// SPDX-License-Identifier: GPL-3.0-or-later #ifndef NETDATA_SIMPLE_HASHTABLE_H #define NETDATA_SIMPLE_HASHTABLE_H typedef uint64_t SIMPLE_HASHTABLE_HASH; #define SIMPLE_HASHTABLE_HASH_SECOND_HASH_SHIFTS 32 /* * CONFIGURATION * * SIMPLE_HASHTABLE_NAME * The name of the hashtable - all functions and defines will have this name appended * Example: #define SIMPLE_HASHTABLE_NAME _FACET_KEY * * SIMPLE_HASHTABLE_VALUE_TYPE and SIMPLE_HASHTABLE_KEY_TYPE * The data types of values and keys - optional - setting them will enable strict type checking by the compiler. * If undefined, they both default to void. * * SIMPLE_HASHTABLE_SORT_FUNCTION * A function name that accepts 2x values and compares them for sorting (returning -1, 0, 1). * When set, the hashtable will maintain an always sorted array of the values in the hashtable. * Do not use this for non-static hashtables. So, if your data is changing all the time, this can make the * hashtable quite slower (it memmove()s an array of pointers to keep it sorted, on every single change). * * SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION and SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION * The hashtable can either compare just hashes (the default), or hashes and keys (when these are set). * Both need to be set for this feature to be enabled. * * - SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION * The name of a function accepting SIMPLE_HASHTABLE_VALUE_TYPE pointer. * It should return a pointer to SIMPLE_HASHTABLE_KEY_TYPE. * This function is called prior to SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION to extract the key from a value. * It is also called during hashtable resize, to rehash all values in the hashtable. * * - SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION * The name of a function accepting 2x SIMPLE_HASHTABLE_KEY_TYPE pointers. * It should return true when the keys match. * This function is only called when the hashes match, to verify that the keys also match. * * SIMPLE_HASHTABLE_SAMPLE_IMPLEMENTATION * If defined, 3x functions will be injected for easily working with the hashtable. * */ #ifndef SIMPLE_HASHTABLE_NAME #define SIMPLE_HASHTABLE_NAME #endif #ifndef SIMPLE_HASHTABLE_VALUE_TYPE #define SIMPLE_HASHTABLE_VALUE_TYPE void #endif #ifndef SIMPLE_HASHTABLE_KEY_TYPE #define SIMPLE_HASHTABLE_KEY_TYPE void #endif #ifndef SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION #undef SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION #endif #if defined(SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION) static inline SIMPLE_HASHTABLE_KEY_TYPE *SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION(SIMPLE_HASHTABLE_VALUE_TYPE *); #endif #if defined(SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION) static inline bool SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION(SIMPLE_HASHTABLE_KEY_TYPE *, SIMPLE_HASHTABLE_KEY_TYPE *); #endif // First layer of macro for token concatenation #define CONCAT_INTERNAL(a, b) a ## b // Second layer of macro, which ensures proper expansion #define CONCAT(a, b) CONCAT_INTERNAL(a, b) // define names for all structures and structures #define simple_hashtable_init_named CONCAT(simple_hashtable_init, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_destroy_named CONCAT(simple_hashtable_destroy, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_slot_named CONCAT(simple_hashtable_slot, SIMPLE_HASHTABLE_NAME) #define SIMPLE_HASHTABLE_SLOT_NAMED CONCAT(SIMPLE_HASHTABLE_SLOT, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_named CONCAT(simple_hashtable, SIMPLE_HASHTABLE_NAME) #define SIMPLE_HASHTABLE_NAMED CONCAT(SIMPLE_HASHTABLE, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_resize_named CONCAT(simple_hashtable_resize, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_can_use_slot_named CONCAT(simple_hashtable_keys_match, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_get_slot_named CONCAT(simple_hashtable_get_slot, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_del_slot_named CONCAT(simple_hashtable_del_slot, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_set_slot_named CONCAT(simple_hashtable_set_slot, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_first_read_only_named CONCAT(simple_hashtable_first_read_only, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_next_read_only_named CONCAT(simple_hashtable_next_read_only, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_sorted_binary_search_named CONCAT(simple_hashtable_sorted_binary_search, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_add_value_sorted_named CONCAT(simple_hashtable_add_value_sorted, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_del_value_sorted_named CONCAT(simple_hashtable_del_value_sorted, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_replace_value_sorted_named CONCAT(simple_hashtable_replace_value_sorted, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_sorted_array_first_read_only_named CONCAT(simple_hashtable_sorted_array_first_read_only, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_sorted_array_next_read_only_named CONCAT(simple_hashtable_sorted_array_next_read_only, SIMPLE_HASHTABLE_NAME) typedef struct simple_hashtable_slot_named { SIMPLE_HASHTABLE_HASH hash; SIMPLE_HASHTABLE_VALUE_TYPE *data; } SIMPLE_HASHTABLE_SLOT_NAMED; typedef struct simple_hashtable_named { size_t resizes; size_t searches; size_t collisions; size_t additions; size_t deletions; size_t deleted; size_t used; size_t size; bool needs_cleanup; SIMPLE_HASHTABLE_SLOT_NAMED *hashtable; #ifdef SIMPLE_HASHTABLE_SORT_FUNCTION struct { size_t used; size_t size; SIMPLE_HASHTABLE_VALUE_TYPE **array; } sorted; #endif } SIMPLE_HASHTABLE_NAMED; #ifdef SIMPLE_HASHTABLE_SORT_FUNCTION static inline size_t simple_hashtable_sorted_binary_search_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_VALUE_TYPE *value) { size_t left = 0, right = ht->sorted.used; while (left < right) { size_t mid = left + (right - left) / 2; if (SIMPLE_HASHTABLE_SORT_FUNCTION(ht->sorted.array[mid], value) < 0) left = mid + 1; else right = mid; } return left; } static inline void simple_hashtable_add_value_sorted_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_VALUE_TYPE *value) { size_t index = simple_hashtable_sorted_binary_search_named(ht, value); // Ensure there's enough space in the sorted array if (ht->sorted.used >= ht->sorted.size) { size_t size = ht->sorted.size ? ht->sorted.size * 2 : 64; SIMPLE_HASHTABLE_VALUE_TYPE **array = mallocz(size * sizeof(SIMPLE_HASHTABLE_VALUE_TYPE *)); if(ht->sorted.array) { memcpy(array, ht->sorted.array, ht->sorted.size * sizeof(SIMPLE_HASHTABLE_VALUE_TYPE *)); freez(ht->sorted.array); } ht->sorted.array = array; ht->sorted.size = size; } // Use memmove to shift elements and create space for the new element memmove(&ht->sorted.array[index + 1], &ht->sorted.array[index], (ht->sorted.used - index) * sizeof(SIMPLE_HASHTABLE_VALUE_TYPE *)); ht->sorted.array[index] = value; ht->sorted.used++; } static inline void simple_hashtable_del_value_sorted_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_VALUE_TYPE *value) { size_t index = simple_hashtable_sorted_binary_search_named(ht, value); // Check if the value exists at the found index assert(index < ht->sorted.used && ht->sorted.array[index] == value); // Use memmove to shift elements and close the gap memmove(&ht->sorted.array[index], &ht->sorted.array[index + 1], (ht->sorted.used - index - 1) * sizeof(SIMPLE_HASHTABLE_VALUE_TYPE *)); ht->sorted.used--; } static inline void simple_hashtable_replace_value_sorted_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_VALUE_TYPE *old_value, SIMPLE_HASHTABLE_VALUE_TYPE *new_value) { if(new_value == old_value) return; size_t old_value_index = simple_hashtable_sorted_binary_search_named(ht, old_value); assert(old_value_index < ht->sorted.used && ht->sorted.array[old_value_index] == old_value); int r = SIMPLE_HASHTABLE_SORT_FUNCTION(old_value, new_value); if(r == 0) { // Same value, so use the same index ht->sorted.array[old_value_index] = new_value; return; } size_t new_value_index = simple_hashtable_sorted_binary_search_named(ht, new_value); if(old_value_index == new_value_index) { // Not the same value, but still at the same index ht->sorted.array[old_value_index] = new_value; return; } else if (old_value_index < new_value_index) { // The old value is before the new value size_t shift_start = old_value_index + 1; size_t shift_end = new_value_index - 1; size_t shift_size = shift_end - old_value_index; memmove(&ht->sorted.array[old_value_index], &ht->sorted.array[shift_start], shift_size * sizeof(SIMPLE_HASHTABLE_VALUE_TYPE *)); ht->sorted.array[shift_end] = new_value; } else { // The old value is after the new value size_t shift_start = new_value_index; size_t shift_end = old_value_index; size_t shift_size = shift_end - new_value_index; memmove(&ht->sorted.array[new_value_index + 1], &ht->sorted.array[shift_start], shift_size * sizeof(SIMPLE_HASHTABLE_VALUE_TYPE *)); ht->sorted.array[new_value_index] = new_value; } } static inline SIMPLE_HASHTABLE_VALUE_TYPE **simple_hashtable_sorted_array_first_read_only_named(SIMPLE_HASHTABLE_NAMED *ht) { if (ht->sorted.used > 0) { return &ht->sorted.array[0]; } return NULL; } static inline SIMPLE_HASHTABLE_VALUE_TYPE **simple_hashtable_sorted_array_next_read_only_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_VALUE_TYPE **last) { if (!last) return NULL; // Calculate the current position in the sorted array size_t currentIndex = last - ht->sorted.array; // Proceed to the next element if it exists if (currentIndex + 1 < ht->sorted.used) { return &ht->sorted.array[currentIndex + 1]; } // If no more elements, return NULL return NULL; } #define SIMPLE_HASHTABLE_SORTED_FOREACH_READ_ONLY(ht, var, type, name) \ for (type **(var) = simple_hashtable_sorted_array_first_read_only ## name(ht); \ var; \ (var) = simple_hashtable_sorted_array_next_read_only ## name(ht, var)) #define SIMPLE_HASHTABLE_SORTED_FOREACH_READ_ONLY_VALUE(var) (*(var)) #else static inline void simple_hashtable_add_value_sorted_named(SIMPLE_HASHTABLE_NAMED *ht __maybe_unused, SIMPLE_HASHTABLE_VALUE_TYPE *value __maybe_unused) { ; } static inline void simple_hashtable_del_value_sorted_named(SIMPLE_HASHTABLE_NAMED *ht __maybe_unused, SIMPLE_HASHTABLE_VALUE_TYPE *value __maybe_unused) { ; } static inline void simple_hashtable_replace_value_sorted_named(SIMPLE_HASHTABLE_NAMED *ht __maybe_unused, SIMPLE_HASHTABLE_VALUE_TYPE *old_value __maybe_unused, SIMPLE_HASHTABLE_VALUE_TYPE *new_value __maybe_unused) { ; } #endif static inline void simple_hashtable_init_named(SIMPLE_HASHTABLE_NAMED *ht, size_t size) { memset(ht, 0, sizeof(*ht)); ht->size = size; ht->hashtable = callocz(ht->size, sizeof(*ht->hashtable)); } static inline void simple_hashtable_destroy_named(SIMPLE_HASHTABLE_NAMED *ht) { #ifdef SIMPLE_HASHTABLE_SORT_FUNCTION freez(ht->sorted.array); #endif freez(ht->hashtable); memset(ht, 0, sizeof(*ht)); } static inline void simple_hashtable_resize_named(SIMPLE_HASHTABLE_NAMED *ht); #define simple_hashtable_data_unset ((void *)NULL) #define simple_hashtable_data_deleted ((void *)UINT64_MAX) #define simple_hashtable_data_usernull ((void *)(UINT64_MAX - 1)) #define simple_hashtable_is_slot_unset(sl) ((sl)->data == simple_hashtable_data_unset) #define simple_hashtable_is_slot_deleted(sl) ((sl)->data == simple_hashtable_data_deleted) #define simple_hashtable_is_slot_usernull(sl) ((sl)->data == simple_hashtable_data_usernull) #define SIMPLE_HASHTABLE_SLOT_DATA(sl) ((simple_hashtable_is_slot_unset(sl) || simple_hashtable_is_slot_deleted(sl) || simple_hashtable_is_slot_usernull(sl)) ? NULL : (sl)->data) static inline bool simple_hashtable_can_use_slot_named( SIMPLE_HASHTABLE_SLOT_NAMED *sl, SIMPLE_HASHTABLE_HASH hash, SIMPLE_HASHTABLE_KEY_TYPE *key __maybe_unused) { if(simple_hashtable_is_slot_unset(sl)) return true; if(simple_hashtable_is_slot_deleted(sl)) return false; if(sl->hash == hash) { #if defined(SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION) && defined(SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION) return SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION(SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION(SIMPLE_HASHTABLE_SLOT_DATA(sl)), key); #else return true; #endif } return false; } #define SIMPLE_HASHTABLE_NEEDS_RESIZE(ht) ((ht)->size <= ((ht)->used - (ht)->deleted) << 1 || (ht)->used >= (ht)->size) // IMPORTANT: the pointer returned by this call is valid up to the next call of this function (or the resize one). // If you need to cache something, cache the hash, not the slot pointer. static inline SIMPLE_HASHTABLE_SLOT_NAMED *simple_hashtable_get_slot_named( SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_HASH hash, SIMPLE_HASHTABLE_KEY_TYPE *key, bool resize) { // This function finds the requested hash and key in the hashtable. // It uses a second version of the hash in case of collisions, and then linear probing. // It may resize the hashtable if it is more than 50% full. // Deleted items remain in the hashtable, but they are marked as DELETED. // Reuse of DELETED slots happens only if the slot to be returned is UNSET. // So, when looking up for an item, it tries to find it, assuming DELETED // slots are occupied. If the item to be returned is UNSET, and it has // encountered a DELETED slot, it returns the DELETED one instead of the UNSET. ht->searches++; size_t slot; SIMPLE_HASHTABLE_SLOT_NAMED *sl; SIMPLE_HASHTABLE_SLOT_NAMED *deleted; slot = hash % ht->size; sl = &ht->hashtable[slot]; deleted = simple_hashtable_is_slot_deleted(sl) ? sl : NULL; if(likely(simple_hashtable_can_use_slot_named(sl, hash, key))) return (simple_hashtable_is_slot_unset(sl) && deleted) ? deleted : sl; ht->collisions++; if(unlikely(resize && (ht->needs_cleanup || SIMPLE_HASHTABLE_NEEDS_RESIZE(ht)))) { simple_hashtable_resize_named(ht); deleted = NULL; // our deleted pointer is not valid anymore slot = hash % ht->size; sl = &ht->hashtable[slot]; if(likely(simple_hashtable_can_use_slot_named(sl, hash, key))) return sl; ht->collisions++; } slot = ((hash >> SIMPLE_HASHTABLE_HASH_SECOND_HASH_SHIFTS) + 1) % ht->size; sl = &ht->hashtable[slot]; deleted = (!deleted && simple_hashtable_is_slot_deleted(sl)) ? sl : deleted; // Linear probing until we find it SIMPLE_HASHTABLE_SLOT_NAMED *sl_started = sl; size_t collisions_started = ht->collisions; while (!simple_hashtable_can_use_slot_named(sl, hash, key)) { slot = (slot + 1) % ht->size; // Wrap around if necessary sl = &ht->hashtable[slot]; deleted = (!deleted && simple_hashtable_is_slot_deleted(sl)) ? sl : deleted; ht->collisions++; if(sl == sl_started) { if(deleted) { // we looped through all items, and we didn't find a free slot, // but we have found a deleted slot, so return it. return deleted; } else if(resize) { // the hashtable is full, without any deleted slots. // we need to resize it now. simple_hashtable_resize_named(ht); return simple_hashtable_get_slot_named(ht, hash, key, false); } else { // the hashtable is full, but resize is false. // this should never happen. assert(sl != sl_started); } } } if((ht->collisions - collisions_started) > (ht->size / 2) && ht->deleted >= (ht->size / 3)) { // we traversed through half of the hashtable to find a slot, // but we have more than 1/3 deleted items ht->needs_cleanup = true; } return (simple_hashtable_is_slot_unset(sl) && deleted) ? deleted : sl; } static inline bool simple_hashtable_del_slot_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_SLOT_NAMED *sl) { if(simple_hashtable_is_slot_unset(sl) || simple_hashtable_is_slot_deleted(sl)) return false; ht->deletions++; ht->deleted++; simple_hashtable_del_value_sorted_named(ht, SIMPLE_HASHTABLE_SLOT_DATA(sl)); sl->data = simple_hashtable_data_deleted; return true; } static inline void simple_hashtable_set_slot_named( SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_SLOT_NAMED *sl, SIMPLE_HASHTABLE_HASH hash, SIMPLE_HASHTABLE_VALUE_TYPE *data) { if(data == NULL) data = simple_hashtable_data_usernull; if(unlikely(data == simple_hashtable_data_unset || data == simple_hashtable_data_deleted)) { simple_hashtable_del_slot_named(ht, sl); return; } if(likely(simple_hashtable_is_slot_unset(sl))) { simple_hashtable_add_value_sorted_named(ht, data); ht->used++; } else if(unlikely(simple_hashtable_is_slot_deleted(sl))) { ht->deleted--; } else simple_hashtable_replace_value_sorted_named(ht, SIMPLE_HASHTABLE_SLOT_DATA(sl), data); sl->hash = hash; sl->data = data; ht->additions++; } // IMPORTANT // this call invalidates all SIMPLE_HASHTABLE_SLOT_NAMED pointers static inline void simple_hashtable_resize_named(SIMPLE_HASHTABLE_NAMED *ht) { SIMPLE_HASHTABLE_SLOT_NAMED *old = ht->hashtable; size_t old_size = ht->size; size_t new_size = ht->size; if(SIMPLE_HASHTABLE_NEEDS_RESIZE(ht)) new_size = (ht->size << 1) - ((ht->size > 16) ? 1 : 0); ht->resizes++; ht->size = new_size; ht->hashtable = callocz(new_size, sizeof(*ht->hashtable)); size_t used = 0; for(size_t i = 0 ; i < old_size ; i++) { SIMPLE_HASHTABLE_SLOT_NAMED *slot = &old[i]; if(simple_hashtable_is_slot_unset(slot) || simple_hashtable_is_slot_deleted(slot)) continue; SIMPLE_HASHTABLE_KEY_TYPE *key = NULL; #if defined(SIMPLE_HASHTABLE_COMPARE_KEYS_FUNCTION) && defined(SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION) SIMPLE_HASHTABLE_VALUE_TYPE *value = SIMPLE_HASHTABLE_SLOT_DATA(slot); key = SIMPLE_HASHTABLE_VALUE2KEY_FUNCTION(value); #endif SIMPLE_HASHTABLE_SLOT_NAMED *slot2 = simple_hashtable_get_slot_named(ht, slot->hash, key, false); *slot2 = *slot; used++; } assert(used == ht->used - ht->deleted); ht->used = used; ht->deleted = 0; ht->needs_cleanup = false; freez(old); } // ---------------------------------------------------------------------------- // hashtable traversal, in read-only mode // the hashtable should not be modified while the traversal is taking place static inline SIMPLE_HASHTABLE_SLOT_NAMED *simple_hashtable_first_read_only_named(SIMPLE_HASHTABLE_NAMED *ht) { for(size_t i = 0; i < ht->size ;i++) { SIMPLE_HASHTABLE_SLOT_NAMED *sl = &ht->hashtable[i]; if(!simple_hashtable_is_slot_unset(sl) && !simple_hashtable_is_slot_deleted(sl)) return sl; } return NULL; } static inline SIMPLE_HASHTABLE_SLOT_NAMED *simple_hashtable_next_read_only_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_SLOT_NAMED *last) { if (!last) return NULL; // Calculate the current position in the array size_t index = last - ht->hashtable; // Iterate over the hashtable starting from the next element for (size_t i = index + 1; i < ht->size; i++) { SIMPLE_HASHTABLE_SLOT_NAMED *sl = &ht->hashtable[i]; if (!simple_hashtable_is_slot_unset(sl) && !simple_hashtable_is_slot_deleted(sl)) { return sl; } } // If no more data slots are found, return NULL return NULL; } #define SIMPLE_HASHTABLE_FOREACH_READ_ONLY(ht, var, name) \ for(struct simple_hashtable_slot ## name *(var) = simple_hashtable_first_read_only ## name(ht); \ var; \ (var) = simple_hashtable_next_read_only ## name(ht, var)) #define SIMPLE_HASHTABLE_FOREACH_READ_ONLY_VALUE(var) SIMPLE_HASHTABLE_SLOT_DATA(var) // ---------------------------------------------------------------------------- // high level implementation #ifdef SIMPLE_HASHTABLE_SAMPLE_IMPLEMENTATION #ifndef XXH_INLINE_ALL #define XXH_INLINE_ALL #endif #include "xxhash.h" #define simple_hashtable_set_named CONCAT(simple_hashtable_set, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_get_named CONCAT(simple_hashtable_get, SIMPLE_HASHTABLE_NAME) #define simple_hashtable_del_named CONCAT(simple_hashtable_del, SIMPLE_HASHTABLE_NAME) static inline SIMPLE_HASHTABLE_VALUE_TYPE *simple_hashtable_set_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_KEY_TYPE *key, size_t key_len, SIMPLE_HASHTABLE_VALUE_TYPE *data) { XXH64_hash_t hash = XXH3_64bits((void *)key, key_len); SIMPLE_HASHTABLE_SLOT_NAMED *sl = simple_hashtable_get_slot_named(ht, hash, key, true); simple_hashtable_set_slot_named(ht, sl, hash, data); return SIMPLE_HASHTABLE_SLOT_DATA(sl); } static inline SIMPLE_HASHTABLE_VALUE_TYPE *simple_hashtable_get_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_KEY_TYPE *key, size_t key_len, SIMPLE_HASHTABLE_VALUE_TYPE *data) { XXH64_hash_t hash = XXH3_64bits((void *)key, key_len); SIMPLE_HASHTABLE_SLOT_NAMED *sl = simple_hashtable_get_slot_named(ht, hash, key, true); return SIMPLE_HASHTABLE_SLOT_DATA(sl); } static inline bool simple_hashtable_del_named(SIMPLE_HASHTABLE_NAMED *ht, SIMPLE_HASHTABLE_KEY_TYPE *key, size_t key_len, SIMPLE_HASHTABLE_VALUE_TYPE *data) { XXH64_hash_t hash = XXH3_64bits((void *)key, key_len); SIMPLE_HASHTABLE_SLOT_NAMED *sl = simple_hashtable_get_slot_named(ht, hash, key, true); return simple_hashtable_del_slot_named(ht, sl); } #endif // SIMPLE_HASHTABLE_SAMPLE_IMPLEMENTATION // ---------------------------------------------------------------------------- // Clear the preprocessor defines of simple_hashtable.h // allowing simple_hashtable.h to be included multiple times // with different configuration each time. #include "simple_hashtable_undef.h" #endif //NETDATA_SIMPLE_HASHTABLE_H