1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
|
// Copyright (C) 2000 - 2002 Hewlett-Packard Company
//
// This program is free software; you can redistribute it and/or modify it
// under the term of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
// for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// _________________
// @(#) $Revision: 4.28 $ $Source: /judy/src/JudyCommon/JudyByCount.c $
//
// Judy*ByCount() function for Judy1 and JudyL.
// Compile with one of -DJUDY1 or -DJUDYL.
//
// Compile with -DNOSMARTJBB, -DNOSMARTJBU, and/or -DNOSMARTJLB to build a
// version with cache line optimizations deleted, for testing.
//
// Judy*ByCount() is a conceptual although not literal inverse of Judy*Count().
// Judy*Count() takes a pair of Indexes, and allows finding the ordinal of a
// given Index (that is, its position in the list of valid indexes from the
// beginning) as a degenerate case, because in general the count between two
// Indexes, inclusive, is not always just the difference in their ordinals.
// However, it suffices for Judy*ByCount() to simply be an ordinal-to-Index
// mapper.
//
// Note: Like Judy*Count(), this code must "count sideways" in branches, which
// can result in a lot of cache line fills. However, unlike Judy*Count(), this
// code does not receive a specific Index, hence digit, where to start in each
// branch, so it cant accurately calculate cache line fills required in each
// direction. The best it can do is an approximation based on the total
// population of the expanse (pop1 from Pjp) and the ordinal of the target
// Index (see SETOFFSET()) within the expanse.
//
// Compile with -DSMARTMETRICS to obtain global variables containing smart
// cache line metrics. Note: Dont turn this on simultaneously for this file
// and JudyCount.c because they export the same globals.
// ****************************************************************************
#if (! (defined(JUDY1) || defined(JUDYL)))
#error: One of -DJUDY1 or -DJUDYL must be specified.
#endif
#ifdef JUDY1
#include "Judy1.h"
#else
#include "JudyL.h"
#endif
#include "JudyPrivate1L.h"
// These are imported from JudyCount.c:
//
// TBD: Should this be in common code? Exported from a header file?
#ifdef JUDY1
extern Word_t j__udy1JPPop1(const Pjp_t Pjp);
#define j__udyJPPop1 j__udy1JPPop1
#else
extern Word_t j__udyLJPPop1(const Pjp_t Pjp);
#define j__udyJPPop1 j__udyLJPPop1
#endif
// Avoid duplicate symbols since this file is multi-compiled:
#ifdef SMARTMETRICS
#ifdef JUDY1
Word_t jbb_upward = 0; // counts of directions taken:
Word_t jbb_downward = 0;
Word_t jbu_upward = 0;
Word_t jbu_downward = 0;
Word_t jlb_upward = 0;
Word_t jlb_downward = 0;
#else
extern Word_t jbb_upward;
extern Word_t jbb_downward;
extern Word_t jbu_upward;
extern Word_t jbu_downward;
extern Word_t jlb_upward;
extern Word_t jlb_downward;
#endif
#endif
// ****************************************************************************
// J U D Y 1 B Y C O U N T
// J U D Y L B Y C O U N T
//
// See the manual entry.
#ifdef JUDY1
FUNCTION int Judy1ByCount
#else
FUNCTION PPvoid_t JudyLByCount
#endif
(
Pcvoid_t PArray, // root pointer to first branch/leaf in SM.
Word_t Count, // ordinal of Index to find, 1..MAX.
Word_t * PIndex, // to return found Index.
PJError_t PJError // optional, for returning error info.
)
{
Word_t Count0; // Count, base-0, to match pop0.
Word_t state; // current state in SM.
Word_t pop1; // of current branch or leaf, or of expanse.
Word_t pop1lower; // pop1 of expanses (JPs) below that for Count.
Word_t digit; // current word in branch.
Word_t jpcount; // JPs in a BranchB subexpanse.
long jpnum; // JP number in a branch (base 0).
long subexp; // for stepping through layer 1 (subexpanses).
int offset; // index ordinal within a leaf, base 0.
Pjp_t Pjp; // current JP in branch.
Pjll_t Pjll; // current Judy linear leaf.
// CHECK FOR EMPTY ARRAY OR NULL PINDEX:
if (PArray == (Pvoid_t) NULL) JU_RET_NOTFOUND;
if (PIndex == (PWord_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_NULLPINDEX);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
// Convert Count to Count0; assume special case of Count = 0 maps to ~0, as
// desired, to represent the last index in a full array:
//
// Note: Think of Count0 as a reliable "number of Indexes below the target."
Count0 = Count - 1;
assert((Count || Count0 == ~0)); // ensure CPU is sane about 0 - 1.
pop1lower = 0;
if (JU_LEAFW_POP0(PArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
{
Pjlw_t Pjlw = P_JLW(PArray); // first word of leaf.
if (Count0 > Pjlw[0]) JU_RET_NOTFOUND; // too high.
*PIndex = Pjlw[Count]; // Index, base 1.
JU_RET_FOUND_LEAFW(Pjlw, Pjlw[0] + 1, Count0);
}
else
{
Pjpm_t Pjpm = P_JPM(PArray);
if (Count0 > (Pjpm->jpm_Pop0)) JU_RET_NOTFOUND; // too high.
Pjp = &(Pjpm->jpm_JP);
pop1 = (Pjpm->jpm_Pop0) + 1;
// goto SMByCount;
}
// COMMON CODE:
//
// Prepare to handle a root-level or lower-level branch: Save the current
// state, obtain the total population for the branch in a state-dependent way,
// and then branch to common code for multiple cases.
//
// For root-level branches, the state is always cJU_ROOTSTATE, and the array
// population must already be set in pop1; it is not available in jp_DcdPopO.
//
// Note: The total population is only needed in cases where the common code
// "counts down" instead of up to minimize cache line fills. However, its
// available cheaply, and its better to do it with a constant shift (constant
// state value) instead of a variable shift later "when needed".
#define PREPB_ROOT(Next) \
state = cJU_ROOTSTATE; \
goto Next
// Use PREPB_DCD() to first copy the Dcd bytes to *PIndex if there are any
// (only if state < cJU_ROOTSTATE - 1):
#define PREPB_DCD(Pjp,cState,Next) \
JU_SETDCD(*PIndex, Pjp, cState); \
PREPB((Pjp), cState, Next)
#define PREPB(Pjp,cState,Next) \
state = (cState); \
pop1 = JU_JPBRANCH_POP0(Pjp, (cState)) + 1; \
goto Next
// Calculate whether the ordinal of an Index within a given expanse falls in
// the lower or upper half of the expanses population, taking care with
// unsigned math and boundary conditions:
//
// Note: Assume the ordinal falls within the expanses population, that is,
// 0 < (Count - Pop1lower) <= Pop1exp (assuming infinite math).
//
// Note: If the ordinal is the middle element, it doesnt matter whether
// LOWERHALF() is TRUE or FALSE.
#define LOWERHALF(Count0,Pop1lower,Pop1exp) \
(((Count0) - (Pop1lower)) < ((Pop1exp) / 2))
// Calculate the (signed) offset within a leaf to the desired ordinal (Count -
// Pop1lower; offset is one less), and optionally ensure its in range:
#define SETOFFSET(Offset,Count0,Pop1lower,Pjp) \
(Offset) = (Count0) - (Pop1lower); \
assert((Offset) >= 0); \
assert((Offset) <= JU_JPLEAF_POP0(Pjp))
// Variations for immediate indexes, with and without pop1-specific assertions:
#define SETOFFSET_IMM_CK(Offset,Count0,Pop1lower,cPop1) \
(Offset) = (Count0) - (Pop1lower); \
assert((Offset) >= 0); \
assert((Offset) < (cPop1))
#define SETOFFSET_IMM(Offset,Count0,Pop1lower) \
(Offset) = (Count0) - (Pop1lower)
// STATE MACHINE -- TRAVERSE TREE:
//
// In branches, look for the expanse (digit), if any, where the total pop1
// below or at that expanse would meet or exceed Count, meaning the Index must
// be in this expanse.
SMByCount: // return here for next branch/leaf.
switch (JU_JPTYPE(Pjp))
{
// ----------------------------------------------------------------------------
// LINEAR BRANCH; count populations in JPs in the JBL upwards until finding the
// expanse (digit) containing Count, and "recurse".
//
// Note: There are no null JPs in a JBL; watch out for pop1 == 0.
//
// Note: A JBL should always fit in one cache line => no need to count up
// versus down to save cache line fills.
//
// TBD: The previous is no longer true. Consider enhancing this code to count
// up/down, but it can wait for a later tuning phase. In the meantime, PREPB()
// sets pop1 for the whole array, but that value is not used here. 001215:
// Maybe its true again?
case cJU_JPBRANCH_L2: PREPB_DCD(Pjp, 2, BranchL);
#ifndef JU_64BIT
case cJU_JPBRANCH_L3: PREPB( Pjp, 3, BranchL);
#else
case cJU_JPBRANCH_L3: PREPB_DCD(Pjp, 3, BranchL);
case cJU_JPBRANCH_L4: PREPB_DCD(Pjp, 4, BranchL);
case cJU_JPBRANCH_L5: PREPB_DCD(Pjp, 5, BranchL);
case cJU_JPBRANCH_L6: PREPB_DCD(Pjp, 6, BranchL);
case cJU_JPBRANCH_L7: PREPB( Pjp, 7, BranchL);
#endif
case cJU_JPBRANCH_L: PREPB_ROOT( BranchL);
{
Pjbl_t Pjbl;
// Common code (state-independent) for all cases of linear branches:
BranchL:
Pjbl = P_JBL(Pjp->jp_Addr);
for (jpnum = 0; jpnum < (Pjbl->jbl_NumJPs); ++jpnum)
{
if ((pop1 = j__udyJPPop1((Pjbl->jbl_jp) + jpnum))
== cJU_ALLONES)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
assert(pop1 != 0);
// Warning: pop1lower and pop1 are unsigned, so do not subtract 1 and compare
// >=, but instead use the following expression:
if (pop1lower + pop1 > Count0) // Index is in this expanse.
{
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[jpnum], state);
Pjp = (Pjbl->jbl_jp) + jpnum;
goto SMByCount; // look under this expanse.
}
pop1lower += pop1; // add this JPs pop1.
}
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // should never get here.
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // case cJU_JPBRANCH_L
// ----------------------------------------------------------------------------
// BITMAP BRANCH; count populations in JPs in the JBB upwards or downwards
// until finding the expanse (digit) containing Count, and "recurse".
//
// Note: There are no null JPs in a JBB; watch out for pop1 == 0.
case cJU_JPBRANCH_B2: PREPB_DCD(Pjp, 2, BranchB);
#ifndef JU_64BIT
case cJU_JPBRANCH_B3: PREPB( Pjp, 3, BranchB);
#else
case cJU_JPBRANCH_B3: PREPB_DCD(Pjp, 3, BranchB);
case cJU_JPBRANCH_B4: PREPB_DCD(Pjp, 4, BranchB);
case cJU_JPBRANCH_B5: PREPB_DCD(Pjp, 5, BranchB);
case cJU_JPBRANCH_B6: PREPB_DCD(Pjp, 6, BranchB);
case cJU_JPBRANCH_B7: PREPB( Pjp, 7, BranchB);
#endif
case cJU_JPBRANCH_B: PREPB_ROOT( BranchB);
{
Pjbb_t Pjbb;
// Common code (state-independent) for all cases of bitmap branches:
BranchB:
Pjbb = P_JBB(Pjp->jp_Addr);
// Shorthand for one subexpanse in a bitmap and for one JP in a bitmap branch:
//
// Note: BMPJP0 exists separately to support assertions.
#define BMPJP0(Subexp) (P_JP(JU_JBB_PJP(Pjbb, Subexp)))
#define BMPJP(Subexp,JPnum) (BMPJP0(Subexp) + (JPnum))
// Common code for descending through a JP:
//
// Determine the digit for the expanse and save it in *PIndex; then "recurse".
#define JBB_FOUNDEXPANSE \
{ \
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb,subexp), jpnum); \
JU_SETDIGIT(*PIndex, digit, state); \
Pjp = BMPJP(subexp, jpnum); \
goto SMByCount; \
}
#ifndef NOSMARTJBB // enable to turn off smart code for comparison purposes.
// FIGURE OUT WHICH DIRECTION CAUSES FEWER CACHE LINE FILLS; adding the pop1s
// in JPs upwards, or subtracting the pop1s in JPs downwards:
//
// See header comments about limitations of this for Judy*ByCount().
#endif
// COUNT UPWARD, adding each "below" JPs pop1:
#ifndef NOSMARTJBB // enable to turn off smart code for comparison purposes.
if (LOWERHALF(Count0, pop1lower, pop1))
{
#endif
#ifdef SMARTMETRICS
++jbb_upward;
#endif
for (subexp = 0; subexp < cJU_NUMSUBEXPB; ++subexp)
{
if ((jpcount = j__udyCountBitsB(JU_JBB_BITMAP(Pjbb,subexp)))
&& (BMPJP0(subexp) == (Pjp_t) NULL))
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // null ptr.
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
// Note: An empty subexpanse (jpcount == 0) is handled "for free":
for (jpnum = 0; jpnum < jpcount; ++jpnum)
{
if ((pop1 = j__udyJPPop1(BMPJP(subexp, jpnum)))
== cJU_ALLONES)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
assert(pop1 != 0);
// Warning: pop1lower and pop1 are unsigned, see earlier comment:
if (pop1lower + pop1 > Count0)
JBB_FOUNDEXPANSE; // Index is in this expanse.
pop1lower += pop1; // add this JPs pop1.
}
}
#ifndef NOSMARTJBB // enable to turn off smart code for comparison purposes.
}
// COUNT DOWNWARD, subtracting each "above" JPs pop1 from the whole expanses
// pop1:
else
{
#ifdef SMARTMETRICS
++jbb_downward;
#endif
pop1lower += pop1; // add whole branch to start.
for (subexp = cJU_NUMSUBEXPB - 1; subexp >= 0; --subexp)
{
if ((jpcount = j__udyCountBitsB(JU_JBB_BITMAP(Pjbb, subexp)))
&& (BMPJP0(subexp) == (Pjp_t) NULL))
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // null ptr.
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
// Note: An empty subexpanse (jpcount == 0) is handled "for free":
for (jpnum = jpcount - 1; jpnum >= 0; --jpnum)
{
if ((pop1 = j__udyJPPop1(BMPJP(subexp, jpnum)))
== cJU_ALLONES)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
assert(pop1 != 0);
// Warning: pop1lower and pop1 are unsigned, see earlier comment:
pop1lower -= pop1;
// Beware unsigned math problems:
if ((pop1lower == 0) || (pop1lower - 1 < Count0))
JBB_FOUNDEXPANSE; // Index is in this expanse.
}
}
}
#endif // NOSMARTJBB
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // should never get here.
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // case cJU_JPBRANCH_B
// ----------------------------------------------------------------------------
// UNCOMPRESSED BRANCH; count populations in JPs in the JBU upwards or
// downwards until finding the expanse (digit) containing Count, and "recurse".
case cJU_JPBRANCH_U2: PREPB_DCD(Pjp, 2, BranchU);
#ifndef JU_64BIT
case cJU_JPBRANCH_U3: PREPB( Pjp, 3, BranchU);
#else
case cJU_JPBRANCH_U3: PREPB_DCD(Pjp, 3, BranchU);
case cJU_JPBRANCH_U4: PREPB_DCD(Pjp, 4, BranchU);
case cJU_JPBRANCH_U5: PREPB_DCD(Pjp, 5, BranchU);
case cJU_JPBRANCH_U6: PREPB_DCD(Pjp, 6, BranchU);
case cJU_JPBRANCH_U7: PREPB( Pjp, 7, BranchU);
#endif
case cJU_JPBRANCH_U: PREPB_ROOT( BranchU);
{
Pjbu_t Pjbu;
// Common code (state-independent) for all cases of uncompressed branches:
BranchU:
Pjbu = P_JBU(Pjp->jp_Addr);
// Common code for descending through a JP:
//
// Save the digit for the expanse in *PIndex, then "recurse".
#define JBU_FOUNDEXPANSE \
{ \
JU_SETDIGIT(*PIndex, jpnum, state); \
Pjp = (Pjbu->jbu_jp) + jpnum; \
goto SMByCount; \
}
#ifndef NOSMARTJBU // enable to turn off smart code for comparison purposes.
// FIGURE OUT WHICH DIRECTION CAUSES FEWER CACHE LINE FILLS; adding the pop1s
// in JPs upwards, or subtracting the pop1s in JPs downwards:
//
// See header comments about limitations of this for Judy*ByCount().
#endif
// COUNT UPWARD, simply adding the pop1 of each JP:
#ifndef NOSMARTJBU // enable to turn off smart code for comparison purposes.
if (LOWERHALF(Count0, pop1lower, pop1))
{
#endif
#ifdef SMARTMETRICS
++jbu_upward;
#endif
for (jpnum = 0; jpnum < cJU_BRANCHUNUMJPS; ++jpnum)
{
// shortcut, save a function call:
if ((Pjbu->jbu_jp[jpnum].jp_Type) <= cJU_JPNULLMAX)
continue;
if ((pop1 = j__udyJPPop1((Pjbu->jbu_jp) + jpnum))
== cJU_ALLONES)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
assert(pop1 != 0);
// Warning: pop1lower and pop1 are unsigned, see earlier comment:
if (pop1lower + pop1 > Count0)
JBU_FOUNDEXPANSE; // Index is in this expanse.
pop1lower += pop1; // add this JPs pop1.
}
#ifndef NOSMARTJBU // enable to turn off smart code for comparison purposes.
}
// COUNT DOWNWARD, subtracting the pop1 of each JP above from the whole
// expanses pop1:
else
{
#ifdef SMARTMETRICS
++jbu_downward;
#endif
pop1lower += pop1; // add whole branch to start.
for (jpnum = cJU_BRANCHUNUMJPS - 1; jpnum >= 0; --jpnum)
{
// shortcut, save a function call:
if ((Pjbu->jbu_jp[jpnum].jp_Type) <= cJU_JPNULLMAX)
continue;
if ((pop1 = j__udyJPPop1(Pjbu->jbu_jp + jpnum))
== cJU_ALLONES)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
assert(pop1 != 0);
// Warning: pop1lower and pop1 are unsigned, see earlier comment:
pop1lower -= pop1;
// Beware unsigned math problems:
if ((pop1lower == 0) || (pop1lower - 1 < Count0))
JBU_FOUNDEXPANSE; // Index is in this expanse.
}
}
#endif // NOSMARTJBU
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // should never get here.
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // case cJU_JPBRANCH_U
// ----------------------------------------------------------------------------
// LINEAR LEAF:
//
// Return the Index at the proper ordinal (see SETOFFSET()) in the leaf. First
// copy Dcd bytes, if there are any (only if state < cJU_ROOTSTATE - 1), to
// *PIndex.
//
// Note: The preceding branch traversal code MIGHT set pop1 for this expanse
// (linear leaf) as a side-effect, but dont depend on that (for JUDYL, which
// is the only cases that need it anyway).
#define PREPL_DCD(cState) \
JU_SETDCD(*PIndex, Pjp, cState); \
PREPL
#ifdef JUDY1
#define PREPL_SETPOP1 // not needed in any cases.
#else
#define PREPL_SETPOP1 pop1 = JU_JPLEAF_POP0(Pjp) + 1
#endif
#define PREPL \
Pjll = P_JLL(Pjp->jp_Addr); \
PREPL_SETPOP1; \
SETOFFSET(offset, Count0, pop1lower, Pjp)
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1:
PREPL_DCD(1);
JU_SETDIGIT1(*PIndex, ((uint8_t *) Pjll)[offset]);
JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
#endif
case cJU_JPLEAF2:
PREPL_DCD(2);
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) Pjll)[offset];
JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
#ifndef JU_64BIT
case cJU_JPLEAF3:
{
Word_t lsb;
PREPL;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
}
#else
case cJU_JPLEAF3:
{
Word_t lsb;
PREPL_DCD(3);
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
}
case cJU_JPLEAF4:
PREPL_DCD(4);
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) Pjll)[offset];
JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
case cJU_JPLEAF5:
{
Word_t lsb;
PREPL_DCD(5);
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
}
case cJU_JPLEAF6:
{
Word_t lsb;
PREPL_DCD(6);
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
}
case cJU_JPLEAF7:
{
Word_t lsb;
PREPL;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
}
#endif
// ----------------------------------------------------------------------------
// BITMAP LEAF:
//
// Return the Index at the proper ordinal (see SETOFFSET()) in the leaf by
// counting bits. First copy Dcd bytes (always present since state 1 <
// cJU_ROOTSTATE) to *PIndex.
//
// Note: The preceding branch traversal code MIGHT set pop1 for this expanse
// (bitmap leaf) as a side-effect, but dont depend on that.
case cJU_JPLEAF_B1:
{
Pjlb_t Pjlb;
JU_SETDCD(*PIndex, Pjp, 1);
Pjlb = P_JLB(Pjp->jp_Addr);
pop1 = JU_JPLEAF_POP0(Pjp) + 1;
// COUNT UPWARD, adding the pop1 of each subexpanse:
//
// The entire bitmap should fit in one cache line, but still try to save some
// CPU time by counting the fewest possible number of subexpanses from the
// bitmap.
//
// See header comments about limitations of this for Judy*ByCount().
#ifndef NOSMARTJLB // enable to turn off smart code for comparison purposes.
if (LOWERHALF(Count0, pop1lower, pop1))
{
#endif
#ifdef SMARTMETRICS
++jlb_upward;
#endif
for (subexp = 0; subexp < cJU_NUMSUBEXPL; ++subexp)
{
pop1 = j__udyCountBitsL(JU_JLB_BITMAP(Pjlb, subexp));
// Warning: pop1lower and pop1 are unsigned, see earlier comment:
if (pop1lower + pop1 > Count0)
goto LeafB1; // Index is in this subexpanse.
pop1lower += pop1; // add this subexpanses pop1.
}
#ifndef NOSMARTJLB // enable to turn off smart code for comparison purposes.
}
// COUNT DOWNWARD, subtracting each "above" subexpanses pop1 from the whole
// expanses pop1:
else
{
#ifdef SMARTMETRICS
++jlb_downward;
#endif
pop1lower += pop1; // add whole leaf to start.
for (subexp = cJU_NUMSUBEXPL - 1; subexp >= 0; --subexp)
{
pop1lower -= j__udyCountBitsL(JU_JLB_BITMAP(Pjlb, subexp));
// Beware unsigned math problems:
if ((pop1lower == 0) || (pop1lower - 1 < Count0))
goto LeafB1; // Index is in this subexpanse.
}
}
#endif // NOSMARTJLB
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // should never get here.
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
// RETURN INDEX FOUND:
//
// Come here with subexp set to the correct subexpanse, and pop1lower set to
// the sum for all lower expanses and subexpanses in the Judy tree. Calculate
// and save in *PIndex the digit corresponding to the ordinal in this
// subexpanse.
LeafB1:
SETOFFSET(offset, Count0, pop1lower, Pjp);
JU_BITMAPDIGITL(digit, subexp, JU_JLB_BITMAP(Pjlb, subexp), offset);
JU_SETDIGIT1(*PIndex, digit);
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + offset))
} // case cJU_JPLEAF_B1
#ifdef JUDY1
// ----------------------------------------------------------------------------
// FULL POPULATION:
//
// Copy Dcd bytes (always present since state 1 < cJU_ROOTSTATE) to *PIndex,
// then set the appropriate digit for the ordinal (see SETOFFSET()) in the leaf
// as the LSB in *PIndex.
case cJ1_JPFULLPOPU1:
JU_SETDCD(*PIndex, Pjp, 1);
SETOFFSET(offset, Count0, pop1lower, Pjp);
assert(offset >= 0);
assert(offset <= cJU_JPFULLPOPU1_POP0);
JU_SETDIGIT1(*PIndex, offset);
JU_RET_FOUND_FULLPOPU1;
#endif
// ----------------------------------------------------------------------------
// IMMEDIATE:
//
// Locate the Index with the proper ordinal (see SETOFFSET()) in the Immediate,
// depending on leaf Index Size and pop1. Note: There are no Dcd bytes in an
// Immediate JP, but in a cJU_JPIMMED_*_01 JP, the field holds the least bytes
// of the immediate Index.
#define SET_01(cState) JU_SETDIGITS(*PIndex, JU_JPDCDPOP0(Pjp), cState)
case cJU_JPIMMED_1_01: SET_01(1); goto Imm_01;
case cJU_JPIMMED_2_01: SET_01(2); goto Imm_01;
case cJU_JPIMMED_3_01: SET_01(3); goto Imm_01;
#ifdef JU_64BIT
case cJU_JPIMMED_4_01: SET_01(4); goto Imm_01;
case cJU_JPIMMED_5_01: SET_01(5); goto Imm_01;
case cJU_JPIMMED_6_01: SET_01(6); goto Imm_01;
case cJU_JPIMMED_7_01: SET_01(7); goto Imm_01;
#endif
Imm_01:
DBGCODE(SETOFFSET_IMM_CK(offset, Count0, pop1lower, 1);)
JU_RET_FOUND_IMM_01(Pjp);
// Shorthand for where to find start of Index bytes array:
#ifdef JUDY1
#define PJI (Pjp->jp_1Index)
#else
#define PJI (Pjp->jp_LIndex)
#endif
// Optional code to check the remaining ordinal (see SETOFFSET_IMM()) against
// the Index Size of the Immediate:
#ifndef DEBUG // simple placeholder:
#define IMM(cPop1,Next) \
goto Next
#else // extra pop1-specific checking:
#define IMM(cPop1,Next) \
SETOFFSET_IMM_CK(offset, Count0, pop1lower, cPop1); \
goto Next
#endif
case cJU_JPIMMED_1_02: IMM( 2, Imm1);
case cJU_JPIMMED_1_03: IMM( 3, Imm1);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_04: IMM( 4, Imm1);
case cJU_JPIMMED_1_05: IMM( 5, Imm1);
case cJU_JPIMMED_1_06: IMM( 6, Imm1);
case cJU_JPIMMED_1_07: IMM( 7, Imm1);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_08: IMM( 8, Imm1);
case cJ1_JPIMMED_1_09: IMM( 9, Imm1);
case cJ1_JPIMMED_1_10: IMM(10, Imm1);
case cJ1_JPIMMED_1_11: IMM(11, Imm1);
case cJ1_JPIMMED_1_12: IMM(12, Imm1);
case cJ1_JPIMMED_1_13: IMM(13, Imm1);
case cJ1_JPIMMED_1_14: IMM(14, Imm1);
case cJ1_JPIMMED_1_15: IMM(15, Imm1);
#endif
Imm1: SETOFFSET_IMM(offset, Count0, pop1lower);
JU_SETDIGIT1(*PIndex, ((uint8_t *) PJI)[offset]);
JU_RET_FOUND_IMM(Pjp, offset);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02: IMM(2, Imm2);
case cJU_JPIMMED_2_03: IMM(3, Imm2);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_04: IMM(4, Imm2);
case cJ1_JPIMMED_2_05: IMM(5, Imm2);
case cJ1_JPIMMED_2_06: IMM(6, Imm2);
case cJ1_JPIMMED_2_07: IMM(7, Imm2);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
Imm2: SETOFFSET_IMM(offset, Count0, pop1lower);
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02: IMM(2, Imm3);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_03: IMM(3, Imm3);
case cJ1_JPIMMED_3_04: IMM(4, Imm3);
case cJ1_JPIMMED_3_05: IMM(5, Imm3);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
Imm3:
{
Word_t lsb;
SETOFFSET_IMM(offset, Count0, pop1lower);
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_4_02: IMM(2, Imm4);
case cJ1_JPIMMED_4_03: IMM(3, Imm4);
Imm4: SETOFFSET_IMM(offset, Count0, pop1lower);
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
case cJ1_JPIMMED_5_02: IMM(2, Imm5);
case cJ1_JPIMMED_5_03: IMM(3, Imm5);
Imm5:
{
Word_t lsb;
SETOFFSET_IMM(offset, Count0, pop1lower);
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_6_02: IMM(2, Imm6);
Imm6:
{
Word_t lsb;
SETOFFSET_IMM(offset, Count0, pop1lower);
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_7_02: IMM(2, Imm7);
Imm7:
{
Word_t lsb;
SETOFFSET_IMM(offset, Count0, pop1lower);
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif // (JUDY1 && JU_64BIT)
// ----------------------------------------------------------------------------
// UNEXPECTED JP TYPES:
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // SMByCount switch.
/*NOTREACHED*/
} // Judy1ByCount() / JudyLByCount()
|