summaryrefslogtreecommitdiffstats
path: root/collectors/python.d.plugin/changefinder/changefinder.chart.py
blob: c18e5600a17929096102d5f184b523b494309d02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- coding: utf-8 -*-
# Description: changefinder netdata python.d module
# Author: andrewm4894
# SPDX-License-Identifier: GPL-3.0-or-later

from json import loads
import re

from bases.FrameworkServices.UrlService import UrlService

import numpy as np
import changefinder
from scipy.stats import percentileofscore

update_every = 5
disabled_by_default = True

ORDER = [
    'scores',
    'flags'
]

CHARTS = {
    'scores': {
        'options': [None, 'ChangeFinder', 'score', 'Scores', 'scores', 'line'],
        'lines': []
    },
    'flags': {
        'options': [None, 'ChangeFinder', 'flag', 'Flags', 'flags', 'stacked'],
        'lines': []
    }
}

DEFAULT_PROTOCOL = 'http'
DEFAULT_HOST = '127.0.0.1:19999'
DEFAULT_CHARTS_REGEX = 'system.*'
DEFAULT_MODE = 'per_chart'
DEFAULT_CF_R = 0.5
DEFAULT_CF_ORDER = 1
DEFAULT_CF_SMOOTH = 15
DEFAULT_CF_DIFF = False
DEFAULT_CF_THRESHOLD = 99
DEFAULT_N_SCORE_SAMPLES = 14400
DEFAULT_SHOW_SCORES = False


class Service(UrlService):
    def __init__(self, configuration=None, name=None):
        UrlService.__init__(self, configuration=configuration, name=name)
        self.order = ORDER
        self.definitions = CHARTS
        self.protocol = self.configuration.get('protocol', DEFAULT_PROTOCOL)
        self.host = self.configuration.get('host', DEFAULT_HOST)
        self.url = '{}://{}/api/v1/allmetrics?format=json'.format(self.protocol, self.host)
        self.charts_regex = re.compile(self.configuration.get('charts_regex', DEFAULT_CHARTS_REGEX))
        self.charts_to_exclude = self.configuration.get('charts_to_exclude', '').split(',')
        self.mode = self.configuration.get('mode', DEFAULT_MODE)
        self.n_score_samples = int(self.configuration.get('n_score_samples', DEFAULT_N_SCORE_SAMPLES))
        self.show_scores = int(self.configuration.get('show_scores', DEFAULT_SHOW_SCORES))
        self.cf_r = float(self.configuration.get('cf_r', DEFAULT_CF_R))
        self.cf_order = int(self.configuration.get('cf_order', DEFAULT_CF_ORDER))
        self.cf_smooth = int(self.configuration.get('cf_smooth', DEFAULT_CF_SMOOTH))
        self.cf_diff = bool(self.configuration.get('cf_diff', DEFAULT_CF_DIFF))
        self.cf_threshold = float(self.configuration.get('cf_threshold', DEFAULT_CF_THRESHOLD))
        self.collected_dims = {'scores': set(), 'flags': set()}
        self.models = {}
        self.x_latest = {}
        self.scores_latest = {}
        self.scores_samples = {}

    def get_score(self, x, model):
        """Update the score for the model based on most recent data, flag if it's percentile passes self.cf_threshold.
        """

        # get score
        if model not in self.models:
            # initialise empty model if needed
            self.models[model] = changefinder.ChangeFinder(r=self.cf_r, order=self.cf_order, smooth=self.cf_smooth)
        # if the update for this step fails then just fallback to last known score
        try:
            score = self.models[model].update(x)
            self.scores_latest[model] = score
        except Exception as _:
            score = self.scores_latest.get(model, 0)
        score = 0 if np.isnan(score) else score

        # update sample scores used to calculate percentiles
        if model in self.scores_samples:
            self.scores_samples[model].append(score)
        else:
            self.scores_samples[model] = [score]
        self.scores_samples[model] = self.scores_samples[model][-self.n_score_samples:]

        # convert score to percentile
        score = percentileofscore(self.scores_samples[model], score)

        # flag based on score percentile
        flag = 1 if score >= self.cf_threshold else 0

        return score, flag

    def validate_charts(self, chart, data, algorithm='absolute', multiplier=1, divisor=1):
        """If dimension not in chart then add it.
        """
        if not self.charts:
            return

        for dim in data:
            if dim not in self.collected_dims[chart]:
                self.collected_dims[chart].add(dim)
                self.charts[chart].add_dimension([dim, dim, algorithm, multiplier, divisor])

        for dim in list(self.collected_dims[chart]):
            if dim not in data:
                self.collected_dims[chart].remove(dim)
                self.charts[chart].del_dimension(dim, hide=False)

    def diff(self, x, model):
        """Take difference of data.
        """
        x_diff = x - self.x_latest.get(model, 0)
        self.x_latest[model] = x
        x = x_diff
        return x

    def _get_data(self):

        # pull data from self.url
        raw_data = self._get_raw_data()
        if raw_data is None:
            return None

        raw_data = loads(raw_data)

        # filter to just the data for the charts specified
        charts_in_scope = list(filter(self.charts_regex.match, raw_data.keys()))
        charts_in_scope = [c for c in charts_in_scope if c not in self.charts_to_exclude]

        data_score = {}
        data_flag = {}

        # process each chart
        for chart in charts_in_scope:

            if self.mode == 'per_chart':

                # average dims on chart and run changefinder on that average
                x = [raw_data[chart]['dimensions'][dim]['value'] for dim in raw_data[chart]['dimensions']]
                x = [x for x in x if x is not None]

                if len(x) > 0:

                    x = sum(x) / len(x)
                    x = self.diff(x, chart) if self.cf_diff else x

                    score, flag = self.get_score(x, chart)
                    if self.show_scores:
                        data_score['{}_score'.format(chart)] = score * 100
                    data_flag[chart] = flag

            else:

                # run changefinder on each individual dim
                for dim in raw_data[chart]['dimensions']:

                    chart_dim = '{}|{}'.format(chart, dim)

                    x = raw_data[chart]['dimensions'][dim]['value']
                    x = x if x else 0
                    x = self.diff(x, chart_dim) if self.cf_diff else x

                    score, flag = self.get_score(x, chart_dim)
                    if self.show_scores:
                        data_score['{}_score'.format(chart_dim)] = score * 100
                    data_flag[chart_dim] = flag

        self.validate_charts('flags', data_flag)

        if self.show_scores & len(data_score) > 0:
            data_score['average_score'] = sum(data_score.values()) / len(data_score)
            self.validate_charts('scores', data_score, divisor=100)

        data = {**data_score, **data_flag}

        return data