_ACTION_STEP: { if(!last_action_time) return; usec_t now = now_monotonic_usec(); __atomic_add_fetch(&timing_steps[step].time, now - last_action_time, __ATOMIC_RELAXED); __atomic_add_fetch(&timing_steps[step].count, 1, __ATOMIC_RELAXED); last_action_time = now; break; } case TIMING_ACTION_FINISH: { if(!last_action_time) return; usec_t expected = __atomic_load_n(&timing_steps[TIMING_STEP_INTERNAL].time, __ATOMIC_RELAXED); if(last_action_time - expected < 10 * USEC_PER_SEC) { last_action_time = 0; return; } if(!__atomic_compare_exchange_n(&timing_steps[TIMING_STEP_INTERNAL].time, &expected, last_action_time, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { last_action_time = 0; return; } struct timing_steps timings3[TIMING_STEP_MAX + 1]; memcpy(timings3, timing_steps, sizeof(timings3)); size_t total_reqs = 0; usec_t total_usec = 0; for(size_t t = 1; t < TIMING_STEP_MAX ; t++) { total_usec += timings3[t].time - timings2[t].time; total_reqs += timings3[t].count - timings2[t].count; } BUFFER *wb = buffer_create(1024, NULL); for(size_t t = 1; t < TIMING_STEP_MAX ; t++) { size_t requests = timings3[t].count - timings2[t].count; if(!requests) continue; buffer_sprintf(wb, "TIMINGS REPORT: [%3zu. %-20s]: # %10zu, t %11.2f ms (%6.2f %%), avg %6.2f usec/run\n", t, timing_steps[t].name ? timing_steps[t].name : "x", requests, (double) (timings3[t].time - timings2[t].time) / (double)USEC_PER_MS, (double) (timings3[t].time - timings2[t].time) * 100.0 / (double) total_usec, (double) (timings3[t].time - timings2[t].time) / (double)requests ); } netdata_log_info("TIMINGS REPORT:\n%sTIMINGS REPORT: total # %10zu, t %11.2f ms", buffer_tostring(wb), total_reqs, (double)total_usec / USEC_PER_MS); memcpy(timings2, timings3, sizeof(timings2)); last_action_time = 0; buffer_free(wb); } } } int hash256_string(const unsigned char *string, size_t size, char *hash) { EVP_MD_CTX *ctx; ctx = EVP_MD_CTX_create(); if (!ctx) return 0; if (!EVP_DigestInit(ctx, EVP_sha256())) { EVP_MD_CTX_destroy(ctx); return 0; } if (!EVP_DigestUpdate(ctx, string, size)) { EVP_MD_CTX_destroy(ctx); return 0; } if (!EVP_DigestFinal(ctx, (unsigned char *)hash, NULL)) { EVP_MD_CTX_destroy(ctx); return 0; } EVP_MD_CTX_destroy(ctx); return 1; } bool rrdr_relative_window_to_absolute(time_t *after, time_t *before, time_t now) { if(!now) now = now_realtime_sec(); int absolute_period_requested = -1; time_t before_requested = *before; time_t after_requested = *after; // allow relative for before (smaller than API_RELATIVE_TIME_MAX) if(ABS(before_requested) <= API_RELATIVE_TIME_MAX) { // if the user asked for a positive relative time, // flip it to a negative if(before_requested > 0) before_requested = -before_requested; before_requested = now + before_requested; absolute_period_requested = 0; } // allow relative for after (smaller than API_RELATIVE_TIME_MAX) if(ABS(after_requested) <= API_RELATIVE_TIME_MAX) { if(after_requested > 0) after_requested = -after_requested; // if the user didn't give an after, use the number of points // to give a sane default if(after_requested == 0) after_requested = -600; // since the query engine now returns inclusive timestamps // it is awkward to return 6 points when after=-5 is given // so for relative queries we add 1 second, to give // more predictable results to users. after_requested = before_requested + after_requested + 1; absolute_period_requested = 0; } if(absolute_period_requested == -1) absolute_period_requested = 1; // check if the parameters are flipped if(after_requested > before_requested) { long long t = before_requested; before_requested = after_requested; after_requested = t; } // if the query requests future data // shift the query back to be in the present time // (this may also happen because of the rules above) if(before_requested > now) { time_t delta = before_requested - now; before_requested -= delta; after_requested -= delta; } *before = before_requested; *after = after_requested; return (absolute_period_requested != 1); } // Returns 1 if an absolute period was requested or 0 if it was a relative period bool rrdr_relative_window_to_absolute_query(time_t *after, time_t *before, time_t *now_ptr, bool unittest) { time_t now = now_realtime_sec() - 1; if(now_ptr) *now_ptr = now; time_t before_requested = *before; time_t after_requested = *after; int absolute_period_requested = rrdr_relative_window_to_absolute(&after_requested, &before_requested, now); time_t absolute_minimum_time = now - (10 * 365 * 86400); time_t absolute_maximum_time = now + (1 * 365 * 86400); if (after_requested < absolute_minimum_time && !unittest) after_requested = absolute_minimum_time; if (after_requested > absolute_maximum_time && !unittest) after_requested = absolute_maximum_time; if (before_requested < absolute_minimum_time && !unittest) before_requested = absolute_minimum_time; if (before_requested > absolute_maximum_time && !unittest) before_requested = absolute_maximum_time; *before = before_requested; *after = after_requested; return (absolute_period_requested != 1); } #if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < OPENSSL_VERSION_110 static inline EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void) { EVP_ENCODE_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); if (ctx != NULL) { memset(ctx, 0, sizeof(*ctx)); } return ctx; } static void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx) { OPENSSL_free(ctx); } #endif int netdata_base64_decode(unsigned char *out, const unsigned char *in, const int in_len) { int outl; unsigned char remaining_data[256]; EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); EVP_DecodeInit(ctx); EVP_DecodeUpdate(ctx, out, &outl, in, in_len); int remainder = 0; EVP_DecodeFinal(ctx, remaining_data, &remainder); EVP_ENCODE_CTX_free(ctx); if (remainder) return -1; return outl; } int netdata_base64_encode(unsigned char *encoded, const unsigned char *input, size_t input_size) { return EVP_EncodeBlock(encoded, input, input_size); } // Keep internal implementation // int netdata_base64_decode_internal(const char *encoded, char *decoded, size_t decoded_size) { // static const unsigned char base64_table[256] = { // ['A'] = 0, ['B'] = 1, ['C'] = 2, ['D'] = 3, ['E'] = 4, ['F'] = 5, ['G'] = 6, ['H'] = 7, // ['I'] = 8, ['J'] = 9, ['K'] = 10, ['L'] = 11, ['M'] = 12, ['N'] = 13, ['O'] = 14, ['P'] = 15, // ['Q'] = 16, ['R'] = 17, ['S'] = 18, ['T'] = 19, ['U'] = 20, ['V'] = 21, ['W'] = 22, ['X'] = 23, // ['Y'] = 24, ['Z'] = 25, ['a'] = 26, ['b'] = 27, ['c'] = 28, ['d'] = 29, ['e'] = 30, ['f'] = 31, // ['g'] = 32, ['h'] = 33, ['i'] = 34, ['j'] = 35, ['k'] = 36, ['l'] = 37, ['m'] = 38, ['n'] = 39, // ['o'] = 40, ['p'] = 41, ['q'] = 42, ['r'] = 43, ['s'] = 44, ['t'] = 45, ['u'] = 46, ['v'] = 47, // ['w'] = 48, ['x'] = 49, ['y'] = 50, ['z'] = 51, ['0'] = 52, ['1'] = 53, ['2'] = 54, ['3'] = 55, // ['4'] = 56, ['5'] = 57, ['6'] = 58, ['7'] = 59, ['8'] = 60, ['9'] = 61, ['+'] = 62, ['/'] = 63, // [0 ... '+' - 1] = 255, // ['+' + 1 ... '/' - 1] = 255, // ['9' + 1 ... 'A' - 1] = 255, // ['Z' + 1 ... 'a' - 1] = 255, // ['z' + 1 ... 255] = 255 // }; // // size_t count = 0; // unsigned int tmp = 0; // int i, bit; // // if (decoded_size < 1) // return 0; // Buffer size must be at least 1 for null termination // // for (i = 0, bit = 0; encoded[i]; i++) { // unsigned char value = base64_table[(unsigned char)encoded[i]]; // if (value > 63) // return -1; // Invalid character in input // // tmp = tmp << 6 | value; // if (++bit == 4) { // if (count + 3 >= decoded_size) break; // Stop decoding if buffer is full // decoded[count++] = (tmp >> 16) & 0xFF; // decoded[count++] = (tmp >> 8) & 0xFF; // decoded[count++] = tmp & 0xFF; // tmp = 0; // bit = 0; // } // } // // if (bit > 0 && count + 1 < decoded_size) { // tmp <<= 6 * (4 - bit); // if (bit > 2 && count + 1 < decoded_size) decoded[count++] = (tmp >> 16) & 0xFF; // if (bit > 3 && count + 1 < decoded_size) decoded[count++] = (tmp >> 8) & 0xFF; // } // // decoded[count] = '\0'; // Null terminate the output string // return count; // }