1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "../libnetdata.h"
static int clock_boottime_valid = 1;
#ifndef HAVE_CLOCK_GETTIME
inline int clock_gettime(clockid_t clk_id, struct timespec *ts) {
struct timeval tv;
if(unlikely(gettimeofday(&tv, NULL) == -1)) {
error("gettimeofday() failed.");
return -1;
}
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC;
return 0;
}
#endif
void test_clock_boottime(void) {
struct timespec ts;
if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL)
clock_boottime_valid = 0;
}
static inline time_t now_sec(clockid_t clk_id) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, ×pec) failed.", clk_id);
return 0;
}
return ts.tv_sec;
}
static inline usec_t now_usec(clockid_t clk_id) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, ×pec) failed.", clk_id);
return 0;
}
return (usec_t)ts.tv_sec * USEC_PER_SEC + (ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC;
}
static inline int now_timeval(clockid_t clk_id, struct timeval *tv) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, ×pec) failed.", clk_id);
tv->tv_sec = 0;
tv->tv_usec = 0;
return -1;
}
tv->tv_sec = ts.tv_sec;
tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC);
return 0;
}
inline time_t now_realtime_sec(void) {
return now_sec(CLOCK_REALTIME);
}
inline usec_t now_realtime_usec(void) {
return now_usec(CLOCK_REALTIME);
}
inline int now_realtime_timeval(struct timeval *tv) {
return now_timeval(CLOCK_REALTIME, tv);
}
inline time_t now_monotonic_sec(void) {
return now_sec(CLOCK_MONOTONIC);
}
inline usec_t now_monotonic_usec(void) {
return now_usec(CLOCK_MONOTONIC);
}
inline int now_monotonic_timeval(struct timeval *tv) {
return now_timeval(CLOCK_MONOTONIC, tv);
}
inline time_t now_boottime_sec(void) {
return now_sec(likely(clock_boottime_valid) ? CLOCK_BOOTTIME : CLOCK_MONOTONIC);
}
inline usec_t now_boottime_usec(void) {
return now_usec(likely(clock_boottime_valid) ? CLOCK_BOOTTIME : CLOCK_MONOTONIC);
}
inline int now_boottime_timeval(struct timeval *tv) {
return now_timeval(likely(clock_boottime_valid) ? CLOCK_BOOTTIME : CLOCK_MONOTONIC, tv);
}
inline usec_t timeval_usec(struct timeval *tv) {
return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC);
}
inline msec_t timeval_msec(struct timeval *tv) {
return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC);
}
inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) {
usec_t ts1 = timeval_usec(now);
usec_t ts2 = timeval_usec(old);
if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2);
return -((susec_t)(ts2 - ts1));
}
inline usec_t dt_usec(struct timeval *now, struct timeval *old) {
usec_t ts1 = timeval_usec(now);
usec_t ts2 = timeval_usec(old);
return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1);
}
inline void heartbeat_init(heartbeat_t *hb)
{
hb->monotonic = hb->realtime = 0ULL;
}
// waits for the next heartbeat
// it waits using the monotonic clock
// it returns the dt using the realtime clock
usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) {
heartbeat_t now;
now.monotonic = now_monotonic_usec();
now.realtime = now_realtime_usec();
usec_t next_monotonic = now.monotonic - (now.monotonic % tick) + tick;
while(now.monotonic < next_monotonic) {
sleep_usec(next_monotonic - now.monotonic);
now.monotonic = now_monotonic_usec();
now.realtime = now_realtime_usec();
}
if(likely(hb->realtime != 0ULL)) {
usec_t dt_monotonic = now.monotonic - hb->monotonic;
usec_t dt_realtime = now.realtime - hb->realtime;
hb->monotonic = now.monotonic;
hb->realtime = now.realtime;
if(unlikely(dt_monotonic >= tick + tick / 2)) {
errno = 0;
error("heartbeat missed %llu monotonic microseconds", dt_monotonic - tick);
}
return dt_realtime;
}
else {
hb->monotonic = now.monotonic;
hb->realtime = now.realtime;
return 0ULL;
}
}
// returned the elapsed time, since the last heartbeat
// using the monotonic clock
inline usec_t heartbeat_monotonic_dt_to_now_usec(heartbeat_t *hb) {
if(!hb || !hb->monotonic) return 0ULL;
return now_monotonic_usec() - hb->monotonic;
}
int sleep_usec(usec_t usec) {
#ifndef NETDATA_WITH_USLEEP
// we expect microseconds (1.000.000 per second)
// but timespec is nanoseconds (1.000.000.000 per second)
struct timespec rem, req = {
.tv_sec = (time_t) (usec / 1000000),
.tv_nsec = (suseconds_t) ((usec % 1000000) * 1000)
};
while (nanosleep(&req, &rem) == -1) {
if (likely(errno == EINTR)) {
debug(D_SYSTEM, "nanosleep() interrupted (while sleeping for %llu microseconds).", usec);
req.tv_sec = rem.tv_sec;
req.tv_nsec = rem.tv_nsec;
} else {
error("Cannot nanosleep() for %llu microseconds.", usec);
break;
}
}
return 0;
#else
int ret = usleep(usec);
if(unlikely(ret == -1 && errno == EINVAL)) {
// on certain systems, usec has to be up to 999999
if(usec > 999999) {
int counter = usec / 999999;
while(counter--)
usleep(999999);
usleep(usec % 999999);
}
else {
error("Cannot usleep() for %llu microseconds.", usec);
return ret;
}
}
if(ret != 0)
error("usleep() failed for %llu microseconds.", usec);
return ret;
#endif
}
static inline collected_number uptime_from_boottime(void) {
#ifdef CLOCK_BOOTTIME_IS_AVAILABLE
return now_boottime_usec() / 1000;
#else
error("uptime cannot be read from CLOCK_BOOTTIME on this system.");
return 0;
#endif
}
static procfile *read_proc_uptime_ff = NULL;
static inline collected_number read_proc_uptime(char *filename) {
if(unlikely(!read_proc_uptime_ff)) {
read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT);
if(unlikely(!read_proc_uptime_ff)) return 0;
}
read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff);
if(unlikely(!read_proc_uptime_ff)) return 0;
if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) {
error("/proc/uptime has no lines.");
return 0;
}
if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) {
error("/proc/uptime has less than 1 word in it.");
return 0;
}
return (collected_number)(strtold(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0);
}
inline collected_number uptime_msec(char *filename){
static int use_boottime = -1;
if(unlikely(use_boottime == -1)) {
collected_number uptime_boottime = uptime_from_boottime();
collected_number uptime_proc = read_proc_uptime(filename);
long long delta = (long long)uptime_boottime - (long long)uptime_proc;
if(delta < 0) delta = -delta;
if(delta <= 1000 && uptime_boottime != 0) {
procfile_close(read_proc_uptime_ff);
info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta);
use_boottime = 1;
}
else if(uptime_proc != 0) {
info("Using /proc/uptime for uptime (dt is %lld ms)", delta);
use_boottime = 0;
}
else {
error("Cannot find any way to read uptime on this system.");
return 1;
}
}
collected_number uptime;
if(use_boottime)
uptime = uptime_from_boottime();
else
uptime = read_proc_uptime(filename);
return uptime;
}
|