1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "../libnetdata.h"
// defaults are for compatibility
// call clocks_init() once, to optimize these default settings
static clockid_t clock_boottime_to_use = CLOCK_MONOTONIC;
static clockid_t clock_monotonic_to_use = CLOCK_MONOTONIC;
// the default clock resolution is 1ms
#define DEFAULT_CLOCK_RESOLUTION_UT ((usec_t)0 * USEC_PER_SEC + (usec_t)1 * USEC_PER_MS)
// the max clock resolution is 10ms
#define MAX_CLOCK_RESOLUTION_UT ((usec_t)0 * USEC_PER_SEC + (usec_t)10 * USEC_PER_MS)
usec_t clock_monotonic_resolution = DEFAULT_CLOCK_RESOLUTION_UT;
usec_t clock_realtime_resolution = DEFAULT_CLOCK_RESOLUTION_UT;
#ifndef HAVE_CLOCK_GETTIME
inline int clock_gettime(clockid_t clk_id __maybe_unused, struct timespec *ts) {
struct timeval tv;
if(unlikely(gettimeofday(&tv, NULL) == -1)) {
netdata_log_error("gettimeofday() failed.");
return -1;
}
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = (long)((tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC);
return 0;
}
#endif
// Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is not subject to NTP adjustments
// or the incremental adjustments performed by adjtime(3). This clock does not count time that the system is suspended
static void test_clock_monotonic_raw(void) {
#ifdef CLOCK_MONOTONIC_RAW
struct timespec ts;
if(clock_gettime(CLOCK_MONOTONIC_RAW, &ts) == -1 && errno == EINVAL)
clock_monotonic_to_use = CLOCK_MONOTONIC;
else
clock_monotonic_to_use = CLOCK_MONOTONIC_RAW;
#else
clock_monotonic_to_use = CLOCK_MONOTONIC;
#endif
}
// When running a binary with CLOCK_BOOTTIME defined on a system with a linux kernel older than Linux 2.6.39 the
// clock_gettime(2) system call fails with EINVAL. In that case it must fall-back to CLOCK_MONOTONIC.
static void test_clock_boottime(void) {
struct timespec ts;
if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL)
clock_boottime_to_use = clock_monotonic_to_use;
else
clock_boottime_to_use = CLOCK_BOOTTIME;
}
static usec_t get_clock_resolution(clockid_t clock) {
struct timespec ts = { 0 };
if(clock_getres(clock, &ts) == 0) {
usec_t ret = (usec_t)ts.tv_sec * USEC_PER_SEC + (usec_t)ts.tv_nsec / NSEC_PER_USEC;
if(!ret && ts.tv_nsec > 0 && ts.tv_nsec < NSEC_PER_USEC)
return (usec_t)1;
else if(ret > MAX_CLOCK_RESOLUTION_UT) {
nd_log(NDLS_DAEMON, NDLP_ERR, "clock_getres(%d) returned %"PRIu64" usec is out of range, using defaults for clock resolution.", (int)clock, ret);
return DEFAULT_CLOCK_RESOLUTION_UT;
}
return ret;
}
else {
nd_log(NDLS_DAEMON, NDLP_ERR, "clock_getres(%d) failed, using defaults for clock resolution.", (int)clock);
return DEFAULT_CLOCK_RESOLUTION_UT;
}
}
// perform any initializations required for clocks
void clocks_init(void) {
// monotonic raw has to be tested before boottime
test_clock_monotonic_raw();
// boottime has to be tested after monotonic coarse
test_clock_boottime();
clock_monotonic_resolution = get_clock_resolution(clock_monotonic_to_use);
clock_realtime_resolution = get_clock_resolution(CLOCK_REALTIME);
}
inline time_t now_sec(clockid_t clk_id) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
return 0;
}
return ts.tv_sec;
}
inline usec_t now_usec(clockid_t clk_id) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
return 0;
}
return (usec_t)ts.tv_sec * USEC_PER_SEC + (usec_t)(ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC;
}
inline int now_timeval(clockid_t clk_id, struct timeval *tv) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
tv->tv_sec = 0;
tv->tv_usec = 0;
return -1;
}
tv->tv_sec = ts.tv_sec;
tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC);
return 0;
}
inline time_t now_realtime_sec(void) {
return now_sec(CLOCK_REALTIME);
}
inline msec_t now_realtime_msec(void) {
return now_usec(CLOCK_REALTIME) / USEC_PER_MS;
}
inline usec_t now_realtime_usec(void) {
return now_usec(CLOCK_REALTIME);
}
inline int now_realtime_timeval(struct timeval *tv) {
return now_timeval(CLOCK_REALTIME, tv);
}
inline time_t now_monotonic_sec(void) {
return now_sec(clock_monotonic_to_use);
}
inline usec_t now_monotonic_usec(void) {
return now_usec(clock_monotonic_to_use);
}
inline int now_monotonic_timeval(struct timeval *tv) {
return now_timeval(clock_monotonic_to_use, tv);
}
inline time_t now_monotonic_high_precision_sec(void) {
return now_sec(CLOCK_MONOTONIC);
}
inline usec_t now_monotonic_high_precision_usec(void) {
return now_usec(CLOCK_MONOTONIC);
}
inline int now_monotonic_high_precision_timeval(struct timeval *tv) {
return now_timeval(CLOCK_MONOTONIC, tv);
}
inline time_t now_boottime_sec(void) {
return now_sec(clock_boottime_to_use);
}
inline usec_t now_boottime_usec(void) {
return now_usec(clock_boottime_to_use);
}
inline int now_boottime_timeval(struct timeval *tv) {
return now_timeval(clock_boottime_to_use, tv);
}
inline usec_t timeval_usec(struct timeval *tv) {
return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC);
}
inline msec_t timeval_msec(struct timeval *tv) {
return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC);
}
inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) {
usec_t ts1 = timeval_usec(now);
usec_t ts2 = timeval_usec(old);
if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2);
return -((susec_t)(ts2 - ts1));
}
inline usec_t dt_usec(struct timeval *now, struct timeval *old) {
usec_t ts1 = timeval_usec(now);
usec_t ts2 = timeval_usec(old);
return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1);
}
#ifdef __linux__
void sleep_to_absolute_time(usec_t usec) {
static int einval_printed = 0, enotsup_printed = 0, eunknown_printed = 0;
clockid_t clock = CLOCK_REALTIME;
struct timespec req = {
.tv_sec = (time_t)(usec / USEC_PER_SEC),
.tv_nsec = (suseconds_t)((usec % USEC_PER_SEC) * NSEC_PER_USEC)
};
errno = 0;
int ret = 0;
while( (ret = clock_nanosleep(clock, TIMER_ABSTIME, &req, NULL)) != 0 ) {
if(ret == EINTR) {
errno = 0;
continue;
}
else {
if (ret == EINVAL) {
if (!einval_printed) {
einval_printed++;
netdata_log_error("Invalid time given to clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
clock,
(long long)req.tv_sec,
req.tv_nsec);
}
} else if (ret == ENOTSUP) {
if (!enotsup_printed) {
enotsup_printed++;
netdata_log_error("Invalid clock id given to clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
clock,
(long long)req.tv_sec,
req.tv_nsec);
}
} else {
if (!eunknown_printed) {
eunknown_printed++;
netdata_log_error("Unknown return value %d from clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
ret,
clock,
(long long)req.tv_sec,
req.tv_nsec);
}
}
sleep_usec(usec);
}
}
};
#endif
#define HEARTBEAT_ALIGNMENT_STATISTICS_SIZE 10
netdata_mutex_t heartbeat_alignment_mutex = NETDATA_MUTEX_INITIALIZER;
static size_t heartbeat_alignment_id = 0;
struct heartbeat_thread_statistics {
size_t sequence;
usec_t dt;
};
static struct heartbeat_thread_statistics heartbeat_alignment_values[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 };
void heartbeat_statistics(usec_t *min_ptr, usec_t *max_ptr, usec_t *average_ptr, size_t *count_ptr) {
struct heartbeat_thread_statistics current[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE];
static struct heartbeat_thread_statistics old[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 };
memcpy(current, heartbeat_alignment_values, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE);
usec_t min = 0, max = 0, total = 0, average = 0;
size_t i, count = 0;
for(i = 0; i < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE ;i++) {
if(current[i].sequence == old[i].sequence) continue;
usec_t value = current[i].dt - old[i].dt;
if(!count) {
min = max = total = value;
count = 1;
}
else {
total += value;
if(value < min) min = value;
if(value > max) max = value;
count++;
}
}
if(count)
average = total / count;
if(min_ptr) *min_ptr = min;
if(max_ptr) *max_ptr = max;
if(average_ptr) *average_ptr = average;
if(count_ptr) *count_ptr = count;
memcpy(old, current, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE);
}
inline void heartbeat_init(heartbeat_t *hb) {
hb->realtime = 0ULL;
hb->randomness = (usec_t)250 * USEC_PER_MS + ((usec_t)(now_realtime_usec() * clock_realtime_resolution) % (250 * USEC_PER_MS));
hb->randomness -= (hb->randomness % clock_realtime_resolution);
netdata_mutex_lock(&heartbeat_alignment_mutex);
hb->statistics_id = heartbeat_alignment_id;
heartbeat_alignment_id++;
netdata_mutex_unlock(&heartbeat_alignment_mutex);
if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) {
heartbeat_alignment_values[hb->statistics_id].dt = 0;
heartbeat_alignment_values[hb->statistics_id].sequence = 0;
}
}
// waits for the next heartbeat
// it waits using the monotonic clock
// it returns the dt using the realtime clock
usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) {
if(unlikely(hb->randomness > tick / 2)) {
// TODO: The heartbeat tick should be specified at the heartbeat_init() function
usec_t tmp = (now_realtime_usec() * clock_realtime_resolution) % (tick / 2);
nd_log_limit_static_global_var(erl, 10, 0);
nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
"heartbeat randomness of %"PRIu64" is too big for a tick of %"PRIu64" - setting it to %"PRIu64"",
hb->randomness, tick, tmp);
hb->randomness = tmp;
}
usec_t dt;
usec_t now = now_realtime_usec();
usec_t next = now - (now % tick) + tick + hb->randomness;
// align the next time we want to the clock resolution
if(next % clock_realtime_resolution)
next = next - (next % clock_realtime_resolution) + clock_realtime_resolution;
// sleep_usec() has a loop to guarantee we will sleep for at least the requested time.
// According the specs, when we sleep for a relative time, clock adjustments should not affect the duration
// we sleep.
sleep_usec_with_now(next - now, now);
now = now_realtime_usec();
dt = now - hb->realtime;
if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) {
heartbeat_alignment_values[hb->statistics_id].dt += now - next;
heartbeat_alignment_values[hb->statistics_id].sequence++;
}
if(unlikely(now < next)) {
errno = 0;
nd_log_limit_static_global_var(erl, 10, 0);
nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
"heartbeat clock: woke up %"PRIu64" microseconds earlier than expected "
"(can be due to the CLOCK_REALTIME set to the past).",
next - now);
}
else if(unlikely(now - next > tick / 2)) {
errno = 0;
nd_log_limit_static_global_var(erl, 10, 0);
nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
"heartbeat clock: woke up %"PRIu64" microseconds later than expected "
"(can be due to system load or the CLOCK_REALTIME set to the future).",
now - next);
}
if(unlikely(!hb->realtime)) {
// the first time return zero
dt = 0;
}
hb->realtime = now;
return dt;
}
void sleep_usec_with_now(usec_t usec, usec_t started_ut) {
// we expect microseconds (1.000.000 per second)
// but timespec is nanoseconds (1.000.000.000 per second)
struct timespec rem = { 0, 0 }, req = {
.tv_sec = (time_t) (usec / USEC_PER_SEC),
.tv_nsec = (suseconds_t) ((usec % USEC_PER_SEC) * NSEC_PER_USEC)
};
// make sure errno is not EINTR
errno = 0;
if(!started_ut)
started_ut = now_realtime_usec();
usec_t end_ut = started_ut + usec;
while (nanosleep(&req, &rem) != 0) {
if (likely(errno == EINTR && (rem.tv_sec || rem.tv_nsec))) {
req = rem;
rem = (struct timespec){ 0, 0 };
// break an infinite loop
errno = 0;
usec_t now_ut = now_realtime_usec();
if(now_ut >= end_ut)
break;
usec_t remaining_ut = (usec_t)req.tv_sec * USEC_PER_SEC + (usec_t)req.tv_nsec * NSEC_PER_USEC > usec;
usec_t check_ut = now_ut - started_ut;
if(remaining_ut > check_ut) {
req = (struct timespec){
.tv_sec = (time_t) ( check_ut / USEC_PER_SEC),
.tv_nsec = (suseconds_t) ((check_ut % USEC_PER_SEC) * NSEC_PER_USEC)
};
}
}
else {
netdata_log_error("Cannot nanosleep() for %"PRIu64" microseconds.", usec);
break;
}
}
}
static inline collected_number uptime_from_boottime(void) {
#ifdef CLOCK_BOOTTIME_IS_AVAILABLE
return (collected_number)(now_boottime_usec() / USEC_PER_MS);
#else
netdata_log_error("uptime cannot be read from CLOCK_BOOTTIME on this system.");
return 0;
#endif
}
static procfile *read_proc_uptime_ff = NULL;
static inline collected_number read_proc_uptime(char *filename) {
if(unlikely(!read_proc_uptime_ff)) {
read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT);
if(unlikely(!read_proc_uptime_ff)) return 0;
}
read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff);
if(unlikely(!read_proc_uptime_ff)) return 0;
if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) {
netdata_log_error("/proc/uptime has no lines.");
return 0;
}
if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) {
netdata_log_error("/proc/uptime has less than 1 word in it.");
return 0;
}
return (collected_number)(strtondd(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0);
}
inline collected_number uptime_msec(char *filename){
static int use_boottime = -1;
if(unlikely(use_boottime == -1)) {
collected_number uptime_boottime = uptime_from_boottime();
collected_number uptime_proc = read_proc_uptime(filename);
long long delta = (long long)uptime_boottime - (long long)uptime_proc;
if(delta < 0) delta = -delta;
if(delta <= 1000 && uptime_boottime != 0) {
procfile_close(read_proc_uptime_ff);
netdata_log_info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta);
use_boottime = 1;
}
else if(uptime_proc != 0) {
netdata_log_info("Using /proc/uptime for uptime (dt is %lld ms)", delta);
use_boottime = 0;
}
else {
netdata_log_error("Cannot find any way to read uptime on this system.");
return 1;
}
}
collected_number uptime;
if(use_boottime)
uptime = uptime_from_boottime();
else
uptime = read_proc_uptime(filename);
return uptime;
}
|