// SPDX-License-Identifier: GPL-3.0-or-later #ifndef NETDATA_ML_PRIVATE_H #define NETDATA_ML_PRIVATE_H #include "dlib/dlib/matrix.h" // CentOS 7 shenanigans #include using std::isfinite; #include "ml/ml.h" #include #include #include typedef double calculated_number_t; typedef dlib::matrix DSample; /* * Features */ typedef struct { size_t diff_n; size_t smooth_n; size_t lag_n; calculated_number_t *dst; size_t dst_n; calculated_number_t *src; size_t src_n; std::vector &preprocessed_features; } ml_features_t; /* * KMeans */ typedef struct { std::vector cluster_centers; calculated_number_t min_dist; calculated_number_t max_dist; uint32_t after; uint32_t before; } ml_kmeans_t; typedef struct machine_learning_stats_t { size_t num_machine_learning_status_enabled; size_t num_machine_learning_status_disabled_sp; size_t num_metric_type_constant; size_t num_metric_type_variable; size_t num_training_status_untrained; size_t num_training_status_pending_without_model; size_t num_training_status_trained; size_t num_training_status_pending_with_model; size_t num_training_status_silenced; size_t num_anomalous_dimensions; size_t num_normal_dimensions; } ml_machine_learning_stats_t; typedef struct training_stats_t { size_t queue_size; size_t num_popped_items; usec_t allotted_ut; usec_t consumed_ut; usec_t remaining_ut; size_t training_result_ok; size_t training_result_invalid_query_time_range; size_t training_result_not_enough_collected_values; size_t training_result_null_acquired_dimension; size_t training_result_chart_under_replication; } ml_training_stats_t; enum ml_metric_type { // The dimension has constant values, no need to train METRIC_TYPE_CONSTANT, // The dimension's values fluctuate, we need to generate a model METRIC_TYPE_VARIABLE, }; enum ml_machine_learning_status { // Enable training/prediction MACHINE_LEARNING_STATUS_ENABLED, // Disable because configuration pattern matches the chart's id MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART, }; enum ml_training_status { // We don't have a model for this dimension TRAINING_STATUS_UNTRAINED, // Request for training sent, but we don't have any models yet TRAINING_STATUS_PENDING_WITHOUT_MODEL, // Request to update existing models sent TRAINING_STATUS_PENDING_WITH_MODEL, // Have a valid, up-to-date model TRAINING_STATUS_TRAINED, // Have a valid, up-to-date model that is silenced because its too noisy TRAINING_STATUS_SILENCED, }; enum ml_training_result { // We managed to create a KMeans model TRAINING_RESULT_OK, // Could not query DB with a correct time range TRAINING_RESULT_INVALID_QUERY_TIME_RANGE, // Did not gather enough data from DB to run KMeans TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES, // Acquired a null dimension TRAINING_RESULT_NULL_ACQUIRED_DIMENSION, // Chart is under replication TRAINING_RESULT_CHART_UNDER_REPLICATION, }; typedef struct { // Chart/dimension we want to train char machine_guid[GUID_LEN + 1]; STRING *chart_id; STRING *dimension_id; // Creation time of request time_t request_time; // First/last entry of this dimension in DB // at the point the request was made time_t first_entry_on_request; time_t last_entry_on_request; } ml_training_request_t; typedef struct { // Time when the request for this response was made time_t request_time; // First/last entry of the dimension in DB when generating the request time_t first_entry_on_request; time_t last_entry_on_request; // First/last entry of the dimension in DB when generating the response time_t first_entry_on_response; time_t last_entry_on_response; // After/Before timestamps of our DB query time_t query_after_t; time_t query_before_t; // Actual after/before returned by the DB query ops time_t db_after_t; time_t db_before_t; // Number of doubles returned by the DB query size_t collected_values; // Number of values we return to the caller size_t total_values; // Result of training response enum ml_training_result result; } ml_training_response_t; /* * Queue */ typedef struct { std::queue internal; netdata_mutex_t mutex; pthread_cond_t cond_var; std::atomic exit; } ml_queue_t; typedef struct { RRDDIM *rd; enum ml_metric_type mt; enum ml_training_status ts; enum ml_machine_learning_status mls; ml_training_response_t tr; time_t last_training_time; std::vector cns; std::vector km_contexts; SPINLOCK slock; ml_kmeans_t kmeans; std::vector feature; uint32_t suppression_window_counter; uint32_t suppression_anomaly_counter; } ml_dimension_t; typedef struct { RRDSET *rs; ml_machine_learning_stats_t mls; } ml_chart_t; void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous); typedef struct { RRDDIM *rd; size_t normal_dimensions; size_t anomalous_dimensions; } ml_type_anomaly_rate_t; typedef struct { RRDHOST *rh; std::atomic ml_running; ml_machine_learning_stats_t mls; calculated_number_t host_anomaly_rate; netdata_mutex_t mutex; ml_queue_t *training_queue; /* * bookkeeping for anomaly detection charts */ RRDSET *ml_running_rs; RRDDIM *ml_running_rd; RRDSET *machine_learning_status_rs; RRDDIM *machine_learning_status_enabled_rd; RRDDIM *machine_learning_status_disabled_sp_rd; RRDSET *metric_type_rs; RRDDIM *metric_type_constant_rd; RRDDIM *metric_type_variable_rd; RRDSET *training_status_rs; RRDDIM *training_status_untrained_rd; RRDDIM *training_status_pending_without_model_rd; RRDDIM *training_status_trained_rd; RRDDIM *training_status_pending_with_model_rd; RRDDIM *training_status_silenced_rd; RRDSET *dimensions_rs; RRDDIM *dimensions_anomalous_rd; RRDDIM *dimensions_normal_rd; RRDSET *anomaly_rate_rs; RRDDIM *anomaly_rate_rd; RRDSET *detector_events_rs; RRDDIM *detector_events_above_threshold_rd; RRDDIM *detector_events_new_anomaly_event_rd; RRDSET *type_anomaly_rate_rs; SPINLOCK type_anomaly_rate_spinlock; std::unordered_map type_anomaly_rate; } ml_host_t; typedef struct { nd_uuid_t metric_uuid; ml_kmeans_t kmeans; } ml_model_info_t; typedef struct { size_t id; ND_THREAD *nd_thread; netdata_mutex_t nd_mutex; ml_queue_t *training_queue; ml_training_stats_t training_stats; calculated_number_t *training_cns; calculated_number_t *scratch_training_cns; std::vector training_samples; std::vector pending_model_info; RRDSET *queue_stats_rs; RRDDIM *queue_stats_queue_size_rd; RRDDIM *queue_stats_popped_items_rd; RRDSET *training_time_stats_rs; RRDDIM *training_time_stats_allotted_rd; RRDDIM *training_time_stats_consumed_rd; RRDDIM *training_time_stats_remaining_rd; RRDSET *training_results_rs; RRDDIM *training_results_ok_rd; RRDDIM *training_results_invalid_query_time_range_rd; RRDDIM *training_results_not_enough_collected_values_rd; RRDDIM *training_results_null_acquired_dimension_rd; RRDDIM *training_results_chart_under_replication_rd; size_t num_db_transactions; size_t num_models_to_prune; } ml_training_thread_t; typedef struct { int enable_anomaly_detection; unsigned max_train_samples; unsigned min_train_samples; unsigned train_every; unsigned num_models_to_use; unsigned delete_models_older_than; unsigned db_engine_anomaly_rate_every; unsigned diff_n; unsigned smooth_n; unsigned lag_n; double random_sampling_ratio; unsigned max_kmeans_iters; double dimension_anomaly_score_threshold; double host_anomaly_rate_threshold; RRDR_TIME_GROUPING anomaly_detection_grouping_method; time_t anomaly_detection_query_duration; bool stream_anomaly_detection_charts; std::string hosts_to_skip; SIMPLE_PATTERN *sp_host_to_skip; std::string charts_to_skip; SIMPLE_PATTERN *sp_charts_to_skip; std::vector random_nums; ND_THREAD *detection_thread; std::atomic detection_stop; size_t num_training_threads; size_t flush_models_batch_size; std::vector training_threads; std::atomic training_stop; size_t suppression_window; size_t suppression_threshold; bool enable_statistics_charts; } ml_config_t; void ml_config_load(ml_config_t *cfg); extern ml_config_t Cfg; #endif /* NETDATA_ML_PRIVATE_H */