#include "common.h" extern char *print_number_lu_r(char *str, unsigned long uvalue); extern char *print_number_llu_r(char *str, unsigned long long uvalue); extern char *print_number_llu_r_smart(char *str, unsigned long long uvalue); storage_number pack_storage_number(calculated_number value, uint32_t flags) { // bit 32 = sign 0:positive, 1:negative // bit 31 = 0:divide, 1:multiply // bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total) // bit 27, 26, 25 flags // bit 24 to bit 1 = the value storage_number r = get_storage_number_flags(flags); if(!value) return r; int m = 0; calculated_number n = value; // if the value is negative // add the sign bit and make it positive if(n < 0) { r += (1 << 31); // the sign bit 32 n = -n; } // make its integer part fit in 0x00ffffff // by dividing it by 10 up to 7 times // and increasing the multiplier while(m < 7 && n > (calculated_number)0x00ffffff) { n /= 10; m++; } if(m) { // the value was too big and we divided it // so we add a multiplier to unpack it r += (1 << 30) + (m << 27); // the multiplier m if(n > (calculated_number)0x00ffffff) { #ifdef NETDATA_INTERNAL_CHECKS error("Number " CALCULATED_NUMBER_FORMAT " is too big.", value); #endif r += 0x00ffffff; return r; } } else { // 0x0019999e is the number that can be multiplied // by 10 to give 0x00ffffff // while the value is below 0x0019999e we can // multiply it by 10, up to 7 times, increasing // the multiplier while(m < 7 && n < (calculated_number)0x0019999e) { n *= 10; m++; } // the value was small enough and we multiplied it // so we add a divider to unpack it r += (0 << 30) + (m << 27); // the divider m } #ifdef STORAGE_WITH_MATH // without this there are rounding problems // example: 0.9 becomes 0.89 r += lrint((double) n); #else r += (storage_number)n; #endif return r; } calculated_number unpack_storage_number(storage_number value) { if(!value) return 0; int sign = 0, exp = 0; value ^= get_storage_number_flags(value); if(value & (1 << 31)) { sign = 1; value ^= 1 << 31; } if(value & (1 << 30)) { exp = 1; value ^= 1 << 30; } int mul = value >> 27; value ^= mul << 27; calculated_number n = value; // fprintf(stderr, "UNPACK: %08X, sign = %d, exp = %d, mul = %d, n = " CALCULATED_NUMBER_FORMAT "\n", value, sign, exp, mul, n); while(mul > 0) { if(exp) n *= 10; else n /= 10; mul--; } if(sign) n = -n; return n; } /* int print_calculated_number(char *str, calculated_number value) { char *wstr = str; int sign = (value < 0) ? 1 : 0; if(sign) value = -value; #ifdef STORAGE_WITH_MATH // without llrintl() there are rounding problems // for example 0.9 becomes 0.89 unsigned long long uvalue = (unsigned long long int) llrintl(value * (calculated_number)100000); #else unsigned long long uvalue = value * (calculated_number)100000; #endif wstr = print_number_llu_r_smart(str, uvalue); // make sure we have 6 bytes at least while((wstr - str) < 6) *wstr++ = '0'; // put the sign back if(sign) *wstr++ = '-'; // reverse it char *begin = str, *end = --wstr, aux; while (end > begin) aux = *end, *end-- = *begin, *begin++ = aux; // wstr--; // strreverse(str, wstr); // remove trailing zeros int decimal = 5; while(decimal > 0 && *wstr == '0') { *wstr-- = '\0'; decimal--; } // terminate it, one position to the right // to let space for a dot wstr[2] = '\0'; // make space for the dot int i; for(i = 0; i < decimal ;i++) { wstr[1] = wstr[0]; wstr--; } // put the dot if(wstr[2] == '\0') { wstr[1] = '\0'; decimal--; } else wstr[1] = '.'; // return the buffer length return (int) ((wstr - str) + 2 + decimal ); } */ int print_calculated_number(char *str, calculated_number value) { char integral_str[50], fractional_str[50]; char *wstr = str; if(unlikely(value < 0)) { *wstr++ = '-'; value = -value; } calculated_number integral, fractional; #ifdef STORAGE_WITH_MATH fractional = modfl(value, &integral) * 10000000.0; #else fractional = ((unsigned long long)(value * 10000000ULL) % 10000000ULL); #endif char *istre; if(integral == 0.0) { integral_str[0] = '0'; istre = &integral_str[1]; } else // convert the integral part to string (reversed) istre = print_number_llu_r_smart(integral_str, (unsigned long long)integral); // copy reversed the integral string istre--; while( istre >= integral_str ) *wstr++ = *istre--; if(fractional != 0.0) { // add a dot *wstr++ = '.'; // convert the fractional part to string (reversed) char *fstre = print_number_llu_r_smart(fractional_str, (unsigned long long)calculated_number_llrint(fractional)); // prepend zeros to reach 7 digits length int decimal = 7; int len = (int)(fstre - fractional_str); while(len < decimal) { *wstr++ = '0'; len++; } char *begin = fractional_str; while(begin < fstre && *begin == '0') begin++; // copy reversed the fractional string fstre--; while( fstre >= begin ) *wstr++ = *fstre--; } *wstr = '\0'; return (int)(wstr - str); }