1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
|
// Copyright (C) 2000 - 2002 Hewlett-Packard Company
//
// This program is free software; you can redistribute it and/or modify it
// under the term of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
// for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// _________________
// @(#) $Revision: 4.116 $ $Source: /judy/src/JudyCommon/JudyIns.c $
//
// Judy1Set() and JudyLIns() functions for Judy1 and JudyL.
// Compile with one of -DJUDY1 or -DJUDYL.
//
// TBD: Should some of the assertions here be converted to product code that
// returns JU_ERRNO_CORRUPT?
#if (! (defined(JUDY1) || defined(JUDYL)))
#error: One of -DJUDY1 or -DJUDYL must be specified.
#endif
#ifdef JUDY1
#include "Judy1.h"
#else
#include "JudyL.h"
#endif
#include "JudyPrivate1L.h"
// Note: Call JudyCheckPop() even before "already inserted" returns, to catch
// population errors; see fix in 4.84:
DBGCODE(extern void JudyCheckPop(Pvoid_t PArray);)
DBGCODE(extern void JudyCheckSorted(Pjll_t Pjll, Word_t Pop1, long IndexSize);)
#ifdef TRACEJP
#include "JudyPrintJP.c"
#endif
// These are defined to generic values in JudyCommon/JudyPrivateTypes.h:
//
// TBD: These should be exported from a header file, but perhaps not, as they
// are only used here, and exported from Judy*Decascade, which is a separate
// file for profiling reasons (to prevent inlining), but which potentially
// could be merged with this file, either in SoftCM or at compile-time.
#ifdef JUDY1
extern int j__udy1CreateBranchB(Pjp_t, Pjp_t, uint8_t *, Word_t, Pvoid_t);
extern int j__udy1CreateBranchU(Pjp_t, Pvoid_t);
#ifndef JU_64BIT
extern int j__udy1Cascade1(Pjp_t, Pvoid_t);
#endif
extern int j__udy1Cascade2(Pjp_t, Pvoid_t);
extern int j__udy1Cascade3(Pjp_t, Pvoid_t);
#ifdef JU_64BIT
extern int j__udy1Cascade4(Pjp_t, Pvoid_t);
extern int j__udy1Cascade5(Pjp_t, Pvoid_t);
extern int j__udy1Cascade6(Pjp_t, Pvoid_t);
extern int j__udy1Cascade7(Pjp_t, Pvoid_t);
#endif
extern int j__udy1CascadeL(Pjp_t, Pvoid_t);
extern int j__udy1InsertBranch(Pjp_t Pjp, Word_t Index, Word_t Btype, Pjpm_t);
#else // JUDYL
extern int j__udyLCreateBranchB(Pjp_t, Pjp_t, uint8_t *, Word_t, Pvoid_t);
extern int j__udyLCreateBranchU(Pjp_t, Pvoid_t);
extern int j__udyLCascade1(Pjp_t, Pvoid_t);
extern int j__udyLCascade2(Pjp_t, Pvoid_t);
extern int j__udyLCascade3(Pjp_t, Pvoid_t);
#ifdef JU_64BIT
extern int j__udyLCascade4(Pjp_t, Pvoid_t);
extern int j__udyLCascade5(Pjp_t, Pvoid_t);
extern int j__udyLCascade6(Pjp_t, Pvoid_t);
extern int j__udyLCascade7(Pjp_t, Pvoid_t);
#endif
extern int j__udyLCascadeL(Pjp_t, Pvoid_t);
extern int j__udyLInsertBranch(Pjp_t Pjp, Word_t Index, Word_t Btype, Pjpm_t);
#endif
// ****************************************************************************
// MACROS FOR COMMON CODE:
//
// Check if Index is an outlier to (that is, not a member of) this expanse:
//
// An outlier is an Index in-the-expanse of the slot containing the pointer,
// but not-in-the-expanse of the "narrow" pointer in that slot. (This means
// the Dcd part of the Index differs from the equivalent part of jp_DcdPopO.)
// Therefore, the remedy is to put a cJU_JPBRANCH_L* between the narrow pointer
// and the object to which it points, and add the outlier Index as an Immediate
// in the cJU_JPBRANCH_L*. The "trick" is placing the cJU_JPBRANCH_L* at a
// Level that is as low as possible. This is determined by counting the digits
// in the existing narrow pointer that are the same as the digits in the new
// Index (see j__udyInsertBranch()).
//
// Note: At some high Levels, cJU_DCDMASK() is all zeros => dead code; assume
// the compiler optimizes this out.
#define JU_CHECK_IF_OUTLIER(Pjp, Index, cLevel, Pjpm) \
if (JU_DCDNOTMATCHINDEX(Index, Pjp, cLevel)) \
return(j__udyInsertBranch(Pjp, Index, cLevel, Pjpm))
// Check if an Index is already in a leaf or immediate, after calling
// j__udySearchLeaf*() to set Offset:
//
// A non-negative Offset means the Index already exists, so return 0; otherwise
// complement Offset to proceed.
#ifdef JUDY1
#define Pjv ignore // placeholder.
#define JU_CHECK_IF_EXISTS(Offset,ignore,Pjpm) \
{ \
if ((Offset) >= 0) return(0); \
(Offset) = ~(Offset); \
}
#else
// For JudyL, also set the value area pointer in the Pjpm:
#define JU_CHECK_IF_EXISTS(Offset,Pjv,Pjpm) \
{ \
if ((Offset) >= 0) \
{ \
(Pjpm)->jpm_PValue = (Pjv) + (Offset); \
return(0); \
} \
(Offset) = ~(Offset); \
}
#endif
// ****************************************************************************
// __ J U D Y I N S W A L K
//
// Walk the Judy tree to do a set/insert. This is only called internally, and
// recursively. Unlike Judy1Test() and JudyLGet(), the extra time required for
// recursion should be negligible compared with the total.
//
// Return -1 for error (details in JPM), 0 for Index already inserted, 1 for
// new Index inserted.
FUNCTION static int j__udyInsWalk(
Pjp_t Pjp, // current JP to descend.
Word_t Index, // to insert.
Pjpm_t Pjpm) // for returning info to top Level.
{
uint8_t digit; // from Index, current offset into a branch.
jp_t newJP; // for creating a new Immed JP.
Word_t exppop1; // expanse (leaf) population.
int retcode; // return codes: -1, 0, 1.
#ifdef SUBEXPCOUNTS
// Pointer to BranchB/U subexpanse counter:
//
// Note: Very important for performance reasons (avoids cache fills).
PWord_t PSubExp = (PWord_t) NULL;
#endif
ContinueInsWalk: // for modifying state without recursing.
#ifdef TRACEJP
JudyPrintJP(Pjp, "i", __LINE__);
#endif
switch (JU_JPTYPE(Pjp)) // entry: Pjp, Index.
{
// ****************************************************************************
// JPNULL*:
//
// Convert JP in place from current null type to cJU_JPIMMED_*_01 by
// calculating new JP type.
case cJU_JPNULL1:
case cJU_JPNULL2:
case cJU_JPNULL3:
#ifdef JU_64BIT
case cJU_JPNULL4:
case cJU_JPNULL5:
case cJU_JPNULL6:
case cJU_JPNULL7:
#endif
assert((Pjp->jp_Addr) == 0);
JU_JPSETADT(Pjp, 0, Index, JU_JPTYPE(Pjp) + cJU_JPIMMED_1_01 - cJU_JPNULL1);
#ifdef JUDYL
// value area is first word of new Immed_01 JP:
Pjpm->jpm_PValue = (Pjv_t) (&(Pjp->jp_Addr));
#endif
return(1);
// ****************************************************************************
// JPBRANCH_L*:
//
// If the new Index is not an outlier to the branchs expanse, and the branch
// should not be converted to uncompressed, extract the digit and record the
// Immediate type to create for a new Immed JP, before going to common code.
//
// Note: JU_CHECK_IF_OUTLIER() is a no-op for BranchB3[7] on 32[64]-bit.
#define JU_BRANCH_OUTLIER(DIGIT,POP1,cLEVEL,PJP,INDEX,PJPM) \
JU_CHECK_IF_OUTLIER(PJP, INDEX, cLEVEL, PJPM); \
(DIGIT) = JU_DIGITATSTATE(INDEX, cLEVEL); \
(POP1) = JU_JPBRANCH_POP0(PJP, cLEVEL)
case cJU_JPBRANCH_L2:
JU_BRANCH_OUTLIER(digit, exppop1, 2, Pjp, Index, Pjpm);
goto JudyBranchL;
case cJU_JPBRANCH_L3:
JU_BRANCH_OUTLIER(digit, exppop1, 3, Pjp, Index, Pjpm);
goto JudyBranchL;
#ifdef JU_64BIT
case cJU_JPBRANCH_L4:
JU_BRANCH_OUTLIER(digit, exppop1, 4, Pjp, Index, Pjpm);
goto JudyBranchL;
case cJU_JPBRANCH_L5:
JU_BRANCH_OUTLIER(digit, exppop1, 5, Pjp, Index, Pjpm);
goto JudyBranchL;
case cJU_JPBRANCH_L6:
JU_BRANCH_OUTLIER(digit, exppop1, 6, Pjp, Index, Pjpm);
goto JudyBranchL;
case cJU_JPBRANCH_L7:
JU_BRANCH_OUTLIER(digit, exppop1, 7, Pjp, Index, Pjpm);
goto JudyBranchL;
#endif
// Similar to common code above, but no outlier check is needed, and the Immed
// type depends on the word size:
case cJU_JPBRANCH_L:
{
Pjbl_t PjblRaw; // pointer to old linear branch.
Pjbl_t Pjbl;
Pjbu_t PjbuRaw; // pointer to new uncompressed branch.
Pjbu_t Pjbu;
Word_t numJPs; // number of JPs = populated expanses.
int offset; // in branch.
digit = JU_DIGITATSTATE(Index, cJU_ROOTSTATE);
exppop1 = Pjpm->jpm_Pop0;
// fall through:
// COMMON CODE FOR LINEAR BRANCHES:
//
// Come here with digit and exppop1 already set.
JudyBranchL:
PjblRaw = (Pjbl_t) (Pjp->jp_Addr);
Pjbl = P_JBL(PjblRaw);
// If population under this branch greater than:
if (exppop1 > JU_BRANCHL_MAX_POP)
goto ConvertBranchLtoU;
numJPs = Pjbl->jbl_NumJPs;
if ((numJPs == 0) || (numJPs > cJU_BRANCHLMAXJPS))
{
JU_SET_ERRNO_NONNULL(Pjpm, JU_ERRNO_CORRUPT);
return(-1);
}
// Search for a match to the digit:
offset = j__udySearchLeaf1((Pjll_t) (Pjbl->jbl_Expanse), numJPs,
digit);
// If Index is found, offset is into an array of 1..cJU_BRANCHLMAXJPS JPs:
if (offset >= 0)
{
Pjp = (Pjbl->jbl_jp) + offset; // address of next JP.
break; // continue walk.
}
// Expanse is missing (not populated) for the passed Index, so insert an Immed
// -- if theres room:
if (numJPs < cJU_BRANCHLMAXJPS)
{
offset = ~offset; // insertion offset.
JU_JPSETADT(&newJP, 0, Index,
JU_JPTYPE(Pjp) + cJU_JPIMMED_1_01-cJU_JPBRANCH_L2);
JU_INSERTINPLACE(Pjbl->jbl_Expanse, numJPs, offset, digit);
JU_INSERTINPLACE(Pjbl->jbl_jp, numJPs, offset, newJP);
DBGCODE(JudyCheckSorted((Pjll_t) (Pjbl->jbl_Expanse),
numJPs + 1, /* IndexSize = */ 1);)
++(Pjbl->jbl_NumJPs);
#ifdef JUDYL
// value area is first word of new Immed 01 JP:
Pjpm->jpm_PValue = (Pjv_t) ((Pjbl->jbl_jp) + offset);
#endif
return(1);
}
// MAXED OUT LINEAR BRANCH, CONVERT TO A BITMAP BRANCH, THEN INSERT:
//
// Copy the linear branch to a bitmap branch.
//
// TBD: Consider renaming j__udyCreateBranchB() to j__udyConvertBranchLtoB().
assert((numJPs) <= cJU_BRANCHLMAXJPS);
if (j__udyCreateBranchB(Pjp, Pjbl->jbl_jp, Pjbl->jbl_Expanse,
numJPs, Pjpm) == -1)
{
return(-1);
}
// Convert jp_Type from linear branch to equivalent bitmap branch:
Pjp->jp_Type += cJU_JPBRANCH_B - cJU_JPBRANCH_L;
j__udyFreeJBL(PjblRaw, Pjpm); // free old BranchL.
// Having changed branch types, now do the insert in the new branch type:
goto ContinueInsWalk;
// OPPORTUNISTICALLY CONVERT FROM BRANCHL TO BRANCHU:
//
// Memory efficiency is no object because the branchs pop1 is large enough, so
// speed up array access. Come here with PjblRaw set. Note: This is goto
// code because the previous block used to fall through into it as well, but no
// longer.
ConvertBranchLtoU:
// Allocate memory for an uncompressed branch:
if ((PjbuRaw = j__udyAllocJBU(Pjpm)) == (Pjbu_t) NULL)
return(-1);
Pjbu = P_JBU(PjbuRaw);
// Set the proper NULL type for most of the uncompressed branchs JPs:
JU_JPSETADT(&newJP, 0, 0,
JU_JPTYPE(Pjp) - cJU_JPBRANCH_L2 + cJU_JPNULL1);
// Initialize: Pre-set uncompressed branch to mostly JPNULL*s:
for (numJPs = 0; numJPs < cJU_BRANCHUNUMJPS; ++numJPs)
Pjbu->jbu_jp[numJPs] = newJP;
// Copy JPs from linear branch to uncompressed branch:
{
#ifdef SUBEXPCOUNTS
Word_t popmask = cJU_POP0MASK(JU_JPTYPE(Pjp))
- cJU_JPBRANCH_L2 - 2;
for (numJPs = 0; numJPs < cJU_NUMSUBEXPU; ++numJPs)
Pjbu->jbu_subPop1[numJPs] = 0;
#endif
for (numJPs = 0; numJPs < Pjbl->jbl_NumJPs; ++numJPs)
{
Pjp_t Pjp1 = &(Pjbl->jbl_jp[numJPs]);
offset = Pjbl->jbl_Expanse[numJPs];
Pjbu->jbu_jp[offset] = *Pjp1;
#ifdef SUBEXPCOUNTS
Pjbu->jbu_subPop1[offset/cJU_NUMSUBEXPU] +=
JU_JPDCDPOP0(Pjp1) & popmask + 1;
#endif
}
}
j__udyFreeJBL(PjblRaw, Pjpm); // free old BranchL.
// Plug new values into parent JP:
Pjp->jp_Addr = (Word_t) PjbuRaw;
Pjp->jp_Type += cJU_JPBRANCH_U - cJU_JPBRANCH_L; // to BranchU.
// Save global population of last BranchU conversion:
Pjpm->jpm_LastUPop0 = Pjpm->jpm_Pop0;
goto ContinueInsWalk;
} // case cJU_JPBRANCH_L.
// ****************************************************************************
// JPBRANCH_B*:
//
// If the new Index is not an outlier to the branchs expanse, extract the
// digit and record the Immediate type to create for a new Immed JP, before
// going to common code.
//
// Note: JU_CHECK_IF_OUTLIER() is a no-op for BranchB3[7] on 32[64]-bit.
case cJU_JPBRANCH_B2:
JU_BRANCH_OUTLIER(digit, exppop1, 2, Pjp, Index, Pjpm);
goto JudyBranchB;
case cJU_JPBRANCH_B3:
JU_BRANCH_OUTLIER(digit, exppop1, 3, Pjp, Index, Pjpm);
goto JudyBranchB;
#ifdef JU_64BIT
case cJU_JPBRANCH_B4:
JU_BRANCH_OUTLIER(digit, exppop1, 4, Pjp, Index, Pjpm);
goto JudyBranchB;
case cJU_JPBRANCH_B5:
JU_BRANCH_OUTLIER(digit, exppop1, 5, Pjp, Index, Pjpm);
goto JudyBranchB;
case cJU_JPBRANCH_B6:
JU_BRANCH_OUTLIER(digit, exppop1, 6, Pjp, Index, Pjpm);
goto JudyBranchB;
case cJU_JPBRANCH_B7:
JU_BRANCH_OUTLIER(digit, exppop1, 7, Pjp, Index, Pjpm);
goto JudyBranchB;
#endif
case cJU_JPBRANCH_B:
{
Pjbb_t Pjbb; // pointer to bitmap branch.
Pjbb_t PjbbRaw; // pointer to bitmap branch.
Pjp_t Pjp2Raw; // 1 of N arrays of JPs.
Pjp_t Pjp2; // 1 of N arrays of JPs.
Word_t subexp; // 1 of N subexpanses in bitmap.
BITMAPB_t bitmap; // for one subexpanse.
BITMAPB_t bitmask; // bit set for Indexs digit.
Word_t numJPs; // number of JPs = populated expanses.
int offset; // in bitmap branch.
// Similar to common code above, but no outlier check is needed, and the Immed
// type depends on the word size:
digit = JU_DIGITATSTATE(Index, cJU_ROOTSTATE);
exppop1 = Pjpm->jpm_Pop0;
// fall through:
// COMMON CODE FOR BITMAP BRANCHES:
//
// Come here with digit and exppop1 already set.
JudyBranchB:
// If population increment is greater than.. (300):
if ((Pjpm->jpm_Pop0 - Pjpm->jpm_LastUPop0) > JU_BTOU_POP_INCREMENT)
{
// If total population of array is greater than.. (750):
if (Pjpm->jpm_Pop0 > JU_BRANCHB_MAX_POP)
{
// If population under the branch is greater than.. (135):
if (exppop1 > JU_BRANCHB_MIN_POP)
{
if (j__udyCreateBranchU(Pjp, Pjpm) == -1) return(-1);
// Save global population of last BranchU conversion:
Pjpm->jpm_LastUPop0 = Pjpm->jpm_Pop0;
goto ContinueInsWalk;
}
}
}
// CONTINUE TO USE BRANCHB:
//
// Get pointer to bitmap branch (JBB):
PjbbRaw = (Pjbb_t) (Pjp->jp_Addr);
Pjbb = P_JBB(PjbbRaw);
// Form the Int32 offset, and Bit offset values:
//
// 8 bit Decode | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// |SubExpanse | Bit offset |
//
// Get the 1 of 8 expanses from digit, Bits 5..7 = 1 of 8, and get the 32-bit
// word that may have a bit set:
subexp = digit / cJU_BITSPERSUBEXPB;
bitmap = JU_JBB_BITMAP(Pjbb, subexp);
Pjp2Raw = JU_JBB_PJP(Pjbb, subexp);
Pjp2 = P_JP(Pjp2Raw);
// Get the bit position that represents the desired expanse, and get the offset
// into the array of JPs for the JP that matches the bit.
bitmask = JU_BITPOSMASKB(digit);
offset = j__udyCountBitsB(bitmap & (bitmask - 1));
// If JP is already in this expanse, get Pjp and continue the walk:
if (bitmap & bitmask)
{
#ifdef SUBEXPCOUNTS
PSubExp = &(Pjbb->jbb_Counts[subexp]); // ptr to subexp counts.
#endif
Pjp = Pjp2 + offset;
break; // continue walk.
}
// ADD NEW EXPANSE FOR NEW INDEX:
//
// The new expanse always an cJU_JPIMMED_*_01 containing just the new Index, so
// finish setting up an Immed JP.
JU_JPSETADT(&newJP, 0, Index,
JU_JPTYPE(Pjp) + cJU_JPIMMED_1_01-cJU_JPBRANCH_B2);
// Get 1 of the 8 JP arrays and calculate number of JPs in subexpanse array:
Pjp2Raw = JU_JBB_PJP(Pjbb, subexp);
Pjp2 = P_JP(Pjp2Raw);
numJPs = j__udyCountBitsB(bitmap);
// Expand branch JP subarray in-place:
if (JU_BRANCHBJPGROWINPLACE(numJPs))
{
assert(numJPs > 0);
JU_INSERTINPLACE(Pjp2, numJPs, offset, newJP);
#ifdef JUDYL
// value area is first word of new Immed 01 JP:
Pjpm->jpm_PValue = (Pjv_t) (Pjp2 + offset);
#endif
}
// No room, allocate a bigger bitmap branch JP subarray:
else
{
Pjp_t PjpnewRaw;
Pjp_t Pjpnew;
if ((PjpnewRaw = j__udyAllocJBBJP(numJPs + 1, Pjpm)) == 0)
return(-1);
Pjpnew = P_JP(PjpnewRaw);
// If there was an old JP array, then copy it, insert the new Immed JP, and
// free the old array:
if (numJPs)
{
JU_INSERTCOPY(Pjpnew, Pjp2, numJPs, offset, newJP);
j__udyFreeJBBJP(Pjp2Raw, numJPs, Pjpm);
#ifdef JUDYL
// value area is first word of new Immed 01 JP:
Pjpm->jpm_PValue = (Pjv_t) (Pjpnew + offset);
#endif
}
// New JP subarray; point to cJU_JPIMMED_*_01 and place it:
else
{
assert(JU_JBB_PJP(Pjbb, subexp) == (Pjp_t) NULL);
Pjp = Pjpnew;
*Pjp = newJP; // copy to new memory.
#ifdef JUDYL
// value area is first word of new Immed 01 JP:
Pjpm->jpm_PValue = (Pjv_t) (&(Pjp->jp_Addr));
#endif
}
// Place new JP subarray in BranchB:
JU_JBB_PJP(Pjbb, subexp) = PjpnewRaw;
} // else
// Set the new Indexs bit:
JU_JBB_BITMAP(Pjbb, subexp) |= bitmask;
return(1);
} // case
// ****************************************************************************
// JPBRANCH_U*:
//
// Just drop through the JP for the correct digit. If the JP turns out to be a
// JPNULL*, thats OK, the memory is already allocated, and the next walk
// simply places an Immed in it.
//
#ifdef SUBEXPCOUNTS
#define JU_GETSUBEXP(PSubExp,Pjbu,Digit) \
(PSubExp) = &((Pjbu)->jbu_subPop1[(Digit) / cJU_NUMSUBEXPU])
#else
#define JU_GETSUBEXP(PSubExp,Pjbu,Digit) // null.
#endif
#define JU_JBU_PJP_SUBEXP(Pjp,PSubExp,Index,Level) \
{ \
uint8_t digit = JU_DIGITATSTATE(Index, Level); \
Pjbu_t P_jbu = P_JBU((Pjp)->jp_Addr); \
(Pjp) = &(P_jbu->jbu_jp[digit]); \
JU_GETSUBEXP(PSubExp, P_jbu, digit); \
}
case cJU_JPBRANCH_U2:
JU_CHECK_IF_OUTLIER(Pjp, Index, 2, Pjpm);
JU_JBU_PJP_SUBEXP(Pjp, PSubExp, Index, 2);
break;
#ifdef JU_64BIT
case cJU_JPBRANCH_U3:
JU_CHECK_IF_OUTLIER(Pjp, Index, 3, Pjpm);
JU_JBU_PJP_SUBEXP(Pjp, PSubExp, Index, 3);
break;
case cJU_JPBRANCH_U4:
JU_CHECK_IF_OUTLIER(Pjp, Index, 4, Pjpm);
JU_JBU_PJP_SUBEXP(Pjp, PSubExp, Index, 4);
break;
case cJU_JPBRANCH_U5:
JU_CHECK_IF_OUTLIER(Pjp, Index, 5, Pjpm);
JU_JBU_PJP_SUBEXP(Pjp, PSubExp, Index, 5);
break;
case cJU_JPBRANCH_U6:
JU_CHECK_IF_OUTLIER(Pjp, Index, 6, Pjpm);
JU_JBU_PJP_SUBEXP(Pjp, PSubExp, Index, 6);
break;
case cJU_JPBRANCH_U7:
JU_JBU_PJP_SUBEXP(Pjp, PSubExp, Index, 7);
#else
case cJU_JPBRANCH_U3:
JU_JBU_PJP_SUBEXP(Pjp, PSubExp, Index, 3);
#endif
break;
case cJU_JPBRANCH_U:
JU_JBU_PJP_SUBEXP(Pjp, PSubExp, Index, cJU_ROOTSTATE);
break;
// ****************************************************************************
// JPLEAF*:
//
// COMMON CODE FRAGMENTS TO MINIMIZE REDUNDANCY BELOW:
//
// These are necessary to support performance by function and loop unrolling
// while avoiding huge amounts of nearly identical code.
//
// Prepare to handle a linear leaf: Check for an outlier; set pop1 and pointer
// to leaf:
#ifdef JUDY1
#define JU_LEAFVALUE(Pjv) // null.
#define JU_LEAFPREPVALUE(Pjv, ValueArea) // null.
#else
#define JU_LEAFVALUE(Pjv) Pjv_t Pjv
#define JU_LEAFPREPVALUE(Pjv, ValueArea) (Pjv) = ValueArea(Pleaf, exppop1)
#endif
#define JU_LEAFPREP(cIS,Type,MaxPop1,ValueArea) \
Pjll_t PjllRaw; \
Type Pleaf; /* specific type */ \
int offset; \
JU_LEAFVALUE(Pjv); \
\
JU_CHECK_IF_OUTLIER(Pjp, Index, cIS, Pjpm); \
\
exppop1 = JU_JPLEAF_POP0(Pjp) + 1; \
assert(exppop1 <= (MaxPop1)); \
PjllRaw = (Pjll_t) (Pjp->jp_Addr); \
Pleaf = (Type) P_JLL(PjllRaw); \
JU_LEAFPREPVALUE(Pjv, ValueArea)
// Add to, or grow, a linear leaf: Find Index position; if the Index is
// absent, if theres room in the leaf, insert the Index [and value of 0] in
// place, otherwise grow the leaf:
//
// Note: These insertions always take place with whole words, using
// JU_INSERTINPLACE() or JU_INSERTCOPY().
#ifdef JUDY1
#define JU_LEAFGROWVALUEADD(Pjv,ExpPop1,Offset) // null.
#else
#define JU_LEAFGROWVALUEADD(Pjv,ExpPop1,Offset) \
JU_INSERTINPLACE(Pjv, ExpPop1, Offset, 0); \
Pjpm->jpm_PValue = (Pjv) + (Offset)
#endif
#ifdef JUDY1
#define JU_LEAFGROWVALUENEW(ValueArea,Pjv,ExpPop1,Offset) // null.
#else
#define JU_LEAFGROWVALUENEW(ValueArea,Pjv,ExpPop1,Offset) \
{ \
Pjv_t Pjvnew = ValueArea(Pleafnew, (ExpPop1) + 1); \
JU_INSERTCOPY(Pjvnew, Pjv, ExpPop1, Offset, 0); \
Pjpm->jpm_PValue = (Pjvnew) + (Offset); \
}
#endif
#define JU_LEAFGROW(cIS,Type,MaxPop1,Search,ValueArea,GrowInPlace, \
InsertInPlace,InsertCopy,Alloc,Free) \
\
offset = Search(Pleaf, exppop1, Index); \
JU_CHECK_IF_EXISTS(offset, Pjv, Pjpm); \
\
if (GrowInPlace(exppop1)) /* add to current leaf */ \
{ \
InsertInPlace(Pleaf, exppop1, offset, Index); \
JU_LEAFGROWVALUEADD(Pjv, exppop1, offset); \
DBGCODE(JudyCheckSorted((Pjll_t) Pleaf, exppop1 + 1, cIS);) \
return(1); \
} \
\
if (exppop1 < (MaxPop1)) /* grow to new leaf */ \
{ \
Pjll_t PjllnewRaw; \
Type Pleafnew; \
if ((PjllnewRaw = Alloc(exppop1 + 1, Pjpm)) == 0) return(-1); \
Pleafnew = (Type) P_JLL(PjllnewRaw); \
InsertCopy(Pleafnew, Pleaf, exppop1, offset, Index); \
JU_LEAFGROWVALUENEW(ValueArea, Pjv, exppop1, offset); \
DBGCODE(JudyCheckSorted((Pjll_t) Pleafnew, exppop1 + 1, cIS);) \
Free(PjllRaw, exppop1, Pjpm); \
(Pjp->jp_Addr) = (Word_t) PjllnewRaw; \
return(1); \
} \
assert(exppop1 == (MaxPop1))
// Handle linear leaf overflow (cascade): Splay or compress into smaller
// leaves:
#define JU_LEAFCASCADE(MaxPop1,Cascade,Free) \
if (Cascade(Pjp, Pjpm) == -1) return(-1); \
Free(PjllRaw, MaxPop1, Pjpm); \
goto ContinueInsWalk
// Wrapper around all of the above:
#define JU_LEAFSET(cIS,Type,MaxPop1,Search,GrowInPlace,InsertInPlace, \
InsertCopy,Cascade,Alloc,Free,ValueArea) \
{ \
JU_LEAFPREP(cIS,Type,MaxPop1,ValueArea); \
JU_LEAFGROW(cIS,Type,MaxPop1,Search,ValueArea,GrowInPlace, \
InsertInPlace,InsertCopy,Alloc,Free); \
JU_LEAFCASCADE(MaxPop1,Cascade,Free); \
}
// END OF MACROS; LEAFL CASES START HERE:
//
// 64-bit Judy1 does not have 1-byte leaves:
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1:
JU_LEAFSET(1, uint8_t *, cJU_LEAF1_MAXPOP1, j__udySearchLeaf1,
JU_LEAF1GROWINPLACE, JU_INSERTINPLACE, JU_INSERTCOPY,
j__udyCascade1, j__udyAllocJLL1, j__udyFreeJLL1,
JL_LEAF1VALUEAREA);
#endif // (JUDYL || ! JU_64BIT)
case cJU_JPLEAF2:
JU_LEAFSET(2, uint16_t *, cJU_LEAF2_MAXPOP1, j__udySearchLeaf2,
JU_LEAF2GROWINPLACE, JU_INSERTINPLACE, JU_INSERTCOPY,
j__udyCascade2, j__udyAllocJLL2, j__udyFreeJLL2,
JL_LEAF2VALUEAREA);
case cJU_JPLEAF3:
JU_LEAFSET(3, uint8_t *, cJU_LEAF3_MAXPOP1, j__udySearchLeaf3,
JU_LEAF3GROWINPLACE, JU_INSERTINPLACE3, JU_INSERTCOPY3,
j__udyCascade3, j__udyAllocJLL3, j__udyFreeJLL3,
JL_LEAF3VALUEAREA);
#ifdef JU_64BIT
case cJU_JPLEAF4:
JU_LEAFSET(4, uint32_t *, cJU_LEAF4_MAXPOP1, j__udySearchLeaf4,
JU_LEAF4GROWINPLACE, JU_INSERTINPLACE, JU_INSERTCOPY,
j__udyCascade4, j__udyAllocJLL4, j__udyFreeJLL4,
JL_LEAF4VALUEAREA);
case cJU_JPLEAF5:
JU_LEAFSET(5, uint8_t *, cJU_LEAF5_MAXPOP1, j__udySearchLeaf5,
JU_LEAF5GROWINPLACE, JU_INSERTINPLACE5, JU_INSERTCOPY5,
j__udyCascade5, j__udyAllocJLL5, j__udyFreeJLL5,
JL_LEAF5VALUEAREA);
case cJU_JPLEAF6:
JU_LEAFSET(6, uint8_t *, cJU_LEAF6_MAXPOP1, j__udySearchLeaf6,
JU_LEAF6GROWINPLACE, JU_INSERTINPLACE6, JU_INSERTCOPY6,
j__udyCascade6, j__udyAllocJLL6, j__udyFreeJLL6,
JL_LEAF6VALUEAREA);
case cJU_JPLEAF7:
JU_LEAFSET(7, uint8_t *, cJU_LEAF7_MAXPOP1, j__udySearchLeaf7,
JU_LEAF7GROWINPLACE, JU_INSERTINPLACE7, JU_INSERTCOPY7,
j__udyCascade7, j__udyAllocJLL7, j__udyFreeJLL7,
JL_LEAF7VALUEAREA);
#endif // JU_64BIT
// ****************************************************************************
// JPLEAF_B1:
//
// 8 bit Decode | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// |SubExpanse | Bit offset |
//
// Note: For JudyL, values are stored in 8 subexpanses, each a linear word
// array of up to 32 values each.
case cJU_JPLEAF_B1:
{
#ifdef JUDYL
Pjv_t PjvRaw; // pointer to value part of the leaf.
Pjv_t Pjv; // pointer to value part of the leaf.
Pjv_t PjvnewRaw; // new value area.
Pjv_t Pjvnew; // new value area.
Word_t subexp; // 1 of 8 subexpanses in bitmap.
Pjlb_t Pjlb; // pointer to bitmap part of the leaf.
BITMAPL_t bitmap; // for one subexpanse.
BITMAPL_t bitmask; // bit set for Indexs digit.
int offset; // of index in value area.
#endif
JU_CHECK_IF_OUTLIER(Pjp, Index, 1, Pjpm);
#ifdef JUDY1
// If Index (bit) is already set, return now:
if (JU_BITMAPTESTL(P_JLB(Pjp->jp_Addr), Index)) return(0);
// If bitmap is not full, set the new Indexs bit; otherwise convert to a Full:
if ((exppop1 = JU_JPLEAF_POP0(Pjp) + 1)
< cJU_JPFULLPOPU1_POP0)
{
JU_BITMAPSETL(P_JLB(Pjp->jp_Addr), Index);
}
else
{
j__udyFreeJLB1((Pjlb_t) (Pjp->jp_Addr), Pjpm); // free LeafB1.
Pjp->jp_Type = cJ1_JPFULLPOPU1;
Pjp->jp_Addr = 0;
}
#else // JUDYL
// This is very different from Judy1 because of the need to return a value area
// even for an existing Index, or manage the value area for a new Index, and
// because JudyL has no Full type:
// Get last byte to decode from Index, and pointer to bitmap leaf:
digit = JU_DIGITATSTATE(Index, 1);
Pjlb = P_JLB(Pjp->jp_Addr);
// Prepare additional values:
subexp = digit / cJU_BITSPERSUBEXPL; // which subexpanse.
bitmap = JU_JLB_BITMAP(Pjlb, subexp); // subexps 32-bit map.
PjvRaw = JL_JLB_PVALUE(Pjlb, subexp); // corresponding values.
Pjv = P_JV(PjvRaw); // corresponding values.
bitmask = JU_BITPOSMASKL(digit); // mask for Index.
offset = j__udyCountBitsL(bitmap & (bitmask - 1)); // of Index.
// If Index already exists, get value pointer and exit:
if (bitmap & bitmask)
{
assert(Pjv);
Pjpm->jpm_PValue = Pjv + offset; // existing value.
return(0);
}
// Get the total bits set = expanse population of Value area:
exppop1 = j__udyCountBitsL(bitmap);
// If the value area can grow in place, do it:
if (JL_LEAFVGROWINPLACE(exppop1))
{
JU_INSERTINPLACE(Pjv, exppop1, offset, 0);
JU_JLB_BITMAP(Pjlb, subexp) |= bitmask; // set Indexs bit.
Pjpm->jpm_PValue = Pjv + offset; // new value area.
return(1);
}
// Increase size of value area:
if ((PjvnewRaw = j__udyLAllocJV(exppop1 + 1, Pjpm))
== (Pjv_t) NULL) return(-1);
Pjvnew = P_JV(PjvnewRaw);
if (exppop1) // have existing value area.
{
assert(Pjv);
JU_INSERTCOPY(Pjvnew, Pjv, exppop1, offset, 0);
Pjpm->jpm_PValue = Pjvnew + offset;
j__udyLFreeJV(PjvRaw, exppop1, Pjpm); // free old values.
}
else // first index, new value area:
{
Pjpm->jpm_PValue = Pjvnew;
*(Pjpm->jpm_PValue) = 0;
}
// Set bit for new Index and place new leaf value area in bitmap:
JU_JLB_BITMAP(Pjlb, subexp) |= bitmask;
JL_JLB_PVALUE(Pjlb, subexp) = PjvnewRaw;
#endif // JUDYL
return(1);
} // case
#ifdef JUDY1
// ****************************************************************************
// JPFULLPOPU1:
//
// If Index is not an outlier, then by definition its already set.
case cJ1_JPFULLPOPU1:
JU_CHECK_IF_OUTLIER(Pjp, Index, 1, Pjpm);
return(0);
#endif
// ****************************************************************************
// JPIMMED*:
//
// This is some of the most complex code in Judy considering Judy1 versus JudyL
// and 32-bit versus 64-bit variations. The following comments attempt to make
// this clearer.
//
// Of the 2 words in a JP, for immediate indexes Judy1 can use 2 words - 1 byte
// = 7 [15] bytes, but JudyL can only use 1 word - 1 byte = 3 [7] bytes because
// the other word is needed for a value area or a pointer to a value area.
//
// For both Judy1 and JudyL, cJU_JPIMMED_*_01 indexes are in word 2; otherwise
// for Judy1 only, a list of 2 or more indexes starts in word 1. JudyL keeps
// the list in word 2 because word 1 is a pointer (to a LeafV, that is, a leaf
// containing only values). Furthermore, cJU_JPIMMED_*_01 indexes are stored
// all-but-first-byte in jp_DcdPopO, not just the Index Sizes bytes.
//
// TBD: This can be confusing because Doug didnt use data structures for it.
// Instead he often directly accesses Pjp for the first word and jp_DcdPopO for
// the second word. It would be nice to use data structs, starting with
// jp_1Index and jp_LIndex where possible.
//
// Maximum Immed JP types for Judy1/JudyL, depending on Index Size (cIS):
//
// 32-bit 64-bit
//
// bytes: 7/ 3 15/ 7 (Judy1/JudyL)
//
// cIS
// 1_ 07/03 15/07 (as in: cJ1_JPIMMED_1_07)
// 2_ 03/01 07/03
// 3_ 02/01 05/02
// 4_ 03/01
// 5_ 03/01
// 6_ 02/01
// 7_ 02/01
//
// State transitions while inserting an Index, matching the above table:
// (Yes, this is very terse... Study it and it will make sense.)
// (Note, parts of this diagram are repeated below for quick reference.)
//
// +-- reformat JP here for Judy1 only, from word-2 to word-1
// |
// | JUDY1 || JU_64BIT JUDY1 && JU_64BIT
// V
// 1_01 => 1_02 => 1_03 => [ 1_04 => ... => 1_07 => [ 1_08..15 => ]] Leaf1 (*)
// 2_01 => [ 2_02 => 2_03 => [ 2_04..07 => ]] Leaf2
// 3_01 => [ 3_02 => [ 3_03..05 => ]] Leaf3
// JU_64BIT only:
// 4_01 => [[ 4_02..03 => ]] Leaf4
// 5_01 => [[ 5_02..03 => ]] Leaf5
// 6_01 => [[ 6_02 => ]] Leaf6
// 7_01 => [[ 7_02 => ]] Leaf7
//
// (*) For Judy1 & 64-bit, go directly from cJU_JPIMMED_1_15 to a LeafB1; skip
// Leaf1, as described in Judy1.h regarding cJ1_JPLEAF1.
// COMMON CODE FRAGMENTS TO MINIMIZE REDUNDANCY BELOW:
//
// These are necessary to support performance by function and loop unrolling
// while avoiding huge amounts of nearly identical code.
//
// The differences between Judy1 and JudyL with respect to value area handling
// are just too large for completely common code between them... Oh well, some
// big ifdefs follow. However, even in the following ifdefd code, use cJU_*,
// JU_*, and Judy*() instead of cJ1_* / cJL_*, J1_* / JL_*, and
// Judy1*()/JudyL*(), for minimum diffs.
//
// Handle growth of cJU_JPIMMED_*_01 to cJU_JPIMMED_*_02, for an even or odd
// Index Size (cIS), given oldIndex, Index, and Pjll in the context:
//
// Put oldIndex and Index in their proper order. For odd indexes, must copy
// bytes.
#ifdef JUDY1
#define JU_IMMSET_01_COPY_EVEN(ignore1,ignore2) \
if (oldIndex < Index) { Pjll[0] = oldIndex; Pjll[1] = Index; } \
else { Pjll[0] = Index; Pjll[1] = oldIndex; }
#define JU_IMMSET_01_COPY_ODD(cIS,CopyWord) \
if (oldIndex < Index) \
{ \
CopyWord(Pjll + 0, oldIndex); \
CopyWord(Pjll + (cIS), Index); \
} \
else \
{ \
CopyWord(Pjll + 0, Index); \
CopyWord(Pjll + (cIS), oldIndex); \
}
// The "real" *_01 Copy macro:
//
// Trim the high byte off Index, look for a match with the old Index, and if
// none, insert the new Index in the leaf in the correct place, given Pjp and
// Index in the context.
//
// Note: A single immediate index lives in the jp_DcdPopO field, but two or
// more reside starting at Pjp->jp_1Index.
#define JU_IMMSET_01_COPY(cIS,LeafType,NewJPType,Copy,CopyWord) \
{ \
LeafType Pjll; \
Word_t oldIndex = JU_JPDCDPOP0(Pjp); \
\
Index = JU_TRIMTODCDSIZE(Index); \
if (oldIndex == Index) return(0); \
\
Pjll = (LeafType) (Pjp->jp_1Index); \
Copy(cIS,CopyWord); \
DBGCODE(JudyCheckSorted(Pjll, 2, cIS);) \
\
Pjp->jp_Type = (NewJPType); \
return(1); \
}
#else // JUDYL
// Variations to also handle value areas; see comments above:
//
// For JudyL, Pjv (start of value area) and oldValue are also in the context;
// leave Pjv set to the value area for Index.
#define JU_IMMSET_01_COPY_EVEN(cIS,CopyWord) \
if (oldIndex < Index) \
{ \
Pjll[0] = oldIndex; \
Pjv [0] = oldValue; \
Pjll[1] = Index; \
++Pjv; \
} \
else \
{ \
Pjll[0] = Index; \
Pjll[1] = oldIndex; \
Pjv [1] = oldValue; \
}
#define JU_IMMSET_01_COPY_ODD(cIS,CopyWord) \
if (oldIndex < Index) \
{ \
CopyWord(Pjll + 0, oldIndex); \
CopyWord(Pjll + (cIS), Index); \
Pjv[0] = oldValue; \
++Pjv; \
} \
else \
{ \
CopyWord(Pjll + 0, Index); \
CopyWord(Pjll + (cIS), oldIndex); \
Pjv[1] = oldValue; \
}
// The old value area is in the first word (*Pjp), and Pjv and Pjpm are also in
// the context. Also, unlike Judy1, indexes remain in word 2 (jp_LIndex),
// meaning insert-in-place rather than copy.
//
// Return jpm_PValue pointing to Indexs value area. If Index is new, allocate
// a 2-value-leaf and attach it to the JP.
#define JU_IMMSET_01_COPY(cIS,LeafType,NewJPType,Copy,CopyWord) \
{ \
LeafType Pjll; \
Word_t oldIndex = JU_JPDCDPOP0(Pjp); \
Word_t oldValue; \
Pjv_t PjvRaw; \
Pjv_t Pjv; \
\
Index = JU_TRIMTODCDSIZE(Index); \
\
if (oldIndex == Index) \
{ \
Pjpm->jpm_PValue = (Pjv_t) Pjp; \
return(0); \
} \
\
if ((PjvRaw = j__udyLAllocJV(2, Pjpm)) == (Pjv_t) NULL) \
return(-1); \
Pjv = P_JV(PjvRaw); \
\
oldValue = Pjp->jp_Addr; \
(Pjp->jp_Addr) = (Word_t) PjvRaw; \
Pjll = (LeafType) (Pjp->jp_LIndex); \
\
Copy(cIS,CopyWord); \
DBGCODE(JudyCheckSorted(Pjll, 2, cIS);) \
\
Pjp->jp_Type = (NewJPType); \
*Pjv = 0; \
Pjpm->jpm_PValue = Pjv; \
return(1); \
}
// The following is a unique mix of JU_IMMSET_01() and JU_IMMSETCASCADE() for
// going from cJU_JPIMMED_*_01 directly to a cJU_JPLEAF* for JudyL:
//
// If Index is not already set, allocate a leaf, copy the old and new indexes
// into it, clear and return the new value area, and modify the current JP.
// Note that jp_DcdPop is set to a pop0 of 0 for now, and incremented later.
#define JU_IMMSET_01_CASCADE(cIS,LeafType,NewJPType,ValueArea, \
Copy,CopyWord,Alloc) \
{ \
Word_t D_P0; \
LeafType PjllRaw; \
LeafType Pjll; \
Word_t oldIndex = JU_JPDCDPOP0(Pjp); \
Word_t oldValue; \
Pjv_t Pjv; \
\
Index = JU_TRIMTODCDSIZE(Index); \
\
if (oldIndex == Index) \
{ \
Pjpm->jpm_PValue = (Pjv_t) (&(Pjp->jp_Addr)); \
return(0); \
} \
\
if ((PjllRaw = (LeafType) Alloc(2, Pjpm)) == (LeafType) NULL) \
return(-1); \
Pjll = (LeafType) P_JLL(PjllRaw); \
Pjv = ValueArea(Pjll, 2); \
\
oldValue = Pjp->jp_Addr; \
\
Copy(cIS,CopyWord); \
DBGCODE(JudyCheckSorted(Pjll, 2, cIS);) \
\
*Pjv = 0; \
Pjpm->jpm_PValue = Pjv; \
D_P0 = Index & cJU_DCDMASK(cIS); /* pop0 = 0 */ \
JU_JPSETADT(Pjp, (Word_t)PjllRaw, D_P0, NewJPType); \
\
return(1); \
}
#endif // JUDYL
// Handle growth of cJU_JPIMMED_*_[02..15]:
#ifdef JUDY1
// Insert an Index into an immediate JP that has room for more, if the Index is
// not already present; given Pjp, Index, exppop1, Pjv, and Pjpm in the
// context:
//
// Note: Use this only when the JP format doesnt change, that is, going from
// cJU_JPIMMED_X_0Y to cJU_JPIMMED_X_0Z, where X >= 2 and Y+1 = Z.
//
// Note: Incrementing jp_Type is how to increase the Index population.
#define JU_IMMSETINPLACE(cIS,LeafType,BaseJPType_02,Search,InsertInPlace) \
{ \
LeafType Pjll; \
int offset; \
\
exppop1 = JU_JPTYPE(Pjp) - (BaseJPType_02) + 2; \
offset = Search((Pjll_t) (Pjp->jp_1Index), exppop1, Index); \
\
JU_CHECK_IF_EXISTS(offset, ignore, Pjpm); \
\
Pjll = (LeafType) (Pjp->jp_1Index); \
InsertInPlace(Pjll, exppop1, offset, Index); \
DBGCODE(JudyCheckSorted(Pjll, exppop1 + 1, cIS);) \
++(Pjp->jp_Type); \
return(1); \
}
// Insert an Index into an immediate JP that has no room for more:
//
// If the Index is not already present, do a cascade (to a leaf); given Pjp,
// Index, Pjv, and Pjpm in the context.
#define JU_IMMSETCASCADE(cIS,OldPop1,LeafType,NewJPType, \
ignore,Search,InsertCopy,Alloc) \
{ \
Word_t D_P0; \
Pjll_t PjllRaw; \
Pjll_t Pjll; \
int offset; \
\
offset = Search((Pjll_t) (Pjp->jp_1Index), (OldPop1), Index); \
JU_CHECK_IF_EXISTS(offset, ignore, Pjpm); \
\
if ((PjllRaw = Alloc((OldPop1) + 1, Pjpm)) == 0) return(-1); \
Pjll = P_JLL(PjllRaw); \
\
InsertCopy((LeafType) Pjll, (LeafType) (Pjp->jp_1Index), \
OldPop1, offset, Index); \
DBGCODE(JudyCheckSorted(Pjll, (OldPop1) + 1, cIS);) \
\
D_P0 = (Index & cJU_DCDMASK(cIS)) + (OldPop1) - 1; \
JU_JPSETADT(Pjp, (Word_t)PjllRaw, D_P0, NewJPType); \
return(1); \
}
#else // JUDYL
// Variations to also handle value areas; see comments above:
//
// For JudyL, Pjv (start of value area) is also in the context.
//
// TBD: This code makes a true but weak assumption that a JudyL 32-bit 2-index
// value area must be copied to a new 3-index value area. AND it doesnt know
// anything about JudyL 64-bit cases (cJU_JPIMMED_1_0[3-7] only) where the
// value area can grow in place! However, this should not break it, just slow
// it down.
#define JU_IMMSETINPLACE(cIS,LeafType,BaseJPType_02,Search,InsertInPlace) \
{ \
LeafType Pleaf; \
int offset; \
Pjv_t PjvRaw; \
Pjv_t Pjv; \
Pjv_t PjvnewRaw; \
Pjv_t Pjvnew; \
\
exppop1 = JU_JPTYPE(Pjp) - (BaseJPType_02) + 2; \
offset = Search((Pjll_t) (Pjp->jp_LIndex), exppop1, Index); \
PjvRaw = (Pjv_t) (Pjp->jp_Addr); \
Pjv = P_JV(PjvRaw); \
\
JU_CHECK_IF_EXISTS(offset, Pjv, Pjpm); \
\
if ((PjvnewRaw = j__udyLAllocJV(exppop1 + 1, Pjpm)) \
== (Pjv_t) NULL) return(-1); \
Pjvnew = P_JV(PjvnewRaw); \
\
Pleaf = (LeafType) (Pjp->jp_LIndex); \
\
InsertInPlace(Pleaf, exppop1, offset, Index); \
/* see TBD above about this: */ \
JU_INSERTCOPY(Pjvnew, Pjv, exppop1, offset, 0); \
DBGCODE(JudyCheckSorted(Pleaf, exppop1 + 1, cIS);) \
j__udyLFreeJV(PjvRaw, exppop1, Pjpm); \
Pjp->jp_Addr = (Word_t) PjvnewRaw; \
Pjpm->jpm_PValue = Pjvnew + offset; \
\
++(Pjp->jp_Type); \
return(1); \
}
#define JU_IMMSETCASCADE(cIS,OldPop1,LeafType,NewJPType, \
ValueArea,Search,InsertCopy,Alloc) \
{ \
Word_t D_P0; \
Pjll_t PjllRaw; \
Pjll_t Pjll; \
int offset; \
Pjv_t PjvRaw; \
Pjv_t Pjv; \
Pjv_t Pjvnew; \
\
PjvRaw = (Pjv_t) (Pjp->jp_Addr); \
Pjv = P_JV(PjvRaw); \
offset = Search((Pjll_t) (Pjp->jp_LIndex), (OldPop1), Index); \
JU_CHECK_IF_EXISTS(offset, Pjv, Pjpm); \
\
if ((PjllRaw = Alloc((OldPop1) + 1, Pjpm)) == 0) \
return(-1); \
Pjll = P_JLL(PjllRaw); \
InsertCopy((LeafType) Pjll, (LeafType) (Pjp->jp_LIndex), \
OldPop1, offset, Index); \
DBGCODE(JudyCheckSorted(Pjll, (OldPop1) + 1, cIS);) \
\
Pjvnew = ValueArea(Pjll, (OldPop1) + 1); \
JU_INSERTCOPY(Pjvnew, Pjv, OldPop1, offset, 0); \
j__udyLFreeJV(PjvRaw, (OldPop1), Pjpm); \
Pjpm->jpm_PValue = Pjvnew + offset; \
\
D_P0 = (Index & cJU_DCDMASK(cIS)) + (OldPop1) - 1; \
JU_JPSETADT(Pjp, (Word_t)PjllRaw, D_P0, NewJPType); \
return(1); \
}
#endif // JUDYL
// Common convenience/shorthand wrappers around JU_IMMSET_01_COPY() for
// even/odd index sizes:
#define JU_IMMSET_01( cIS, LeafType, NewJPType) \
JU_IMMSET_01_COPY(cIS, LeafType, NewJPType, JU_IMMSET_01_COPY_EVEN, \
ignore)
#define JU_IMMSET_01_ODD( cIS, NewJPType, CopyWord) \
JU_IMMSET_01_COPY(cIS, uint8_t *, NewJPType, JU_IMMSET_01_COPY_ODD, \
CopyWord)
// END OF MACROS; IMMED CASES START HERE:
// cJU_JPIMMED_*_01 cases:
//
// 1_01 always leads to 1_02:
//
// (1_01 => 1_02 => 1_03 => [ 1_04 => ... => 1_07 => [ 1_08..15 => ]] LeafL)
case cJU_JPIMMED_1_01: JU_IMMSET_01(1, uint8_t *, cJU_JPIMMED_1_02);
// 2_01 leads to 2_02, and 3_01 leads to 3_02, except for JudyL 32-bit, where
// they lead to a leaf:
//
// (2_01 => [ 2_02 => 2_03 => [ 2_04..07 => ]] LeafL)
// (3_01 => [ 3_02 => [ 3_03..05 => ]] LeafL)
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_01: JU_IMMSET_01(2, uint16_t *, cJU_JPIMMED_2_02);
case cJU_JPIMMED_3_01: JU_IMMSET_01_ODD (3, cJU_JPIMMED_3_02,
JU_COPY3_LONG_TO_PINDEX);
#else
case cJU_JPIMMED_2_01:
JU_IMMSET_01_CASCADE(2, uint16_t *, cJU_JPLEAF2, JL_LEAF2VALUEAREA,
JU_IMMSET_01_COPY_EVEN, ignore,
j__udyAllocJLL2);
case cJU_JPIMMED_3_01:
JU_IMMSET_01_CASCADE(3, uint8_t *, cJU_JPLEAF3, JL_LEAF3VALUEAREA,
JU_IMMSET_01_COPY_ODD,
JU_COPY3_LONG_TO_PINDEX, j__udyAllocJLL3);
#endif
#ifdef JU_64BIT
// [4-7]_01 lead to [4-7]_02 for Judy1, and to leaves for JudyL:
//
// (4_01 => [[ 4_02..03 => ]] LeafL)
// (5_01 => [[ 5_02..03 => ]] LeafL)
// (6_01 => [[ 6_02 => ]] LeafL)
// (7_01 => [[ 7_02 => ]] LeafL)
#ifdef JUDY1
case cJU_JPIMMED_4_01: JU_IMMSET_01(4, uint32_t *, cJ1_JPIMMED_4_02);
case cJU_JPIMMED_5_01: JU_IMMSET_01_ODD(5, cJ1_JPIMMED_5_02,
JU_COPY5_LONG_TO_PINDEX);
case cJU_JPIMMED_6_01: JU_IMMSET_01_ODD(6, cJ1_JPIMMED_6_02,
JU_COPY6_LONG_TO_PINDEX);
case cJU_JPIMMED_7_01: JU_IMMSET_01_ODD(7, cJ1_JPIMMED_7_02,
JU_COPY7_LONG_TO_PINDEX);
#else // JUDYL
case cJU_JPIMMED_4_01:
JU_IMMSET_01_CASCADE(4, uint32_t *, cJU_JPLEAF4, JL_LEAF4VALUEAREA,
JU_IMMSET_01_COPY_EVEN, ignore,
j__udyAllocJLL4);
case cJU_JPIMMED_5_01:
JU_IMMSET_01_CASCADE(5, uint8_t *, cJU_JPLEAF5, JL_LEAF5VALUEAREA,
JU_IMMSET_01_COPY_ODD,
JU_COPY5_LONG_TO_PINDEX, j__udyAllocJLL5);
case cJU_JPIMMED_6_01:
JU_IMMSET_01_CASCADE(6, uint8_t *, cJU_JPLEAF6, JL_LEAF6VALUEAREA,
JU_IMMSET_01_COPY_ODD,
JU_COPY6_LONG_TO_PINDEX, j__udyAllocJLL6);
case cJU_JPIMMED_7_01:
JU_IMMSET_01_CASCADE(7, uint8_t *, cJU_JPLEAF7, JL_LEAF7VALUEAREA,
JU_IMMSET_01_COPY_ODD,
JU_COPY7_LONG_TO_PINDEX, j__udyAllocJLL7);
#endif // JUDYL
#endif // JU_64BIT
// cJU_JPIMMED_1_* cases that can grow in place:
//
// (1_01 => 1_02 => 1_03 => [ 1_04 => ... => 1_07 => [ 1_08..15 => ]] LeafL)
case cJU_JPIMMED_1_02:
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_03:
case cJU_JPIMMED_1_04:
case cJU_JPIMMED_1_05:
case cJU_JPIMMED_1_06:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJU_JPIMMED_1_07:
case cJ1_JPIMMED_1_08:
case cJ1_JPIMMED_1_09:
case cJ1_JPIMMED_1_10:
case cJ1_JPIMMED_1_11:
case cJ1_JPIMMED_1_12:
case cJ1_JPIMMED_1_13:
case cJ1_JPIMMED_1_14:
#endif
JU_IMMSETINPLACE(1, uint8_t *, cJU_JPIMMED_1_02, j__udySearchLeaf1,
JU_INSERTINPLACE);
// cJU_JPIMMED_1_* cases that must cascade:
//
// (1_01 => 1_02 => 1_03 => [ 1_04 => ... => 1_07 => [ 1_08..15 => ]] LeafL)
#if (defined(JUDYL) && (! defined(JU_64BIT)))
case cJU_JPIMMED_1_03:
JU_IMMSETCASCADE(1, 3, uint8_t *, cJU_JPLEAF1, JL_LEAF1VALUEAREA,
j__udySearchLeaf1, JU_INSERTCOPY,
j__udyAllocJLL1);
#endif
#if (defined(JUDY1) && (! defined(JU_64BIT)))
case cJU_JPIMMED_1_07:
JU_IMMSETCASCADE(1, 7, uint8_t *, cJU_JPLEAF1, ignore,
j__udySearchLeaf1, JU_INSERTCOPY,
j__udyAllocJLL1);
#endif
#if (defined(JUDYL) && defined(JU_64BIT))
case cJU_JPIMMED_1_07:
JU_IMMSETCASCADE(1, 7, uint8_t *, cJU_JPLEAF1, JL_LEAF1VALUEAREA,
j__udySearchLeaf1, JU_INSERTCOPY,
j__udyAllocJLL1);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
// Special case, as described above, go directly from Immed to LeafB1:
case cJ1_JPIMMED_1_15:
{
Word_t DcdP0;
int offset;
Pjlb_t PjlbRaw;
Pjlb_t Pjlb;
offset = j__udySearchLeaf1((Pjll_t) Pjp->jp_1Index, 15, Index);
JU_CHECK_IF_EXISTS(offset, ignore, Pjpm);
// Create a bitmap leaf (special case for Judy1 64-bit only, see usage): Set
// new Index in bitmap, copy an Immed1_15 to the bitmap, and set the parent JP
// EXCEPT jp_DcdPopO, leaving any followup to the caller:
if ((PjlbRaw = j__udyAllocJLB1(Pjpm)) == (Pjlb_t) NULL)
return(-1);
Pjlb = P_JLB(PjlbRaw);
JU_BITMAPSETL(Pjlb, Index);
for (offset = 0; offset < 15; ++offset)
JU_BITMAPSETL(Pjlb, Pjp->jp_1Index[offset]);
// Set jp_DcdPopO including the current pop0; incremented later:
DcdP0 = (Index & cJU_DCDMASK(1)) + 15 - 1;
JU_JPSETADT(Pjp, (Word_t)PjlbRaw, DcdP0, cJU_JPLEAF_B1);
return(1);
}
#endif
// cJU_JPIMMED_[2..7]_[02..15] cases that grow in place or cascade:
//
// (2_01 => [ 2_02 => 2_03 => [ 2_04..07 => ]] LeafL)
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJU_JPIMMED_2_03:
case cJ1_JPIMMED_2_04:
case cJ1_JPIMMED_2_05:
case cJ1_JPIMMED_2_06:
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
JU_IMMSETINPLACE(2, uint16_t *, cJU_JPIMMED_2_02, j__udySearchLeaf2,
JU_INSERTINPLACE);
#endif
#undef OLDPOP1
#if ((defined(JUDY1) && (! defined(JU_64BIT))) || (defined(JUDYL) && defined(JU_64BIT)))
case cJU_JPIMMED_2_03:
#define OLDPOP1 3
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_07:
#define OLDPOP1 7
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
JU_IMMSETCASCADE(2, OLDPOP1, uint16_t *, cJU_JPLEAF2,
JL_LEAF2VALUEAREA, j__udySearchLeaf2,
JU_INSERTCOPY, j__udyAllocJLL2);
#endif
// (3_01 => [ 3_02 => [ 3_03..05 => ]] LeafL)
#if (defined(JUDY1) && defined(JU_64BIT))
case cJU_JPIMMED_3_02:
case cJ1_JPIMMED_3_03:
case cJ1_JPIMMED_3_04:
JU_IMMSETINPLACE(3, uint8_t *, cJU_JPIMMED_3_02, j__udySearchLeaf3,
JU_INSERTINPLACE3);
#endif
#undef OLDPOP1
#if ((defined(JUDY1) && (! defined(JU_64BIT))) || (defined(JUDYL) && defined(JU_64BIT)))
case cJU_JPIMMED_3_02:
#define OLDPOP1 2
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_05:
#define OLDPOP1 5
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
JU_IMMSETCASCADE(3, OLDPOP1, uint8_t *, cJU_JPLEAF3,
JL_LEAF3VALUEAREA, j__udySearchLeaf3,
JU_INSERTCOPY3, j__udyAllocJLL3);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
// (4_01 => [[ 4_02..03 => ]] LeafL)
case cJ1_JPIMMED_4_02:
JU_IMMSETINPLACE(4, uint32_t *, cJ1_JPIMMED_4_02, j__udySearchLeaf4,
JU_INSERTINPLACE);
case cJ1_JPIMMED_4_03:
JU_IMMSETCASCADE(4, 3, uint32_t *, cJU_JPLEAF4, ignore,
j__udySearchLeaf4, JU_INSERTCOPY,
j__udyAllocJLL4);
// (5_01 => [[ 5_02..03 => ]] LeafL)
case cJ1_JPIMMED_5_02:
JU_IMMSETINPLACE(5, uint8_t *, cJ1_JPIMMED_5_02, j__udySearchLeaf5,
JU_INSERTINPLACE5);
case cJ1_JPIMMED_5_03:
JU_IMMSETCASCADE(5, 3, uint8_t *, cJU_JPLEAF5, ignore,
j__udySearchLeaf5, JU_INSERTCOPY5,
j__udyAllocJLL5);
// (6_01 => [[ 6_02 => ]] LeafL)
case cJ1_JPIMMED_6_02:
JU_IMMSETCASCADE(6, 2, uint8_t *, cJU_JPLEAF6, ignore,
j__udySearchLeaf6, JU_INSERTCOPY6,
j__udyAllocJLL6);
// (7_01 => [[ 7_02 => ]] LeafL)
case cJ1_JPIMMED_7_02:
JU_IMMSETCASCADE(7, 2, uint8_t *, cJU_JPLEAF7, ignore,
j__udySearchLeaf7, JU_INSERTCOPY7,
j__udyAllocJLL7);
#endif // (JUDY1 && JU_64BIT)
// ****************************************************************************
// INVALID JP TYPE:
default: JU_SET_ERRNO_NONNULL(Pjpm, JU_ERRNO_CORRUPT); return(-1);
} // switch on JP type
{
#ifdef SUBEXPCOUNTS
// This code might seem strange here. However it saves some memory read time
// during insert (~70nS) because a pipelined processor does not need to "stall"
// waiting for the memory read to complete. Hope the compiler is not too smart
// or dumb and moves the code down to where it looks like it belongs (below a
// few lines).
Word_t SubExpCount = 0; // current subexpanse counter.
if (PSubExp != (PWord_t) NULL) // only if BranchB/U.
SubExpCount = PSubExp[0];
#endif
// PROCESS JP -- RECURSIVELY:
//
// For non-Immed JP types, if successful, post-increment the population count
// at this Level.
retcode = j__udyInsWalk(Pjp, Index, Pjpm);
// Successful insert, increment JP and subexpanse count:
if ((JU_JPTYPE(Pjp) < cJU_JPIMMED_1_01) && (retcode == 1))
{
jp_t JP;
Word_t DcdP0;
#ifdef SUBEXPCOUNTS
// Note: Pjp must be a pointer to a BranchB/U:
if (PSubExp != (PWord_t) NULL) PSubExp[0] = SubExpCount + 1;
#endif
JP = *Pjp;
DcdP0 = JU_JPDCDPOP0(Pjp) + 1;
JU_JPSETADT(Pjp, JP.jp_Addr, DcdP0, JU_JPTYPE(&JP));
}
}
return(retcode);
} // j__udyInsWalk()
// ****************************************************************************
// J U D Y 1 S E T
// J U D Y L I N S
//
// Main entry point. See the manual entry for details.
#ifdef JUDY1
FUNCTION int Judy1Set
#else
FUNCTION PPvoid_t JudyLIns
#endif
(
PPvoid_t PPArray, // in which to insert.
Word_t Index, // to insert.
PJError_t PJError // optional, for returning error info.
)
{
#ifdef JUDY1
#define Pjv ignore // placeholders for macros.
#define Pjvnew ignore
#else
Pjv_t Pjv; // value area in old leaf.
Pjv_t Pjvnew; // value area in new leaf.
#endif
Pjpm_t Pjpm; // array-global info.
int offset; // position in which to store new Index.
Pjlw_t Pjlw;
// CHECK FOR NULL POINTER (error by caller):
if (PPArray == (PPvoid_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_NULLPPARRAY);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjlw = P_JLW(*PPArray); // first word of leaf.
// ****************************************************************************
// PROCESS TOP LEVEL "JRP" BRANCHES AND LEAVES:
// ****************************************************************************
// JRPNULL (EMPTY ARRAY): BUILD A LEAFW WITH ONE INDEX:
// if a valid empty array (null pointer), so create an array of population == 1:
if (Pjlw == (Pjlw_t)NULL)
{
Pjlw_t Pjlwnew;
Pjlwnew = j__udyAllocJLW(1);
JUDY1CODE(JU_CHECKALLOC(Pjlw_t, Pjlwnew, JERRI );)
JUDYLCODE(JU_CHECKALLOC(Pjlw_t, Pjlwnew, PPJERR);)
Pjlwnew[0] = 1 - 1; // pop0 = 0.
Pjlwnew[1] = Index;
*PPArray = (Pvoid_t) Pjlwnew;
DBGCODE(JudyCheckPop(*PPArray);)
JUDY1CODE(return(1); )
JUDYLCODE(Pjlwnew[2] = 0; ) // value area.
JUDYLCODE(return((PPvoid_t) (Pjlwnew + 2)); )
} // NULL JRP
// ****************************************************************************
// LEAFW, OTHER SIZE:
if (JU_LEAFW_POP0(*PPArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
{
Pjlw_t Pjlwnew;
Word_t pop1;
Pjlw = P_JLW(*PPArray); // first word of leaf.
pop1 = Pjlw[0] + 1;
#ifdef JUDYL
Pjv = JL_LEAFWVALUEAREA(Pjlw, pop1);
#endif
offset = j__udySearchLeafW(Pjlw + 1, pop1, Index);
if (offset >= 0) // index is already valid:
{
DBGCODE(JudyCheckPop(*PPArray);)
JUDY1CODE(return(0); )
JUDYLCODE(return((PPvoid_t) (Pjv + offset)); )
}
offset = ~offset;
// Insert index in cases where no new memory is needed:
if (JU_LEAFWGROWINPLACE(pop1))
{
++Pjlw[0]; // increase population.
JU_INSERTINPLACE(Pjlw + 1, pop1, offset, Index);
#ifdef JUDYL
JU_INSERTINPLACE(Pjv, pop1, offset, 0);
#endif
DBGCODE(JudyCheckPop(*PPArray);)
DBGCODE(JudyCheckSorted(Pjlw + 1, pop1 + 1, cJU_ROOTSTATE);)
JUDY1CODE(return(1); )
JUDYLCODE(return((PPvoid_t) (Pjv + offset)); )
}
// Insert index into a new, larger leaf:
if (pop1 < cJU_LEAFW_MAXPOP1) // can grow to a larger leaf.
{
Pjlwnew = j__udyAllocJLW(pop1 + 1);
JUDY1CODE(JU_CHECKALLOC(Pjlw_t, Pjlwnew, JERRI );)
JUDYLCODE(JU_CHECKALLOC(Pjlw_t, Pjlwnew, PPJERR);)
Pjlwnew[0] = pop1; // set pop0 in new leaf.
JU_INSERTCOPY(Pjlwnew + 1, Pjlw + 1, pop1, offset, Index);
#ifdef JUDYL
Pjvnew = JL_LEAFWVALUEAREA(Pjlwnew, pop1 + 1);
JU_INSERTCOPY(Pjvnew, Pjv, pop1, offset, 0);
#endif
DBGCODE(JudyCheckSorted(Pjlwnew + 1, pop1 + 1, cJU_ROOTSTATE);)
j__udyFreeJLW(Pjlw, pop1, NULL);
*PPArray = (Pvoid_t) Pjlwnew;
DBGCODE(JudyCheckPop(*PPArray);)
JUDY1CODE(return(1); )
JUDYLCODE(return((PPvoid_t) (Pjvnew + offset)); )
}
assert(pop1 == cJU_LEAFW_MAXPOP1);
// Leaf at max size => cannot insert new index, so cascade instead:
//
// Upon cascading from a LEAFW leaf to the first branch, must allocate and
// initialize a JPM.
Pjpm = j__udyAllocJPM();
JUDY1CODE(JU_CHECKALLOC(Pjpm_t, Pjpm, JERRI );)
JUDYLCODE(JU_CHECKALLOC(Pjpm_t, Pjpm, PPJERR);)
(Pjpm->jpm_Pop0) = cJU_LEAFW_MAXPOP1 - 1;
(Pjpm->jpm_JP.jp_Addr) = (Word_t) Pjlw;
if (j__udyCascadeL(&(Pjpm->jpm_JP), Pjpm) == -1)
{
JU_COPY_ERRNO(PJError, Pjpm);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
// Note: No need to pass Pjpm for memory decrement; LEAFW memory is never
// counted in a JPM at all:
j__udyFreeJLW(Pjlw, cJU_LEAFW_MAXPOP1, NULL);
*PPArray = (Pvoid_t) Pjpm;
} // JU_LEAFW
// ****************************************************************************
// BRANCH:
{
int retcode; // really only needed for Judy1, but free for JudyL.
Pjpm = P_JPM(*PPArray);
retcode = j__udyInsWalk(&(Pjpm->jpm_JP), Index, Pjpm);
if (retcode == -1)
{
JU_COPY_ERRNO(PJError, Pjpm);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
if (retcode == 1) ++(Pjpm->jpm_Pop0); // incr total array popu.
assert(((Pjpm->jpm_JP.jp_Type) == cJU_JPBRANCH_L)
|| ((Pjpm->jpm_JP.jp_Type) == cJU_JPBRANCH_B)
|| ((Pjpm->jpm_JP.jp_Type) == cJU_JPBRANCH_U));
DBGCODE(JudyCheckPop(*PPArray);)
#ifdef JUDY1
assert((retcode == 0) || (retcode == 1));
return(retcode); // == JU_RET_*_JPM().
#else
assert(Pjpm->jpm_PValue != (Pjv_t) NULL);
return((PPvoid_t) Pjpm->jpm_PValue);
#endif
}
/*NOTREACHED*/
} // Judy1Set() / JudyLIns()
|