1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
|
#ifndef _JUDYPRIVATE_INCLUDED
#define _JUDYPRIVATE_INCLUDED
// _________________
//
// Copyright (C) 2000 - 2002 Hewlett-Packard Company
//
// This program is free software; you can redistribute it and/or modify it
// under the term of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
// for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// _________________
// @(#) $Revision: 4.77 $ $Source: /judy/src/JudyCommon/JudyPrivate.h $
//
// Header file for all Judy sources, for global but private (non-exported)
// declarations.
#include "Judy.h"
// ****************************************************************************
// A VERY BRIEF EXPLANATION OF A JUDY ARRAY
//
// A Judy array is, effectively, a digital tree (or Trie) with 256 element
// branches (nodes), and with "compression tricks" applied to low-population
// branches or leaves to save a lot of memory at the cost of relatively little
// CPU time or cache fills.
//
// In the actual implementation, a Judy array is level-less, and traversing the
// "tree" actually means following the states in a state machine (SM) as
// directed by the Index. A Judy array is referred to here as an "SM", rather
// than as a "tree"; having "states", rather than "levels".
//
// Each branch or leaf in the SM decodes a portion ("digit") of the original
// Index; with 256-way branches there are 8 bits per digit. There are 3 kinds
// of branches, called: Linear, Bitmap and Uncompressed, of which the first 2
// are compressed to contain no NULL entries.
//
// An Uncompressed branch has a 1.0 cache line fill cost to decode 8 bits of
// (digit, part of an Index), but it might contain many NULL entries, and is
// therefore inefficient with memory if lightly populated.
//
// A Linear branch has a ~1.75 cache line fill cost when at maximum population.
// A Bitmap branch has ~2.0 cache line fills. Linear and Bitmap branches are
// converted to Uncompressed branches when the additional memory can be
// amortized with larger populations. Higher-state branches have higher
// priority to be converted.
//
// Linear branches can hold 28 elements (based on detailed analysis) -- thus 28
// expanses. A Linear branch is converted to a Bitmap branch when the 29th
// expanse is required.
//
// A Bitmap branch could hold 256 expanses, but is forced to convert to an
// Uncompressed branch when 185 expanses are required. Hopefully, it is
// converted before that because of population growth (again, based on detailed
// analysis and heuristics in the code).
//
// A path through the SM terminates to a leaf when the Index (or key)
// population in the expanse below a pointer will fit into 1 or 2 cache lines
// (~31..255 Indexes). A maximum-population Leaf has ~1.5 cache line fill
// cost.
//
// Leaves are sorted arrays of Indexes, where the Index Sizes (IS) are: 0, 1,
// 8, 16, 24, 32, [40, 48, 56, 64] bits. The IS depends on the "density"
// (population/expanse) of the values in the Leaf. Zero bits are possible if
// population == expanse in the SM (that is, a full small expanse).
//
// Elements of a branches are called Judy Pointers (JPs). Each JP object
// points to the next object in the SM, plus, a JP can decode an additional
// 2[6] bytes of an Index, but at the cost of "narrowing" the expanse
// represented by the next object in the SM. A "narrow" JP (one which has
// decode bytes/digits) is a way of skipping states in the SM.
//
// Although counterintuitive, we think a Judy SM is optimal when the Leaves are
// stored at MINIMUM compression (narrowing, or use of Decode bytes). If more
// aggressive compression was used, decompression of a leaf be required to
// insert an index. Additional compression would save a little memory but not
// help performance significantly.
#ifdef A_PICTURE_IS_WORTH_1000_WORDS
*******************************************************************************
JUDY 32-BIT STATE MACHINE (SM) EXAMPLE, FOR INDEX = 0x02040103
The Index used in this example is purposely chosen to allow small, simple
examples below; each 1-byte "digit" from the Index has a small numeric value
that fits in one column. In the drawing below:
JRP == Judy Root Pointer;
C == 1 byte of a 1..3 byte Population (count of Indexes) below this
pointer. Since this is shared with the Decode field, the combined
sizes must be 3[7], that is, 1 word less 1 byte for the JP Type.
The 1-byte field jp_Type is represented as:
1..3 == Number of bytes in the population (Pop0) word of the Branch or Leaf
below the pointer (note: 1..7 on 64-bit); indicates:
- number of bytes in Decode field == 3 - this number;
- number of bytes remaining to decode.
Note: The maximum is 3, not 4, because the 1st byte of the Index is
always decoded digitally in the top branch.
-B- == JP points to a Branch (there are many kinds of Branches).
-L- == JP points to a Leaf (there are many kinds of Leaves).
(2) == Digit of Index decoded by position offset in branch (really
0..0xff).
4* == Digit of Index necessary for decoding a "narrow" pointer, in a
Decode field; replaces 1 missing branch (really 0..0xff).
4+ == Digit of Index NOT necessary for decoding a "narrow" pointer, but
used for fast traversal of the SM by Judy1Test() and JudyLGet()
(see the code) (really 0..0xff).
0 == Byte in a JPs Pop0 field that is always ignored, because a leaf
can never contain more than 256 Indexes (Pop0 <= 255).
+----- == A Branch or Leaf; drawn open-ended to remind you that it could
| have up to 256 columns.
+-----
|
| == Pointer to next Branch or Leaf.
V
|
O == A state is skipped by using a "narrow" pointer.
|
< 1 > == Digit (Index) shown as an example is not necessarily in the
position shown; is sorted in order with neighbor Indexes.
(Really 0..0xff.)
Note that this example shows every possibly topology to reach a leaf in a
32-bit Judy SM, although this is a very subtle point!
STATE or`
LEVEL
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
|RJP| |RJP| |RJP| |RJP| |RJP| |RJP| |RJP| |RJP|
L---+ B---+ B---+ B---+ B---+ B---+ B---+ B---+
| | | | | | | |
| | | | | | | |
V V (2) V (2) V (2) V (2) V (2) V (2) V (2)
+------ +------ +------ +------ +------ +------ +------ +------
Four |< 2 > | 0 | 4* | C | 4* | 4* | C | C
byte |< 4 > | 0 | 0 | C | 1* | C | C | C 4
Index|< 1 > | C | C | C | C | C | C | C
Leaf |< 3 > | 3 | 2 | 3 | 1 | 2 | 3 | 3
+------ +--L--- +--L--- +--B--- +--L--- +--B--- +--B--- +--B---
| | | | | | |
/ | / | | / /
/ | / | | / /
| | | | | | |
V | V (4) | | V (4) V (4)
+------ | +------ | | +------ +------
Three |< 4 > | | 4+ | | | 4+ | 4+
byte Index|< 1 > O | 0 O O | 1* | C 3
Leaf |< 3 > | | C | | | C | C
+------ | | 2 | | | 1 | 2
/ +----L- | | +----L- +----B-
/ | | | | |
| / | / / /
| / | / / /
| / | | / /
| / | | / /
| | | | | |
V V | V(1) | V(1)
+------ +------ | +------ | +------
Two byte |< 1 > |< 1 > | | 4+ | | 4+
Index Leaf |< 3 > |< 3 > O | 1+ O | 1+ 2
+------ +------ / | C | | C
/ | 1 | | 1
| +-L---- | +-L----
| | | |
| / | /
| | | |
V V V V
+------ +------ +------ +------
One byte Index Leaf |< 3 > |< 3 > |< 3 > |< 3 > 1
+------ +------ +------ +------
#endif // A_PICTURE_IS_WORTH_1000_WORDS
// ****************************************************************************
// MISCELLANEOUS GLOBALS:
//
// PLATFORM-SPECIFIC CONVENIENCE MACROS:
//
// These are derived from context (set by cc or in system header files) or
// based on JU_<PLATFORM> macros from make_includes/platform.*.mk. We decided
// on 011018 that any macro reliably derivable from context (cc or headers) for
// ALL platforms supported by Judy is based on that derivation, but ANY
// exception means to stop using the external macro completely and derive from
// JU_<PLATFORM> instead.
// Other miscellaneous stuff:
#ifndef _BOOL_T
#define _BOOL_T
typedef int bool_t;
#endif
#define FUNCTION // null; easy to find functions.
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifdef TRACE // turn on all other tracing in the code:
#define TRACEJP 1 // JP traversals in JudyIns.c and JudyDel.c.
#define TRACEJPR 1 // JP traversals in retrieval code, JudyGet.c.
#define TRACECF 1 // cache fills in JudyGet.c.
#define TRACEMI 1 // malloc calls in JudyMallocIF.c.
#define TRACEMF 1 // malloc calls at a lower level in JudyMalloc.c.
#endif
// SUPPORT FOR DEBUG-ONLY CODE:
//
// By convention, use -DDEBUG to enable both debug-only code AND assertions in
// the Judy sources.
//
// Invert the sense of assertions, so they are off unless explicitly requested,
// in a uniform way.
//
// Note: It is NOT appropriate to put this in Judy.h; it would mess up
// application code.
#ifndef DEBUG
#define NDEBUG 1 // must be 1 for "#if".
#endif
// Shorthand notations to avoid #ifdefs for single-line conditional statements:
//
// Warning: These cannot be used around compiler directives, such as
// "#include", nor in the case where Code contains a comma other than nested
// within parentheses or quotes.
#ifndef DEBUG
#define DBGCODE(Code) // null.
#else
#define DBGCODE(Code) Code
#endif
#ifdef JUDY1
#define JUDY1CODE(Code) Code
#define JUDYLCODE(Code) // null.
#endif
#ifdef JUDYL
#define JUDYLCODE(Code) Code
#define JUDY1CODE(Code) // null.
#endif
#include <assert.h>
// ****************************************************************************
// FUNDAMENTAL CONSTANTS FOR MACHINE
// ****************************************************************************
// Machine (CPU) cache line size:
//
// NOTE: A leaf size of 2 cache lines maximum is the target (optimal) for
// Judy. Its hard to obtain a machines cache line size at compile time, but
// if the machine has an unexpected cache line size, its not devastating if
// the following constants end up causing leaves that are 1 cache line in size,
// or even 4 cache lines in size. The assumed 32-bit system has 16-word =
// 64-byte cache lines, and the assumed 64-bit system has 16-word = 128-byte
// cache lines.
#ifdef JU_64BIT
#define cJU_BYTESPERCL 128 // cache line size in bytes.
#else
#define cJU_BYTESPERCL 64 // cache line size in bytes.
#endif
// Bits Per Byte:
#define cJU_BITSPERBYTE 0x8
// Bytes Per Word and Bits Per Word, latter assuming sizeof(byte) is 8 bits:
//
// Expect 32 [64] bits per word.
#define cJU_BYTESPERWORD (sizeof(Word_t))
#define cJU_BITSPERWORD (sizeof(Word_t) * cJU_BITSPERBYTE)
#define JU_BYTESTOWORDS(BYTES) \
(((BYTES) + cJU_BYTESPERWORD - 1) / cJU_BYTESPERWORD)
// A word that is all-ones, normally equal to -1UL, but safer with ~0:
#define cJU_ALLONES (~0UL)
// Note, these are forward references, but thats OK:
#define cJU_FULLBITMAPB ((BITMAPB_t) cJU_ALLONES)
#define cJU_FULLBITMAPL ((BITMAPL_t) cJU_ALLONES)
// ****************************************************************************
// MISCELLANEOUS JUDY-SPECIFIC DECLARATIONS
// ****************************************************************************
// ROOT STATE:
//
// State at the start of the Judy SM, based on 1 byte decoded per state; equal
// to the number of bytes per Index to decode.
#define cJU_ROOTSTATE (sizeof(Word_t))
// SUBEXPANSES PER STATE:
//
// Number of subexpanses per state traversed, which is the number of JPs in a
// branch (actual or theoretical) and the number of bits in a bitmap.
#define cJU_SUBEXPPERSTATE 256
// LEAF AND VALUE POINTERS:
//
// Some other basic object types are in declared in JudyPrivateBranch.h
// (Pjbl_t, Pjbb_t, Pjbu_t, Pjp_t) or are Judy1/L-specific (Pjlb_t). The
// few remaining types are declared below.
//
// Note: Leaf pointers are cast to different-sized objects depending on the
// leafs level, but are at least addresses (not just numbers), so use void *
// (Pvoid_t), not PWord_t or Word_t for them, except use Pjlw_t for whole-word
// (top-level, root-level) leaves. Value areas, however, are always whole
// words.
//
// Furthermore, use Pjll_t only for generic leaf pointers (for various size
// LeafLs). Use Pjlw_t for LeafWs. Use Pleaf (with type uint8_t *, uint16_t
// *, etc) when the leaf index size is known.
typedef PWord_t Pjlw_t; // pointer to root-level leaf (whole-word indexes).
typedef Pvoid_t Pjll_t; // pointer to lower-level linear leaf.
#ifdef JUDYL
typedef PWord_t Pjv_t; // pointer to JudyL value area.
#endif
// POINTER PREPARATION MACROS:
//
// These macros are used to strip malloc-namespace-type bits from a pointer +
// malloc-type word (which references any Judy mallocd object that might be
// obtained from other than a direct call of malloc()), prior to dereferencing
// the pointer as an address. The malloc-type bits allow Judy mallocd objects
// to come from different "malloc() namespaces".
//
// (root pointer) (JRP, see above)
// jp.jp_Addr generic pointer to next-level node, except when used
// as a JudyL Immed01 value area
// JU_JBB_PJP macro hides jbbs_Pjp (pointer to JP subarray)
// JL_JLB_PVALUE macro hides jLlbs_PValue (pointer to value subarray)
//
// When setting one of these fields or passing an address to j__udyFree*(), the
// "raw" memory address is used; otherwise the memory address must be passed
// through one of the macros below before its dereferenced.
//
// Note: After much study, the typecasts below appear in the macros rather
// than at the point of use, which is both simpler and allows the compiler to
// do type-checking.
#define P_JLW( ADDR) ((Pjlw_t) (ADDR)) // root leaf.
#define P_JPM( ADDR) ((Pjpm_t) (ADDR)) // root JPM.
#define P_JBL( ADDR) ((Pjbl_t) (ADDR)) // BranchL.
#define P_JBB( ADDR) ((Pjbb_t) (ADDR)) // BranchB.
#define P_JBU( ADDR) ((Pjbu_t) (ADDR)) // BranchU.
#define P_JLL( ADDR) ((Pjll_t) (ADDR)) // LeafL.
#define P_JLB( ADDR) ((Pjlb_t) (ADDR)) // LeafB1.
#define P_JP( ADDR) ((Pjp_t) (ADDR)) // JP.
#ifdef JUDYL
#define P_JV( ADDR) ((Pjv_t) (ADDR)) // &value.
#endif
// LEAST BYTES:
//
// Mask for least bytes of a word, and a macro to perform this mask on an
// Index.
//
// Note: This macro has been problematic in the past to get right and to make
// portable. Its not OK on all systems to shift by the full word size. This
// macro should allow shifting by 1..N bytes, where N is the word size, but
// should produce a compiler warning if the macro is called with Bytes == 0.
//
// Warning: JU_LEASTBYTESMASK() is not a constant macro unless Bytes is a
// constant; otherwise it is a variable shift, which is expensive on some
// processors.
#define JU_LEASTBYTESMASK(BYTES) \
((0x100UL << (cJU_BITSPERBYTE * ((BYTES) - 1))) - 1)
#define JU_LEASTBYTES(INDEX,BYTES) ((INDEX) & JU_LEASTBYTESMASK(BYTES))
// BITS IN EACH BITMAP SUBEXPANSE FOR BITMAP BRANCH AND LEAF:
//
// The bits per bitmap subexpanse times the number of subexpanses equals a
// constant (cJU_SUBEXPPERSTATE). You can also think of this as a compile-time
// choice of "aspect ratio" for bitmap branches and leaves (which can be set
// independently for each).
//
// A default aspect ratio is hardwired here if not overridden at compile time,
// such as by "EXTCCOPTS=-DBITMAP_BRANCH16x16 make".
#if (! (defined(BITMAP_BRANCH8x32) || defined(BITMAP_BRANCH16x16) || defined(BITMAP_BRANCH32x8)))
#define BITMAP_BRANCH32x8 1 // 32 bits per subexpanse, 8 subexpanses.
#endif
#ifdef BITMAP_BRANCH8x32
#define BITMAPB_t uint8_t
#endif
#ifdef BITMAP_BRANCH16x16
#define BITMAPB_t uint16_t
#endif
#ifdef BITMAP_BRANCH32x8
#define BITMAPB_t uint32_t
#endif
// Note: For bitmap leaves, BITMAP_LEAF64x4 is only valid for 64 bit:
//
// Note: Choice of aspect ratio mostly matters for JudyL bitmap leaves. For
// Judy1 the choice doesnt matter much -- the code generated for different
// BITMAP_LEAF* values choices varies, but correctness and performance are the
// same.
#ifndef JU_64BIT
#if (! (defined(BITMAP_LEAF8x32) || defined(BITMAP_LEAF16x16) || defined(BITMAP_LEAF32x8)))
#define BITMAP_LEAF32x8 // 32 bits per subexpanse, 8 subexpanses.
#endif
#else // 32BIT
#if (! (defined(BITMAP_LEAF8x32) || defined(BITMAP_LEAF16x16) || defined(BITMAP_LEAF32x8) || defined(BITMAP_LEAF64x4)))
#define BITMAP_LEAF64x4 // 64 bits per subexpanse, 4 subexpanses.
#endif
#endif // JU_64BIT
#ifdef BITMAP_LEAF8x32
#define BITMAPL_t uint8_t
#endif
#ifdef BITMAP_LEAF16x16
#define BITMAPL_t uint16_t
#endif
#ifdef BITMAP_LEAF32x8
#define BITMAPL_t uint32_t
#endif
#ifdef BITMAP_LEAF64x4
#define BITMAPL_t uint64_t
#endif
// EXPORTED DATA AND FUNCTIONS:
#ifdef JUDY1
extern const uint8_t j__1_BranchBJPPopToWords[];
#endif
#ifdef JUDYL
extern const uint8_t j__L_BranchBJPPopToWords[];
#endif
// Fast LeafL search routine used for inlined code:
#if (! defined(SEARCH_BINARY)) || (! defined(SEARCH_LINEAR))
// default a binary search leaf method
#define SEARCH_BINARY 1
//#define SEARCH_LINEAR 1
#endif
#ifdef SEARCH_LINEAR
#define SEARCHLEAFNATIVE(LEAFTYPE,ADDR,POP1,INDEX) \
LEAFTYPE *P_leaf = (LEAFTYPE *)(ADDR); \
LEAFTYPE I_ndex = (INDEX); /* with masking */ \
if (I_ndex > P_leaf[(POP1) - 1]) return(~(POP1)); \
while(I_ndex > *P_leaf) P_leaf++; \
if (I_ndex == *P_leaf) return(P_leaf - (LEAFTYPE *)(ADDR)); \
return(~(P_leaf - (LEAFTYPE *)(ADDR)));
#define SEARCHLEAFNONNAT(ADDR,POP1,INDEX,LFBTS,COPYINDEX) \
{ \
uint8_t *P_leaf, *P_leafEnd; \
Word_t i_ndex; \
Word_t I_ndex = JU_LEASTBYTES((INDEX), (LFBTS)); \
Word_t p_op1; \
\
P_leaf = (uint8_t *)(ADDR); \
P_leafEnd = P_leaf + ((POP1) * (LFBTS)); \
\
do { \
JU_COPY3_PINDEX_TO_LONG(i_ndex, P_leaf); \
if (I_ndex <= i_ndex) break; \
P_leaf += (LFBTS); \
} while (P_leaf < P_leafEnd); \
\
p_op1 = (P_leaf - (uint8_t *) (ADDR)) / (LFBTS); \
if (I_ndex == i_ndex) return(p_op1); \
return(~p_op1); \
}
#endif // SEARCH_LINEAR
#ifdef SEARCH_BINARY
#define SEARCHLEAFNATIVE(LEAFTYPE,ADDR,POP1,INDEX) \
LEAFTYPE *P_leaf = (LEAFTYPE *)(ADDR); \
LEAFTYPE I_ndex = (LEAFTYPE)INDEX; /* truncate hi bits */ \
Word_t l_ow = cJU_ALLONES; \
Word_t m_id; \
Word_t h_igh = POP1; \
\
while ((h_igh - l_ow) > 1UL) \
{ \
m_id = (h_igh + l_ow) / 2; \
if (P_leaf[m_id] > I_ndex) \
h_igh = m_id; \
else \
l_ow = m_id; \
} \
if (l_ow == cJU_ALLONES || P_leaf[l_ow] != I_ndex) \
return(~h_igh); \
return(l_ow)
#define SEARCHLEAFNONNAT(ADDR,POP1,INDEX,LFBTS,COPYINDEX) \
uint8_t *P_leaf = (uint8_t *)(ADDR); \
Word_t l_ow = cJU_ALLONES; \
Word_t m_id; \
Word_t h_igh = POP1; \
Word_t I_ndex = JU_LEASTBYTES((INDEX), (LFBTS)); \
Word_t i_ndex; \
\
I_ndex = JU_LEASTBYTES((INDEX), (LFBTS)); \
\
while ((h_igh - l_ow) > 1UL) \
{ \
m_id = (h_igh + l_ow) / 2; \
COPYINDEX(i_ndex, &P_leaf[m_id * (LFBTS)]); \
if (i_ndex > I_ndex) \
h_igh = m_id; \
else \
l_ow = m_id; \
} \
if (l_ow == cJU_ALLONES) return(~h_igh); \
\
COPYINDEX(i_ndex, &P_leaf[l_ow * (LFBTS)]); \
if (i_ndex != I_ndex) return(~h_igh); \
return(l_ow)
#endif // SEARCH_BINARY
// Fast way to count bits set in 8..32[64]-bit int:
//
// For performance, j__udyCountBits*() are written to take advantage of
// platform-specific features where available.
//
#ifdef JU_NOINLINE
extern BITMAPB_t j__udyCountBitsB(BITMAPB_t word);
extern BITMAPL_t j__udyCountBitsL(BITMAPL_t word);
// Compiler supports inline
#elif defined(JU_HPUX_IPF)
#define j__udyCountBitsB(WORD) _Asm_popcnt(WORD)
#define j__udyCountBitsL(WORD) _Asm_popcnt(WORD)
#elif defined(JU_LINUX_IPF)
static inline BITMAPB_t j__udyCountBitsB(BITMAPB_t word)
{
BITMAPB_t result;
__asm__ ("popcnt %0=%1" : "=r" (result) : "r" (word));
return(result);
}
static inline BITMAPL_t j__udyCountBitsL(BITMAPL_t word)
{
BITMAPL_t result;
__asm__ ("popcnt %0=%1" : "=r" (result) : "r" (word));
return(result);
}
#else // No instructions available, use inline code
// ****************************************************************************
// __ J U D Y C O U N T B I T S B
//
// Return the number of bits set in "Word", for a bitmap branch.
//
// Note: Bitmap branches have maximum bitmap size = 32 bits.
#ifdef JU_WIN
static __inline BITMAPB_t j__udyCountBitsB(BITMAPB_t word)
#else
static inline BITMAPB_t j__udyCountBitsB(BITMAPB_t word)
#endif
{
word = (word & 0x55555555) + ((word & 0xAAAAAAAA) >> 1);
word = (word & 0x33333333) + ((word & 0xCCCCCCCC) >> 2);
word = (word & 0x0F0F0F0F) + ((word & 0xF0F0F0F0) >> 4); // >= 8 bits.
#if defined(BITMAP_BRANCH16x16) || defined(BITMAP_BRANCH32x8)
word = (word & 0x00FF00FF) + ((word & 0xFF00FF00) >> 8); // >= 16 bits.
#endif
#ifdef BITMAP_BRANCH32x8
word = (word & 0x0000FFFF) + ((word & 0xFFFF0000) >> 16); // >= 32 bits.
#endif
return(word);
} // j__udyCountBitsB()
// ****************************************************************************
// __ J U D Y C O U N T B I T S L
//
// Return the number of bits set in "Word", for a bitmap leaf.
//
// Note: Bitmap branches have maximum bitmap size = 32 bits.
// Note: Need both 32-bit and 64-bit versions of j__udyCountBitsL() because
// bitmap leaves can have 64-bit bitmaps.
#ifdef JU_WIN
static __inline BITMAPL_t j__udyCountBitsL(BITMAPL_t word)
#else
static inline BITMAPL_t j__udyCountBitsL(BITMAPL_t word)
#endif
{
#ifndef JU_64BIT
word = (word & 0x55555555) + ((word & 0xAAAAAAAA) >> 1);
word = (word & 0x33333333) + ((word & 0xCCCCCCCC) >> 2);
word = (word & 0x0F0F0F0F) + ((word & 0xF0F0F0F0) >> 4); // >= 8 bits.
#if defined(BITMAP_LEAF16x16) || defined(BITMAP_LEAF32x8)
word = (word & 0x00FF00FF) + ((word & 0xFF00FF00) >> 8); // >= 16 bits.
#endif
#ifdef BITMAP_LEAF32x8
word = (word & 0x0000FFFF) + ((word & 0xFFFF0000) >> 16); // >= 32 bits.
#endif
#else // JU_64BIT
word = (word & 0x5555555555555555) + ((word & 0xAAAAAAAAAAAAAAAA) >> 1);
word = (word & 0x3333333333333333) + ((word & 0xCCCCCCCCCCCCCCCC) >> 2);
word = (word & 0x0F0F0F0F0F0F0F0F) + ((word & 0xF0F0F0F0F0F0F0F0) >> 4);
#if defined(BITMAP_LEAF16x16) || defined(BITMAP_LEAF32x8) || defined(BITMAP_LEAF64x4)
word = (word & 0x00FF00FF00FF00FF) + ((word & 0xFF00FF00FF00FF00) >> 8);
#endif
#if defined(BITMAP_LEAF32x8) || defined(BITMAP_LEAF64x4)
word = (word & 0x0000FFFF0000FFFF) + ((word & 0xFFFF0000FFFF0000) >>16);
#endif
#ifdef BITMAP_LEAF64x4
word = (word & 0x00000000FFFFFFFF) + ((word & 0xFFFFFFFF00000000) >>32);
#endif
#endif // JU_64BIT
return(word);
} // j__udyCountBitsL()
#endif // Compiler supports inline
// GET POP0:
//
// Get from jp_DcdPopO the Pop0 for various JP Types.
//
// Notes:
//
// - Different macros require different parameters...
//
// - There are no simple macros for cJU_BRANCH* Types because their
// populations must be added up and dont reside in an already-calculated
// place. (TBD: This is no longer true, now its in the JPM.)
//
// - cJU_JPIMM_POP0() is not defined because it would be redundant because the
// Pop1 is already encoded in each enum name.
//
// - A linear or bitmap leaf Pop0 cannot exceed cJU_SUBEXPPERSTATE - 1 (Pop0 =
// 0..255), so use a simpler, faster macro for it than for other JP Types.
//
// - Avoid any complex calculations that would slow down the compiled code.
// Assume these macros are only called for the appropriate JP Types.
// Unfortunately theres no way to trigger an assertion here if the JP type
// is incorrect for the macro, because these are merely expressions, not
// statements.
#define JU_LEAFW_POP0(JRP) (*P_JLW(JRP))
#define cJU_JPFULLPOPU1_POP0 (cJU_SUBEXPPERSTATE - 1)
// GET JP Type:
// Since bit fields greater than 32 bits are not supported in some compilers
// the jp_DcdPopO field is expanded to include the jp_Type in the high 8 bits
// of the Word_t.
// First the read macro:
#define JU_JPTYPE(PJP) ((PJP)->jp_Type)
#define JU_JPLEAF_POP0(PJP) ((PJP)->jp_DcdP0[sizeof(Word_t) - 2])
#ifdef JU_64BIT
#define JU_JPDCDPOP0(PJP) \
((Word_t)(PJP)->jp_DcdP0[0] << 48 | \
(Word_t)(PJP)->jp_DcdP0[1] << 40 | \
(Word_t)(PJP)->jp_DcdP0[2] << 32 | \
(Word_t)(PJP)->jp_DcdP0[3] << 24 | \
(Word_t)(PJP)->jp_DcdP0[4] << 16 | \
(Word_t)(PJP)->jp_DcdP0[5] << 8 | \
(Word_t)(PJP)->jp_DcdP0[6])
#define JU_JPSETADT(PJP,ADDR,DCDPOP0,TYPE) \
{ \
(PJP)->jp_Addr = (ADDR); \
(PJP)->jp_DcdP0[0] = (uint8_t)((Word_t)(DCDPOP0) >> 48); \
(PJP)->jp_DcdP0[1] = (uint8_t)((Word_t)(DCDPOP0) >> 40); \
(PJP)->jp_DcdP0[2] = (uint8_t)((Word_t)(DCDPOP0) >> 32); \
(PJP)->jp_DcdP0[3] = (uint8_t)((Word_t)(DCDPOP0) >> 24); \
(PJP)->jp_DcdP0[4] = (uint8_t)((Word_t)(DCDPOP0) >> 16); \
(PJP)->jp_DcdP0[5] = (uint8_t)((Word_t)(DCDPOP0) >> 8); \
(PJP)->jp_DcdP0[6] = (uint8_t)((Word_t)(DCDPOP0)); \
(PJP)->jp_Type = (TYPE); \
}
#else // 32 Bit
#define JU_JPDCDPOP0(PJP) \
((Word_t)(PJP)->jp_DcdP0[0] << 16 | \
(Word_t)(PJP)->jp_DcdP0[1] << 8 | \
(Word_t)(PJP)->jp_DcdP0[2])
#define JU_JPSETADT(PJP,ADDR,DCDPOP0,TYPE) \
{ \
(PJP)->jp_Addr = (ADDR); \
(PJP)->jp_DcdP0[0] = (uint8_t)((Word_t)(DCDPOP0) >> 16); \
(PJP)->jp_DcdP0[1] = (uint8_t)((Word_t)(DCDPOP0) >> 8); \
(PJP)->jp_DcdP0[2] = (uint8_t)((Word_t)(DCDPOP0)); \
(PJP)->jp_Type = (TYPE); \
}
#endif // 32 Bit
// NUMBER OF BITS IN A BRANCH OR LEAF BITMAP AND SUBEXPANSE:
//
// Note: cJU_BITSPERBITMAP must be the same as the number of JPs in a branch.
#define cJU_BITSPERBITMAP cJU_SUBEXPPERSTATE
// Bitmaps are accessed in units of "subexpanses":
#define cJU_BITSPERSUBEXPB (sizeof(BITMAPB_t) * cJU_BITSPERBYTE)
#define cJU_NUMSUBEXPB (cJU_BITSPERBITMAP / cJU_BITSPERSUBEXPB)
#define cJU_BITSPERSUBEXPL (sizeof(BITMAPL_t) * cJU_BITSPERBYTE)
#define cJU_NUMSUBEXPL (cJU_BITSPERBITMAP / cJU_BITSPERSUBEXPL)
// MASK FOR A SPECIFIED BIT IN A BITMAP:
//
// Warning: If BitNum is a variable, this results in a variable shift that is
// expensive, at least on some processors. Use with caution.
//
// Warning: BitNum must be less than cJU_BITSPERWORD, that is, 0 ..
// cJU_BITSPERWORD - 1, to avoid a truncated shift on some machines.
//
// TBD: Perhaps use an array[32] of masks instead of calculating them.
#define JU_BITPOSMASKB(BITNUM) (1L << ((BITNUM) % cJU_BITSPERSUBEXPB))
#define JU_BITPOSMASKL(BITNUM) (1L << ((BITNUM) % cJU_BITSPERSUBEXPL))
// TEST/SET/CLEAR A BIT IN A BITMAP LEAF:
//
// Test if a byte-sized Digit (portion of Index) has a corresponding bit set in
// a bitmap, or set a byte-sized Digits bit into a bitmap, by looking up the
// correct subexpanse and then checking/setting the correct bit.
//
// Note: Mask higher bits, if any, for the convenience of the user of this
// macro, in case they pass a full Index, not just a digit. If the caller has
// a true 8-bit digit, make it of type uint8_t and the compiler should skip the
// unnecessary mask step.
#define JU_SUBEXPL(DIGIT) (((DIGIT) / cJU_BITSPERSUBEXPL) & (cJU_NUMSUBEXPL-1))
#define JU_BITMAPTESTL(PJLB, INDEX) \
(JU_JLB_BITMAP(PJLB, JU_SUBEXPL(INDEX)) & JU_BITPOSMASKL(INDEX))
#define JU_BITMAPSETL(PJLB, INDEX) \
(JU_JLB_BITMAP(PJLB, JU_SUBEXPL(INDEX)) |= JU_BITPOSMASKL(INDEX))
#define JU_BITMAPCLEARL(PJLB, INDEX) \
(JU_JLB_BITMAP(PJLB, JU_SUBEXPL(INDEX)) ^= JU_BITPOSMASKL(INDEX))
// MAP BITMAP BIT OFFSET TO DIGIT:
//
// Given a digit variable to set, a bitmap branch or leaf subexpanse (base 0),
// the bitmap (BITMAP*_t) for that subexpanse, and an offset (Nth set bit in
// the bitmap, base 0), compute the digit (also base 0) corresponding to the
// subexpanse and offset by counting all bits in the bitmap until offset+1 set
// bits are seen. Avoid expensive variable shifts. Offset should be less than
// the number of set bits in the bitmap; assert this.
//
// If theres a better way to do this, I dont know what it is.
#define JU_BITMAPDIGITB(DIGIT,SUBEXP,BITMAP,OFFSET) \
{ \
BITMAPB_t bitmap = (BITMAP); int remain = (OFFSET); \
(DIGIT) = (SUBEXP) * cJU_BITSPERSUBEXPB; \
\
while ((remain -= (bitmap & 1)) >= 0) \
{ \
bitmap >>= 1; ++(DIGIT); \
assert((DIGIT) < ((SUBEXP) + 1) * cJU_BITSPERSUBEXPB); \
} \
}
#define JU_BITMAPDIGITL(DIGIT,SUBEXP,BITMAP,OFFSET) \
{ \
BITMAPL_t bitmap = (BITMAP); int remain = (OFFSET); \
(DIGIT) = (SUBEXP) * cJU_BITSPERSUBEXPL; \
\
while ((remain -= (bitmap & 1)) >= 0) \
{ \
bitmap >>= 1; ++(DIGIT); \
assert((DIGIT) < ((SUBEXP) + 1) * cJU_BITSPERSUBEXPL); \
} \
}
// MASKS FOR PORTIONS OF 32-BIT WORDS:
//
// These are useful for bitmap subexpanses.
//
// "LOWER"/"HIGHER" means bits representing lower/higher-valued Indexes. The
// exact order of bits in the word is explicit here but is hidden from the
// caller.
//
// "EXC" means exclusive of the specified bit; "INC" means inclusive.
//
// In each case, BitPos is either "JU_BITPOSMASK*(BitNum)", or a variable saved
// from an earlier call of that macro; either way, it must be a 32-bit word
// with a single bit set. In the first case, assume the compiler is smart
// enough to optimize out common subexpressions.
//
// The expressions depend on unsigned decimal math that should be universal.
#define JU_MASKLOWEREXC( BITPOS) ((BITPOS) - 1)
#define JU_MASKLOWERINC( BITPOS) (JU_MASKLOWEREXC(BITPOS) | (BITPOS))
#define JU_MASKHIGHERINC(BITPOS) (-(BITPOS))
#define JU_MASKHIGHEREXC(BITPOS) (JU_MASKHIGHERINC(BITPOS) ^ (BITPOS))
// ****************************************************************************
// SUPPORT FOR NATIVE INDEX SIZES
// ****************************************************************************
//
// Copy a series of generic objects (uint8_t, uint16_t, uint32_t, Word_t) from
// one place to another.
#define JU_COPYMEM(PDST,PSRC,POP1) \
{ \
Word_t i_ndex = 0; \
assert((POP1) > 0); \
do { (PDST)[i_ndex] = (PSRC)[i_ndex]; } \
while (++i_ndex < (POP1)); \
}
// ****************************************************************************
// SUPPORT FOR NON-NATIVE INDEX SIZES
// ****************************************************************************
//
// Copy a 3-byte Index pointed by a uint8_t * to a Word_t:
//
#define JU_COPY3_PINDEX_TO_LONG(DESTLONG,PINDEX) \
DESTLONG = (Word_t)(PINDEX)[0] << 16; \
DESTLONG += (Word_t)(PINDEX)[1] << 8; \
DESTLONG += (Word_t)(PINDEX)[2]
// Copy a Word_t to a 3-byte Index pointed at by a uint8_t *:
#define JU_COPY3_LONG_TO_PINDEX(PINDEX,SOURCELONG) \
(PINDEX)[0] = (uint8_t)((SOURCELONG) >> 16); \
(PINDEX)[1] = (uint8_t)((SOURCELONG) >> 8); \
(PINDEX)[2] = (uint8_t)((SOURCELONG))
#ifdef JU_64BIT
// Copy a 5-byte Index pointed by a uint8_t * to a Word_t:
//
#define JU_COPY5_PINDEX_TO_LONG(DESTLONG,PINDEX) \
DESTLONG = (Word_t)(PINDEX)[0] << 32; \
DESTLONG += (Word_t)(PINDEX)[1] << 24; \
DESTLONG += (Word_t)(PINDEX)[2] << 16; \
DESTLONG += (Word_t)(PINDEX)[3] << 8; \
DESTLONG += (Word_t)(PINDEX)[4]
// Copy a Word_t to a 5-byte Index pointed at by a uint8_t *:
#define JU_COPY5_LONG_TO_PINDEX(PINDEX,SOURCELONG) \
(PINDEX)[0] = (uint8_t)((SOURCELONG) >> 32); \
(PINDEX)[1] = (uint8_t)((SOURCELONG) >> 24); \
(PINDEX)[2] = (uint8_t)((SOURCELONG) >> 16); \
(PINDEX)[3] = (uint8_t)((SOURCELONG) >> 8); \
(PINDEX)[4] = (uint8_t)((SOURCELONG))
// Copy a 6-byte Index pointed by a uint8_t * to a Word_t:
//
#define JU_COPY6_PINDEX_TO_LONG(DESTLONG,PINDEX) \
DESTLONG = (Word_t)(PINDEX)[0] << 40; \
DESTLONG += (Word_t)(PINDEX)[1] << 32; \
DESTLONG += (Word_t)(PINDEX)[2] << 24; \
DESTLONG += (Word_t)(PINDEX)[3] << 16; \
DESTLONG += (Word_t)(PINDEX)[4] << 8; \
DESTLONG += (Word_t)(PINDEX)[5]
// Copy a Word_t to a 6-byte Index pointed at by a uint8_t *:
#define JU_COPY6_LONG_TO_PINDEX(PINDEX,SOURCELONG) \
(PINDEX)[0] = (uint8_t)((SOURCELONG) >> 40); \
(PINDEX)[1] = (uint8_t)((SOURCELONG) >> 32); \
(PINDEX)[2] = (uint8_t)((SOURCELONG) >> 24); \
(PINDEX)[3] = (uint8_t)((SOURCELONG) >> 16); \
(PINDEX)[4] = (uint8_t)((SOURCELONG) >> 8); \
(PINDEX)[5] = (uint8_t)((SOURCELONG))
// Copy a 7-byte Index pointed by a uint8_t * to a Word_t:
//
#define JU_COPY7_PINDEX_TO_LONG(DESTLONG,PINDEX) \
DESTLONG = (Word_t)(PINDEX)[0] << 48; \
DESTLONG += (Word_t)(PINDEX)[1] << 40; \
DESTLONG += (Word_t)(PINDEX)[2] << 32; \
DESTLONG += (Word_t)(PINDEX)[3] << 24; \
DESTLONG += (Word_t)(PINDEX)[4] << 16; \
DESTLONG += (Word_t)(PINDEX)[5] << 8; \
DESTLONG += (Word_t)(PINDEX)[6]
// Copy a Word_t to a 7-byte Index pointed at by a uint8_t *:
#define JU_COPY7_LONG_TO_PINDEX(PINDEX,SOURCELONG) \
(PINDEX)[0] = (uint8_t)((SOURCELONG) >> 48); \
(PINDEX)[1] = (uint8_t)((SOURCELONG) >> 40); \
(PINDEX)[2] = (uint8_t)((SOURCELONG) >> 32); \
(PINDEX)[3] = (uint8_t)((SOURCELONG) >> 24); \
(PINDEX)[4] = (uint8_t)((SOURCELONG) >> 16); \
(PINDEX)[5] = (uint8_t)((SOURCELONG) >> 8); \
(PINDEX)[6] = (uint8_t)((SOURCELONG))
#endif // JU_64BIT
// ****************************************************************************
// COMMON CODE FRAGMENTS (MACROS)
// ****************************************************************************
//
// These code chunks are shared between various source files.
// SET (REPLACE) ONE DIGIT IN AN INDEX:
//
// To avoid endian issues, use masking and ORing, which operates in a
// big-endian register, rather than treating the Index as an array of bytes,
// though that would be simpler, but would operate in endian-specific memory.
//
// TBD: This contains two variable shifts, is that bad?
#define JU_SETDIGIT(INDEX,DIGIT,STATE) \
(INDEX) = ((INDEX) & (~cJU_MASKATSTATE(STATE))) \
| (((Word_t) (DIGIT)) \
<< (((STATE) - 1) * cJU_BITSPERBYTE))
// Fast version for single LSB:
#define JU_SETDIGIT1(INDEX,DIGIT) (INDEX) = ((INDEX) & ~0xff) | (DIGIT)
// SET (REPLACE) "N" LEAST DIGITS IN AN INDEX:
#define JU_SETDIGITS(INDEX,INDEX2,cSTATE) \
(INDEX) = ((INDEX ) & (~JU_LEASTBYTESMASK(cSTATE))) \
| ((INDEX2) & ( JU_LEASTBYTESMASK(cSTATE)))
// COPY DECODE BYTES FROM JP TO INDEX:
//
// Modify Index digit(s) to match the bytes in jp_DcdPopO in case one or more
// branches are skipped and the digits are significant. Its probably faster
// to just do this unconditionally than to check if its necessary.
//
// To avoid endian issues, use masking and ORing, which operates in a
// big-endian register, rather than treating the Index as an array of bytes,
// though that would be simpler, but would operate in endian-specific memory.
//
// WARNING: Must not call JU_LEASTBYTESMASK (via cJU_DCDMASK) with Bytes =
// cJU_ROOTSTATE or a bad mask is generated, but there are no Dcd bytes to copy
// in this case anyway. In fact there are no Dcd bytes unless State <
// cJU_ROOTSTATE - 1, so dont call this macro except in those cases.
//
// TBD: It would be nice to validate jp_DcdPopO against known digits to ensure
// no corruption, but this is non-trivial.
#define JU_SETDCD(INDEX,PJP,cSTATE) \
(INDEX) = ((INDEX) & ~cJU_DCDMASK(cSTATE)) \
| (JU_JPDCDPOP0(PJP) & cJU_DCDMASK(cSTATE))
// INSERT/DELETE AN INDEX IN-PLACE IN MEMORY:
//
// Given a pointer to an array of "even" (native), same-sized objects
// (indexes), the current population of the array, an offset in the array, and
// a new Index to insert, "shift up" the array elements (Indexes) above the
// insertion point and insert the new Index. Assume there is sufficient memory
// to do this.
//
// In these macros, "i_offset" is an index offset, and "b_off" is a byte
// offset for odd Index sizes.
//
// Note: Endian issues only arise fro insertion, not deletion, and even for
// insertion, they are transparent when native (even) objects are used, and
// handled explicitly for odd (non-native) Index sizes.
//
// Note: The following macros are tricky enough that there is some test code
// for them appended to this file.
#define JU_INSERTINPLACE(PARRAY,POP1,OFFSET,INDEX) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \
{ \
Word_t i_offset = (POP1); \
\
while (i_offset-- > (OFFSET)) \
(PARRAY)[i_offset + 1] = (PARRAY)[i_offset]; \
\
(PARRAY)[OFFSET] = (INDEX); \
}
// Variation for non-native Indexes, where cIS = Index Size
// and PByte must point to a uint8_t (byte); shift byte-by-byte:
//
#define JU_INSERTINPLACE3(PBYTE,POP1,OFFSET,INDEX) \
{ \
Word_t i_off = POP1; \
\
while (i_off-- > (OFFSET)) \
{ \
Word_t i_dx = i_off * 3; \
(PBYTE)[i_dx + 0 + 3] = (PBYTE)[i_dx + 0]; \
(PBYTE)[i_dx + 1 + 3] = (PBYTE)[i_dx + 1]; \
(PBYTE)[i_dx + 2 + 3] = (PBYTE)[i_dx + 2]; \
} \
JU_COPY3_LONG_TO_PINDEX(&((PBYTE)[(OFFSET) * 3]), INDEX); \
}
#ifdef JU_64BIT
#define JU_INSERTINPLACE5(PBYTE,POP1,OFFSET,INDEX) \
{ \
Word_t i_off = POP1; \
\
while (i_off-- > (OFFSET)) \
{ \
Word_t i_dx = i_off * 5; \
(PBYTE)[i_dx + 0 + 5] = (PBYTE)[i_dx + 0]; \
(PBYTE)[i_dx + 1 + 5] = (PBYTE)[i_dx + 1]; \
(PBYTE)[i_dx + 2 + 5] = (PBYTE)[i_dx + 2]; \
(PBYTE)[i_dx + 3 + 5] = (PBYTE)[i_dx + 3]; \
(PBYTE)[i_dx + 4 + 5] = (PBYTE)[i_dx + 4]; \
} \
JU_COPY5_LONG_TO_PINDEX(&((PBYTE)[(OFFSET) * 5]), INDEX); \
}
#define JU_INSERTINPLACE6(PBYTE,POP1,OFFSET,INDEX) \
{ \
Word_t i_off = POP1; \
\
while (i_off-- > (OFFSET)) \
{ \
Word_t i_dx = i_off * 6; \
(PBYTE)[i_dx + 0 + 6] = (PBYTE)[i_dx + 0]; \
(PBYTE)[i_dx + 1 + 6] = (PBYTE)[i_dx + 1]; \
(PBYTE)[i_dx + 2 + 6] = (PBYTE)[i_dx + 2]; \
(PBYTE)[i_dx + 3 + 6] = (PBYTE)[i_dx + 3]; \
(PBYTE)[i_dx + 4 + 6] = (PBYTE)[i_dx + 4]; \
(PBYTE)[i_dx + 5 + 6] = (PBYTE)[i_dx + 5]; \
} \
JU_COPY6_LONG_TO_PINDEX(&((PBYTE)[(OFFSET) * 6]), INDEX); \
}
#define JU_INSERTINPLACE7(PBYTE,POP1,OFFSET,INDEX) \
{ \
Word_t i_off = POP1; \
\
while (i_off-- > (OFFSET)) \
{ \
Word_t i_dx = i_off * 7; \
(PBYTE)[i_dx + 0 + 7] = (PBYTE)[i_dx + 0]; \
(PBYTE)[i_dx + 1 + 7] = (PBYTE)[i_dx + 1]; \
(PBYTE)[i_dx + 2 + 7] = (PBYTE)[i_dx + 2]; \
(PBYTE)[i_dx + 3 + 7] = (PBYTE)[i_dx + 3]; \
(PBYTE)[i_dx + 4 + 7] = (PBYTE)[i_dx + 4]; \
(PBYTE)[i_dx + 5 + 7] = (PBYTE)[i_dx + 5]; \
(PBYTE)[i_dx + 6 + 7] = (PBYTE)[i_dx + 6]; \
} \
JU_COPY7_LONG_TO_PINDEX(&((PBYTE)[(OFFSET) * 7]), INDEX); \
}
#endif // JU_64BIT
// Counterparts to the above for deleting an Index:
//
// "Shift down" the array elements starting at the Index to be deleted.
#define JU_DELETEINPLACE(PARRAY,POP1,OFFSET,IGNORE) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) < (Word_t) (POP1)); \
{ \
Word_t i_offset = (OFFSET); \
\
while (++i_offset < (POP1)) \
(PARRAY)[i_offset - 1] = (PARRAY)[i_offset]; \
}
// Variation for odd-byte-sized (non-native) Indexes, where cIS = Index Size
// and PByte must point to a uint8_t (byte); copy byte-by-byte:
//
// Note: If cIS == 1, JU_DELETEINPLACE_ODD == JU_DELETEINPLACE.
//
// Note: There are no endian issues here because bytes are just shifted as-is,
// not converted to/from an Index.
#define JU_DELETEINPLACE_ODD(PBYTE,POP1,OFFSET,cIS) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) < (Word_t) (POP1)); \
{ \
Word_t b_off = (((OFFSET) + 1) * (cIS)) - 1; \
\
while (++b_off < ((POP1) * (cIS))) \
(PBYTE)[b_off - (cIS)] = (PBYTE)[b_off]; \
}
// INSERT/DELETE AN INDEX WHILE COPYING OTHERS:
//
// Copy PSource[] to PDest[], where PSource[] has Pop1 elements (Indexes),
// inserting Index at PDest[Offset]. Unlike JU_*INPLACE*() above, these macros
// are used when moving Indexes from one memory object to another.
#define JU_INSERTCOPY(PDEST,PSOURCE,POP1,OFFSET,INDEX) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \
{ \
Word_t i_offset; \
\
for (i_offset = 0; i_offset < (OFFSET); ++i_offset) \
(PDEST)[i_offset] = (PSOURCE)[i_offset]; \
\
(PDEST)[i_offset] = (INDEX); \
\
for (/* null */; i_offset < (POP1); ++i_offset) \
(PDEST)[i_offset + 1] = (PSOURCE)[i_offset]; \
}
#define JU_INSERTCOPY3(PDEST,PSOURCE,POP1,OFFSET,INDEX) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \
{ \
Word_t o_ff; \
\
for (o_ff = 0; o_ff < (OFFSET); o_ff++) \
{ \
Word_t i_dx = o_ff * 3; \
(PDEST)[i_dx + 0] = (PSOURCE)[i_dx + 0]; \
(PDEST)[i_dx + 1] = (PSOURCE)[i_dx + 1]; \
(PDEST)[i_dx + 2] = (PSOURCE)[i_dx + 2]; \
} \
JU_COPY3_LONG_TO_PINDEX(&((PDEST)[(OFFSET) * 3]), INDEX); \
\
for (/* null */; o_ff < (POP1); o_ff++) \
{ \
Word_t i_dx = o_ff * 3; \
(PDEST)[i_dx + 0 + 3] = (PSOURCE)[i_dx + 0]; \
(PDEST)[i_dx + 1 + 3] = (PSOURCE)[i_dx + 1]; \
(PDEST)[i_dx + 2 + 3] = (PSOURCE)[i_dx + 2]; \
} \
}
#ifdef JU_64BIT
#define JU_INSERTCOPY5(PDEST,PSOURCE,POP1,OFFSET,INDEX) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \
{ \
Word_t o_ff; \
\
for (o_ff = 0; o_ff < (OFFSET); o_ff++) \
{ \
Word_t i_dx = o_ff * 5; \
(PDEST)[i_dx + 0] = (PSOURCE)[i_dx + 0]; \
(PDEST)[i_dx + 1] = (PSOURCE)[i_dx + 1]; \
(PDEST)[i_dx + 2] = (PSOURCE)[i_dx + 2]; \
(PDEST)[i_dx + 3] = (PSOURCE)[i_dx + 3]; \
(PDEST)[i_dx + 4] = (PSOURCE)[i_dx + 4]; \
} \
JU_COPY5_LONG_TO_PINDEX(&((PDEST)[(OFFSET) * 5]), INDEX); \
\
for (/* null */; o_ff < (POP1); o_ff++) \
{ \
Word_t i_dx = o_ff * 5; \
(PDEST)[i_dx + 0 + 5] = (PSOURCE)[i_dx + 0]; \
(PDEST)[i_dx + 1 + 5] = (PSOURCE)[i_dx + 1]; \
(PDEST)[i_dx + 2 + 5] = (PSOURCE)[i_dx + 2]; \
(PDEST)[i_dx + 3 + 5] = (PSOURCE)[i_dx + 3]; \
(PDEST)[i_dx + 4 + 5] = (PSOURCE)[i_dx + 4]; \
} \
}
#define JU_INSERTCOPY6(PDEST,PSOURCE,POP1,OFFSET,INDEX) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \
{ \
Word_t o_ff; \
\
for (o_ff = 0; o_ff < (OFFSET); o_ff++) \
{ \
Word_t i_dx = o_ff * 6; \
(PDEST)[i_dx + 0] = (PSOURCE)[i_dx + 0]; \
(PDEST)[i_dx + 1] = (PSOURCE)[i_dx + 1]; \
(PDEST)[i_dx + 2] = (PSOURCE)[i_dx + 2]; \
(PDEST)[i_dx + 3] = (PSOURCE)[i_dx + 3]; \
(PDEST)[i_dx + 4] = (PSOURCE)[i_dx + 4]; \
(PDEST)[i_dx + 5] = (PSOURCE)[i_dx + 5]; \
} \
JU_COPY6_LONG_TO_PINDEX(&((PDEST)[(OFFSET) * 6]), INDEX); \
\
for (/* null */; o_ff < (POP1); o_ff++) \
{ \
Word_t i_dx = o_ff * 6; \
(PDEST)[i_dx + 0 + 6] = (PSOURCE)[i_dx + 0]; \
(PDEST)[i_dx + 1 + 6] = (PSOURCE)[i_dx + 1]; \
(PDEST)[i_dx + 2 + 6] = (PSOURCE)[i_dx + 2]; \
(PDEST)[i_dx + 3 + 6] = (PSOURCE)[i_dx + 3]; \
(PDEST)[i_dx + 4 + 6] = (PSOURCE)[i_dx + 4]; \
(PDEST)[i_dx + 5 + 6] = (PSOURCE)[i_dx + 5]; \
} \
}
#define JU_INSERTCOPY7(PDEST,PSOURCE,POP1,OFFSET,INDEX) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \
{ \
Word_t o_ff; \
\
for (o_ff = 0; o_ff < (OFFSET); o_ff++) \
{ \
Word_t i_dx = o_ff * 7; \
(PDEST)[i_dx + 0] = (PSOURCE)[i_dx + 0]; \
(PDEST)[i_dx + 1] = (PSOURCE)[i_dx + 1]; \
(PDEST)[i_dx + 2] = (PSOURCE)[i_dx + 2]; \
(PDEST)[i_dx + 3] = (PSOURCE)[i_dx + 3]; \
(PDEST)[i_dx + 4] = (PSOURCE)[i_dx + 4]; \
(PDEST)[i_dx + 5] = (PSOURCE)[i_dx + 5]; \
(PDEST)[i_dx + 6] = (PSOURCE)[i_dx + 6]; \
} \
JU_COPY7_LONG_TO_PINDEX(&((PDEST)[(OFFSET) * 7]), INDEX); \
\
for (/* null */; o_ff < (POP1); o_ff++) \
{ \
Word_t i_dx = o_ff * 7; \
(PDEST)[i_dx + 0 + 7] = (PSOURCE)[i_dx + 0]; \
(PDEST)[i_dx + 1 + 7] = (PSOURCE)[i_dx + 1]; \
(PDEST)[i_dx + 2 + 7] = (PSOURCE)[i_dx + 2]; \
(PDEST)[i_dx + 3 + 7] = (PSOURCE)[i_dx + 3]; \
(PDEST)[i_dx + 4 + 7] = (PSOURCE)[i_dx + 4]; \
(PDEST)[i_dx + 5 + 7] = (PSOURCE)[i_dx + 5]; \
(PDEST)[i_dx + 6 + 7] = (PSOURCE)[i_dx + 6]; \
} \
}
#endif // JU_64BIT
// Counterparts to the above for deleting an Index:
#define JU_DELETECOPY(PDEST,PSOURCE,POP1,OFFSET,IGNORE) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) < (Word_t) (POP1)); \
{ \
Word_t i_offset; \
\
for (i_offset = 0; i_offset < (OFFSET); ++i_offset) \
(PDEST)[i_offset] = (PSOURCE)[i_offset]; \
\
for (++i_offset; i_offset < (POP1); ++i_offset) \
(PDEST)[i_offset - 1] = (PSOURCE)[i_offset]; \
}
// Variation for odd-byte-sized (non-native) Indexes, where cIS = Index Size;
// copy byte-by-byte:
//
// Note: There are no endian issues here because bytes are just shifted as-is,
// not converted to/from an Index.
//
// Note: If cIS == 1, JU_DELETECOPY_ODD == JU_DELETECOPY, at least in concept.
#define JU_DELETECOPY_ODD(PDEST,PSOURCE,POP1,OFFSET,cIS) \
assert((long) (POP1) > 0); \
assert((Word_t) (OFFSET) < (Word_t) (POP1)); \
{ \
uint8_t *_Pdest = (uint8_t *) (PDEST); \
uint8_t *_Psource = (uint8_t *) (PSOURCE); \
Word_t b_off; \
\
for (b_off = 0; b_off < ((OFFSET) * (cIS)); ++b_off) \
*_Pdest++ = *_Psource++; \
\
_Psource += (cIS); \
\
for (b_off += (cIS); b_off < ((POP1) * (cIS)); ++b_off) \
*_Pdest++ = *_Psource++; \
}
// GENERIC RETURN CODE HANDLING FOR JUDY1 (NO VALUE AREAS) AND JUDYL (VALUE
// AREAS):
//
// This common code hides Judy1 versus JudyL details of how to return various
// conditions, including a pointer to a value area for JudyL.
//
// First, define an internal variation of JERR called JERRI (I = int) to make
// lint happy. We accidentally shipped to 11.11 OEUR with all functions that
// return int or Word_t using JERR, which is type Word_t, for errors. Lint
// complains about this for functions that return int. So, internally use
// JERRI for error returns from the int functions. Experiments show that
// callers which compare int Foo() to (Word_t) JERR (~0UL) are OK, since JERRI
// sign-extends to match JERR.
#define JERRI ((int) ~0) // see above.
#ifdef JUDY1
#define JU_RET_FOUND return(1)
#define JU_RET_NOTFOUND return(0)
// For Judy1, these all "fall through" to simply JU_RET_FOUND, since there is no
// value area pointer to return:
#define JU_RET_FOUND_LEAFW(PJLW,POP1,OFFSET) JU_RET_FOUND
#define JU_RET_FOUND_JPM(Pjpm) JU_RET_FOUND
#define JU_RET_FOUND_PVALUE(Pjv,OFFSET) JU_RET_FOUND
#ifndef JU_64BIT
#define JU_RET_FOUND_LEAF1(Pjll,POP1,OFFSET) JU_RET_FOUND
#endif
#define JU_RET_FOUND_LEAF2(Pjll,POP1,OFFSET) JU_RET_FOUND
#define JU_RET_FOUND_LEAF3(Pjll,POP1,OFFSET) JU_RET_FOUND
#ifdef JU_64BIT
#define JU_RET_FOUND_LEAF4(Pjll,POP1,OFFSET) JU_RET_FOUND
#define JU_RET_FOUND_LEAF5(Pjll,POP1,OFFSET) JU_RET_FOUND
#define JU_RET_FOUND_LEAF6(Pjll,POP1,OFFSET) JU_RET_FOUND
#define JU_RET_FOUND_LEAF7(Pjll,POP1,OFFSET) JU_RET_FOUND
#endif
#define JU_RET_FOUND_IMM_01(Pjp) JU_RET_FOUND
#define JU_RET_FOUND_IMM(Pjp,OFFSET) JU_RET_FOUND
// Note: No JudyL equivalent:
#define JU_RET_FOUND_FULLPOPU1 JU_RET_FOUND
#define JU_RET_FOUND_LEAF_B1(PJLB,SUBEXP,OFFSET) JU_RET_FOUND
#else // JUDYL
// JU_RET_FOUND // see below; must NOT be defined for JudyL.
#define JU_RET_NOTFOUND return((PPvoid_t) NULL)
// For JudyL, the location of the value area depends on the JP type and other
// factors:
//
// TBD: The value areas should be accessed via data structures, here and in
// Dougs code, not by hard-coded address calculations.
//
// This is useful in insert/delete code when the value area is returned from
// lower levels in the JPM:
#define JU_RET_FOUND_JPM(Pjpm) return((PPvoid_t) ((Pjpm)->jpm_PValue))
// This is useful in insert/delete code when the value area location is already
// computed:
#define JU_RET_FOUND_PVALUE(Pjv,OFFSET) return((PPvoid_t) ((Pjv) + OFFSET))
#define JU_RET_FOUND_LEAFW(PJLW,POP1,OFFSET) \
return((PPvoid_t) (JL_LEAFWVALUEAREA(PJLW, POP1) + (OFFSET)))
#define JU_RET_FOUND_LEAF1(Pjll,POP1,OFFSET) \
return((PPvoid_t) (JL_LEAF1VALUEAREA(Pjll, POP1) + (OFFSET)))
#define JU_RET_FOUND_LEAF2(Pjll,POP1,OFFSET) \
return((PPvoid_t) (JL_LEAF2VALUEAREA(Pjll, POP1) + (OFFSET)))
#define JU_RET_FOUND_LEAF3(Pjll,POP1,OFFSET) \
return((PPvoid_t) (JL_LEAF3VALUEAREA(Pjll, POP1) + (OFFSET)))
#ifdef JU_64BIT
#define JU_RET_FOUND_LEAF4(Pjll,POP1,OFFSET) \
return((PPvoid_t) (JL_LEAF4VALUEAREA(Pjll, POP1) + (OFFSET)))
#define JU_RET_FOUND_LEAF5(Pjll,POP1,OFFSET) \
return((PPvoid_t) (JL_LEAF5VALUEAREA(Pjll, POP1) + (OFFSET)))
#define JU_RET_FOUND_LEAF6(Pjll,POP1,OFFSET) \
return((PPvoid_t) (JL_LEAF6VALUEAREA(Pjll, POP1) + (OFFSET)))
#define JU_RET_FOUND_LEAF7(Pjll,POP1,OFFSET) \
return((PPvoid_t) (JL_LEAF7VALUEAREA(Pjll, POP1) + (OFFSET)))
#endif
// Note: Here jp_Addr is a value area itself and not an address, so P_JV() is
// not needed:
#define JU_RET_FOUND_IMM_01(PJP) return((PPvoid_t) (&((PJP)->jp_Addr)))
// Note: Here jp_Addr is a pointer to a separately-mallocd value area, so
// P_JV() is required; likewise for JL_JLB_PVALUE:
#define JU_RET_FOUND_IMM(PJP,OFFSET) \
return((PPvoid_t) (P_JV((PJP)->jp_Addr) + (OFFSET)))
#define JU_RET_FOUND_LEAF_B1(PJLB,SUBEXP,OFFSET) \
return((PPvoid_t) (P_JV(JL_JLB_PVALUE(PJLB, SUBEXP)) + (OFFSET)))
#endif // JUDYL
// GENERIC ERROR HANDLING:
//
// This is complicated by variations in the needs of the callers of these
// macros. Only use JU_SET_ERRNO() for PJError, because it can be null; use
// JU_SET_ERRNO_NONNULL() for Pjpm, which is never null, and also in other
// cases where the pointer is known not to be null (to save dead branches).
//
// Note: Most cases of JU_ERRNO_OVERRUN or JU_ERRNO_CORRUPT should result in
// an assertion failure in debug code, so they are more likely to be caught, so
// do that here in each macro.
#define JU_SET_ERRNO(PJError, JErrno) \
{ \
assert((JErrno) != JU_ERRNO_OVERRUN); \
assert((JErrno) != JU_ERRNO_CORRUPT); \
\
if (PJError != (PJError_t) NULL) \
{ \
JU_ERRNO(PJError) = (JErrno); \
JU_ERRID(PJError) = __LINE__; \
} \
}
// Variation for callers who know already that PJError is non-null; and, it can
// also be Pjpm (both PJError_t and Pjpm_t have je_* fields), so only assert it
// for null, not cast to any specific pointer type:
#define JU_SET_ERRNO_NONNULL(PJError, JErrno) \
{ \
assert((JErrno) != JU_ERRNO_OVERRUN); \
assert((JErrno) != JU_ERRNO_CORRUPT); \
assert(PJError); \
\
JU_ERRNO(PJError) = (JErrno); \
JU_ERRID(PJError) = __LINE__; \
}
// Variation to copy error info from a (required) JPM to an (optional)
// PJError_t:
//
// Note: The assertions above about JU_ERRNO_OVERRUN and JU_ERRNO_CORRUPT
// should have already popped, so they are not needed here.
#define JU_COPY_ERRNO(PJError, Pjpm) \
{ \
if (PJError) \
{ \
JU_ERRNO(PJError) = (uint8_t)JU_ERRNO(Pjpm); \
JU_ERRID(PJError) = JU_ERRID(Pjpm); \
} \
}
// For JErrno parameter to previous macros upon return from Judy*Alloc*():
//
// The memory allocator returns an address of 0 for out of memory,
// 1..sizeof(Word_t)-1 for corruption (an invalid pointer), otherwise a valid
// pointer.
#define JU_ALLOC_ERRNO(ADDR) \
(((void *) (ADDR) != (void *) NULL) ? JU_ERRNO_OVERRUN : JU_ERRNO_NOMEM)
#define JU_CHECKALLOC(Type,Ptr,Retval) \
if ((Ptr) < (Type) sizeof(Word_t)) \
{ \
JU_SET_ERRNO(PJError, JU_ALLOC_ERRNO(Ptr)); \
return(Retval); \
}
// Leaf search routines
#ifdef JU_NOINLINE
int j__udySearchLeaf1(Pjll_t Pjll, Word_t LeafPop1, Word_t Index);
int j__udySearchLeaf2(Pjll_t Pjll, Word_t LeafPop1, Word_t Index);
int j__udySearchLeaf3(Pjll_t Pjll, Word_t LeafPop1, Word_t Index);
#ifdef JU_64BIT
int j__udySearchLeaf4(Pjll_t Pjll, Word_t LeafPop1, Word_t Index);
int j__udySearchLeaf5(Pjll_t Pjll, Word_t LeafPop1, Word_t Index);
int j__udySearchLeaf6(Pjll_t Pjll, Word_t LeafPop1, Word_t Index);
int j__udySearchLeaf7(Pjll_t Pjll, Word_t LeafPop1, Word_t Index);
#endif // JU_64BIT
int j__udySearchLeafW(Pjlw_t Pjlw, Word_t LeafPop1, Word_t Index);
#else // complier support for inline
#ifdef JU_WIN
static __inline int j__udySearchLeaf1(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#else
static inline int j__udySearchLeaf1(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#endif
{ SEARCHLEAFNATIVE(uint8_t, Pjll, LeafPop1, Index); }
#ifdef JU_WIN
static __inline int j__udySearchLeaf2(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#else
static inline int j__udySearchLeaf2(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#endif
{ SEARCHLEAFNATIVE(uint16_t, Pjll, LeafPop1, Index); }
#ifdef JU_WIN
static __inline int j__udySearchLeaf3(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#else
static inline int j__udySearchLeaf3(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#endif
{ SEARCHLEAFNONNAT(Pjll, LeafPop1, Index, 3, JU_COPY3_PINDEX_TO_LONG); }
#ifdef JU_64BIT
#ifdef JU_WIN
static __inline int j__udySearchLeaf4(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#else
static inline int j__udySearchLeaf4(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#endif
{ SEARCHLEAFNATIVE(uint32_t, Pjll, LeafPop1, Index); }
#ifdef JU_WIN
static __inline int j__udySearchLeaf5(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#else
static inline int j__udySearchLeaf5(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#endif
{ SEARCHLEAFNONNAT(Pjll, LeafPop1, Index, 5, JU_COPY5_PINDEX_TO_LONG); }
#ifdef JU_WIN
static __inline int j__udySearchLeaf6(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#else
static inline int j__udySearchLeaf6(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#endif
{ SEARCHLEAFNONNAT(Pjll, LeafPop1, Index, 6, JU_COPY6_PINDEX_TO_LONG); }
#ifdef JU_WIN
static __inline int j__udySearchLeaf7(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#else
static inline int j__udySearchLeaf7(Pjll_t Pjll, Word_t LeafPop1, Word_t Index)
#endif
{ SEARCHLEAFNONNAT(Pjll, LeafPop1, Index, 7, JU_COPY7_PINDEX_TO_LONG); }
#endif // JU_64BIT
#ifdef JU_WIN
static __inline int j__udySearchLeafW(Pjlw_t Pjlw, Word_t LeafPop1, Word_t Index)
#else
static inline int j__udySearchLeafW(Pjlw_t Pjlw, Word_t LeafPop1, Word_t Index)
#endif
{ SEARCHLEAFNATIVE(Word_t, Pjlw, LeafPop1, Index); }
#endif // compiler support for inline
#endif // ! _JUDYPRIVATE_INCLUDED
|