1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
|
// Copyright (C) 2000 - 2002 Hewlett-Packard Company
//
// This program is free software; you can redistribute it and/or modify it
// under the term of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
// for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// _________________
// @(#) $Revision: 4.54 $ $Source: /judy/src/JudyCommon/JudyPrevNext.c $
//
// Judy*Prev() and Judy*Next() functions for Judy1 and JudyL.
// Compile with one of -DJUDY1 or -DJUDYL.
//
// Compile with -DJUDYNEXT for the Judy*Next() function; otherwise defaults to
// Judy*Prev().
#if (! (defined(JUDY1) || defined(JUDYL)))
#error: One of -DJUDY1 or -DJUDYL must be specified.
#endif
#ifndef JUDYNEXT
#ifndef JUDYPREV
#define JUDYPREV 1 // neither set => use default.
#endif
#endif
#ifdef JUDY1
#include "Judy1.h"
#else
#include "JudyL.h"
#endif
#include "JudyPrivate1L.h"
// ****************************************************************************
// J U D Y 1 P R E V
// J U D Y 1 N E X T
// J U D Y L P R E V
// J U D Y L N E X T
//
// See the manual entry for the API.
//
// OVERVIEW OF Judy*Prev():
//
// Use a reentrant switch statement (state machine, SM1 = "get") to decode the
// callers *PIndex-1, starting with the (PArray), through branches, if
// any, down to an immediate or a leaf. Look for *PIndex-1 in that leaf, and
// if found, return it.
//
// A dead end is either a branch that does not contain a JP for the appropriate
// digit in *PIndex-1, or a leaf that does not contain the undecoded digits of
// *PIndex-1. Upon reaching a dead end, backtrack through the leaf/branches
// that were just traversed, using a list (history) of parent JPs that is built
// while going forward in SM1Get. Start with the current leaf or branch. In a
// backtracked leaf, look for an Index less than *PIndex-1. In each
// backtracked branch, look "sideways" for the next JP, if any, lower than the
// one for the digit (from *PIndex-1) that was previously decoded. While
// backtracking, if a leaf has no previous Index or a branch has no lower JP,
// go to its parent branch in turn. Upon reaching the JRP, return failure, "no
// previous Index". The backtrack process is sufficiently different from
// SM1Get to merit its own separate reentrant switch statement (SM2 =
// "backtrack").
//
// While backtracking, upon finding a lower JP in a branch, there is certain to
// be a "prev" Index under that JP (unless the Judy array is corrupt).
// Traverse forward again, this time taking the last (highest, right-most) JP
// in each branch, and the last (highest) Index upon reaching an immediate or a
// leaf. This traversal is sufficiently different from SM1Get and SM2Backtrack
// to merit its own separate reentrant switch statement (SM3 = "findlimit").
//
// "Decode" bytes in JPs complicate this process a little. In SM1Get, when a
// JP is a narrow pointer, that is, when states are skipped (so the skipped
// digits are stored in jp_DcdPopO), compare the relevant digits to the same
// digits in *PIndex-1. If they are EQUAL, proceed in SM1Get as before. If
// jp_DcdPopOs digits are GREATER, treat the JP as a dead end and proceed in
// SM2Backtrack. If jp_DcdPopOs digits are LESS, treat the JP as if it had
// just been found during a backtrack and proceed directly in SM3Findlimit.
//
// Note that Decode bytes can be ignored in SM3Findlimit; they dont matter.
// Also note that in practice the Decode bytes are routinely compared with
// *PIndex-1 because thats simpler and no slower than first testing for
// narrowness.
//
// Decode bytes also make it unnecessary to construct the Index to return (the
// revised *PIndex) during the search. This step is deferred until finding an
// Index during backtrack or findlimit, before returning it. The first digit
// of *PIndex is derived (saved) based on which JP is used in a JRP branch.
// The remaining digits are obtained from the jp_DcdPopO field in the JP (if
// any) above the immediate or leaf containing the found (prev) Index, plus the
// remaining digit(s) in the immediate or leaf itself. In the case of a LEAFW,
// the Index to return is found directly in the leaf.
//
// Note: Theoretically, as described above, upon reaching a dead end, SM1Get
// passes control to SM2Backtrack to look sideways, even in a leaf. Actually
// its a little more efficient for the SM1Get leaf cases to shortcut this and
// take care of the sideways searches themselves. Hence the history list only
// contains branch JPs, and SM2Backtrack only handles branches. In fact, even
// the branch handling cases in SM1Get do some shortcutting (sideways
// searching) to avoid pushing history and calling SM2Backtrack unnecessarily.
//
// Upon reaching an Index to return after backtracking, *PIndex must be
// modified to the found Index. In principle this could be done by building
// the Index from a saved rootdigit (in the top branch) plus the Dcd bytes from
// the parent JP plus the appropriate Index bytes from the leaf. However,
// Immediates are difficult because their parent JPs lack one (last) digit. So
// instead just build the *PIndex to return "top down" while backtracking and
// findlimiting.
//
// This function is written iteratively for speed, rather than recursively.
//
// CAVEATS:
//
// Why use a backtrack list (history stack), since it has finite size? The
// size is small for Judy on both 32-bit and 64-bit systems, and a list (really
// just an array) is fast to maintain and use. Other alternatives include
// doing a lookahead (lookaside) in each branch while traversing forward
// (decoding), and restarting from the top upon a dead end.
//
// A lookahead means noting the last branch traversed which contained a
// non-null JP lower than the one specified by a digit in *PIndex-1, and
// returning to that point for SM3Findlimit. This seems like a good idea, and
// should be pretty cheap for linear and bitmap branches, but it could result
// in up to 31 unnecessary additional cache line fills (in extreme cases) for
// every uncompressed branch traversed. We have considered means of attaching
// to or hiding within an uncompressed branch (in null JPs) a "cache line map"
// or other structure, such as an offset to the next non-null JP, that would
// speed this up, but it seems unnecessary merely to avoid having a
// finite-length list (array). (If JudySL is ever made "native", the finite
// list length will be an issue.)
//
// Restarting at the top of the Judy array after a dead end requires a careful
// modification of *PIndex-1 to decrement the digit for the parent branch and
// set the remaining lower digits to all 1s. This must be repeated each time a
// parent branch contains another dead end, so even though it should all happen
// in cache, the CPU time can be excessive. (For JudySL or an equivalent
// "infinitely deep" Judy array, consider a hybrid of a large, finite,
// "circular" list and a restart-at-top when the list is backtracked to
// exhaustion.)
//
// Why search for *PIndex-1 instead of *PIndex during SM1Get? In rare
// instances this prevents an unnecessary decode down the wrong path followed
// by a backtrack; its pretty cheap to set up initially; and it means the
// SM1Get machine can simply return if/when it finds that Index.
//
// TBD: Wed like to enhance this function to make successive searches faster.
// This would require saving some previous state, including the previous Index
// returned, and in which leaf it was found. If the next call is for the same
// Index and the array has not been modified, start at the same leaf. This
// should be much easier to implement since this is iterative rather than
// recursive code.
//
// VARIATIONS FOR Judy*Next():
//
// The Judy*Next() code is nearly a perfect mirror of the Judy*Prev() code.
// See the Judy*Prev() overview comments, and mentally switch the following:
//
// - "*PIndex-1" => "*PIndex+1"
// - "less than" => "greater than"
// - "lower" => "higher"
// - "lowest" => "highest"
// - "next-left" => "next-right"
// - "right-most" => "left-most"
//
// Note: SM3Findlimit could be called SM3Findmax/SM3Findmin, but a common name
// for both Prev and Next means many fewer ifdefs in this code.
//
// TBD: Currently this code traverses a JP whether its expanse is partially or
// completely full (populated). For Judy1 (only), since there is no value area
// needed, consider shortcutting to a "success" return upon encountering a full
// JP in SM1Get (or even SM3Findlimit?) A full JP looks like this:
//
// (((JU_JPDCDPOP0(Pjp) ^ cJU_ALLONES) & cJU_POP0MASK(cLevel)) == 0)
#ifdef JUDY1
#ifdef JUDYPREV
FUNCTION int Judy1Prev
#else
FUNCTION int Judy1Next
#endif
#else
#ifdef JUDYPREV
FUNCTION PPvoid_t JudyLPrev
#else
FUNCTION PPvoid_t JudyLNext
#endif
#endif
(
Pcvoid_t PArray, // Judy array to search.
Word_t * PIndex, // starting point and result.
PJError_t PJError // optional, for returning error info.
)
{
Pjp_t Pjp, Pjp2; // current JPs.
Pjbl_t Pjbl; // Pjp->jp_Addr masked and cast to types:
Pjbb_t Pjbb;
Pjbu_t Pjbu;
// Note: The following initialization is not strictly required but it makes
// gcc -Wall happy because there is an "impossible" path from Immed handling to
// SM1LeafLImm code that looks like Pjll might be used before set:
Pjll_t Pjll = (Pjll_t) NULL;
Word_t state; // current state in SM.
Word_t digit; // next digit to decode from Index.
// Note: The following initialization is not strictly required but it makes
// gcc -Wall happy because there is an "impossible" path from Immed handling to
// SM1LeafLImm code (for JudyL & JudyPrev only) that looks like pop1 might be
// used before set:
#if (defined(JUDYL) && defined(JUDYPREV))
Word_t pop1 = 0; // in a leaf.
#else
Word_t pop1; // in a leaf.
#endif
int offset; // linear branch/leaf, from j__udySearchLeaf*().
int subexp; // subexpanse in a bitmap branch.
Word_t bitposmask; // bit in bitmap for Index.
// History for SM2Backtrack:
//
// For a given histnum, APjphist[histnum] is a parent JP that points to a
// branch, and Aoffhist[histnum] is the offset of the NEXT JP in the branch to
// which the parent JP points. The meaning of Aoffhist[histnum] depends on the
// type of branch to which the parent JP points:
//
// Linear: Offset of the next JP in the JP list.
//
// Bitmap: Which subexpanse, plus the offset of the next JP in the
// subexpanses JP list (to avoid bit-counting again), plus for Judy*Next(),
// hidden one byte to the left, which digit, because Judy*Next() also needs
// this.
//
// Uncompressed: Digit, which is actually the offset of the JP in the branch.
//
// Note: Only branch JPs are stored in APjphist[] because, as explained
// earlier, SM1Get shortcuts sideways searches in leaves (and even in branches
// in some cases), so SM2Backtrack only handles branches.
#define HISTNUMMAX cJU_ROOTSTATE // maximum branches traversable.
Pjp_t APjphist[HISTNUMMAX]; // list of branch JPs traversed.
int Aoffhist[HISTNUMMAX]; // list of next JP offsets; see above.
int histnum = 0; // number of JPs now in list.
// ----------------------------------------------------------------------------
// M A C R O S
//
// These are intended to make the code a bit more readable and less redundant.
// "PUSH" AND "POP" Pjp AND offset ON HISTORY STACKS:
//
// Note: Ensure a corrupt Judy array does not overflow *hist[]. Meanwhile,
// underflowing *hist[] simply means theres no more room to backtrack =>
// "no previous/next Index".
#define HISTPUSH(Pjp,Offset) \
APjphist[histnum] = (Pjp); \
Aoffhist[histnum] = (Offset); \
\
if (++histnum >= HISTNUMMAX) \
{ \
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT) \
JUDY1CODE(return(JERRI );) \
JUDYLCODE(return(PPJERR);) \
}
#define HISTPOP(Pjp,Offset) \
if ((histnum--) < 1) JU_RET_NOTFOUND; \
(Pjp) = APjphist[histnum]; \
(Offset) = Aoffhist[histnum]
// How to pack/unpack Aoffhist[] values for bitmap branches:
#ifdef JUDYPREV
#define HISTPUSHBOFF(Subexp,Offset,Digit) \
(((Subexp) * cJU_BITSPERSUBEXPB) | (Offset))
#define HISTPOPBOFF(Subexp,Offset,Digit) \
(Subexp) = (Offset) / cJU_BITSPERSUBEXPB; \
(Offset) %= cJU_BITSPERSUBEXPB
#else
#define HISTPUSHBOFF(Subexp,Offset,Digit) \
(((Digit) << cJU_BITSPERBYTE) \
| ((Subexp) * cJU_BITSPERSUBEXPB) | (Offset))
#define HISTPOPBOFF(Subexp,Offset,Digit) \
(Digit) = (Offset) >> cJU_BITSPERBYTE; \
(Subexp) = ((Offset) & JU_LEASTBYTESMASK(1)) / cJU_BITSPERSUBEXPB; \
(Offset) %= cJU_BITSPERSUBEXPB
#endif
// CHECK FOR NULL JP:
#define JPNULL(Type) (((Type) >= cJU_JPNULL1) && ((Type) <= cJU_JPNULLMAX))
// SEARCH A BITMAP:
//
// This is a weak analog of j__udySearchLeaf*() for bitmaps. Return the actual
// or next-left position, base 0, of Digit in the single uint32_t bitmap, also
// given a Bitposmask for Digit.
//
// Unlike j__udySearchLeaf*(), the offset is not returned bit-complemented if
// Digits bit is unset, because the caller can check the bitmap themselves to
// determine that. Also, if Digits bit is unset, the returned offset is to
// the next-left JP (including -1), not to the "ideal" position for the Index =
// next-right JP.
//
// Shortcut and skip calling j__udyCountBits*() if the bitmap is full, in which
// case (Digit % cJU_BITSPERSUBEXP*) itself is the base-0 offset.
//
// TBD for Judy*Next(): Should this return next-right instead of next-left?
// That is, +1 from current value? Maybe not, if Digits bit IS set, +1 would
// be wrong.
#define SEARCHBITMAPB(Bitmap,Digit,Bitposmask) \
(((Bitmap) == cJU_FULLBITMAPB) ? (Digit % cJU_BITSPERSUBEXPB) : \
j__udyCountBitsB((Bitmap) & JU_MASKLOWERINC(Bitposmask)) - 1)
#define SEARCHBITMAPL(Bitmap,Digit,Bitposmask) \
(((Bitmap) == cJU_FULLBITMAPL) ? (Digit % cJU_BITSPERSUBEXPL) : \
j__udyCountBitsL((Bitmap) & JU_MASKLOWERINC(Bitposmask)) - 1)
#ifdef JUDYPREV
// Equivalent to search for the highest offset in Bitmap:
#define SEARCHBITMAPMAXB(Bitmap) \
(((Bitmap) == cJU_FULLBITMAPB) ? cJU_BITSPERSUBEXPB - 1 : \
j__udyCountBitsB(Bitmap) - 1)
#define SEARCHBITMAPMAXL(Bitmap) \
(((Bitmap) == cJU_FULLBITMAPL) ? cJU_BITSPERSUBEXPL - 1 : \
j__udyCountBitsL(Bitmap) - 1)
#endif
// CHECK DECODE BYTES:
//
// Check Decode bytes in a JP against the equivalent portion of *PIndex. If
// *PIndex is lower (for Judy*Prev()) or higher (for Judy*Next()), this JP is a
// dead end (the same as if it had been absent in a linear or bitmap branch or
// null in an uncompressed branch), enter SM2Backtrack; otherwise enter
// SM3Findlimit to find the highest/lowest Index under this JP, as if the code
// had already backtracked to this JP.
#ifdef JUDYPREV
#define CDcmp__ <
#else
#define CDcmp__ >
#endif
#define CHECKDCD(cState) \
if (JU_DCDNOTMATCHINDEX(*PIndex, Pjp, cState)) \
{ \
if ((*PIndex & cJU_DCDMASK(cState)) \
CDcmp__(JU_JPDCDPOP0(Pjp) & cJU_DCDMASK(cState))) \
{ \
goto SM2Backtrack; \
} \
goto SM3Findlimit; \
}
// PREPARE TO HANDLE A LEAFW OR JRP BRANCH IN SM1:
//
// Extract a state-dependent digit from Index in a "constant" way, then jump to
// common code for multiple cases.
#define SM1PREPB(cState,Next) \
state = (cState); \
digit = JU_DIGITATSTATE(*PIndex, cState); \
goto Next
// PREPARE TO HANDLE A LEAFW OR JRP BRANCH IN SM3:
//
// Optionally save Dcd bytes into *PIndex, then save state and jump to common
// code for multiple cases.
#define SM3PREPB_DCD(cState,Next) \
JU_SETDCD(*PIndex, Pjp, cState); \
SM3PREPB(cState,Next)
#define SM3PREPB(cState,Next) state = (cState); goto Next
// ----------------------------------------------------------------------------
// CHECK FOR SHORTCUTS:
//
// Error out if PIndex is null. Execute JU_RET_NOTFOUND if the Judy array is
// empty or *PIndex is already the minimum/maximum Index possible.
//
// Note: As documented, in case of failure *PIndex may be modified.
if (PIndex == (PWord_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_NULLPINDEX);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
#ifdef JUDYPREV
if ((PArray == (Pvoid_t) NULL) || ((*PIndex)-- == 0))
#else
if ((PArray == (Pvoid_t) NULL) || ((*PIndex)++ == cJU_ALLONES))
#endif
JU_RET_NOTFOUND;
// HANDLE JRP:
//
// Before even entering SM1Get, check the JRP type. For JRP branches, traverse
// the JPM; handle LEAFW leaves directly; but look for the most common cases
// first.
// ROOT-STATE LEAF that starts with a Pop0 word; just look within the leaf:
//
// If *PIndex is in the leaf, return it; otherwise return the Index, if any,
// below where it would belong.
if (JU_LEAFW_POP0(PArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
{
Pjlw_t Pjlw = P_JLW(PArray); // first word of leaf.
pop1 = Pjlw[0] + 1;
if ((offset = j__udySearchLeafW(Pjlw + 1, pop1, *PIndex))
>= 0) // Index is present.
{
assert(offset < pop1); // in expected range.
JU_RET_FOUND_LEAFW(Pjlw, pop1, offset); // *PIndex is set.
}
#ifdef JUDYPREV
if ((offset = ~offset) == 0) // no next-left Index.
#else
if ((offset = ~offset) >= pop1) // no next-right Index.
#endif
JU_RET_NOTFOUND;
assert(offset <= pop1); // valid result.
#ifdef JUDYPREV
*PIndex = Pjlw[offset--]; // next-left Index, base 1.
#else
*PIndex = Pjlw[offset + 1]; // next-right Index, base 1.
#endif
JU_RET_FOUND_LEAFW(Pjlw, pop1, offset); // base 0.
}
else // JRP BRANCH
{
Pjpm_t Pjpm = P_JPM(PArray);
Pjp = &(Pjpm->jpm_JP);
// goto SM1Get;
}
// ============================================================================
// STATE MACHINE 1 -- GET INDEX:
//
// Search for *PIndex (already decremented/incremented so as to be inclusive).
// If found, return it. Otherwise in theory hand off to SM2Backtrack or
// SM3Findlimit, but in practice "shortcut" by first sideways searching the
// current branch or leaf upon hitting a dead end. During sideways search,
// modify *PIndex to a new path taken.
//
// ENTRY: Pjp points to next JP to interpret, whose Decode bytes have not yet
// been checked. This JP is not yet listed in history.
//
// Note: Check Decode bytes at the start of each loop, not after looking up a
// new JP, so its easy to do constant shifts/masks, although this requires
// cautious handling of Pjp, offset, and *hist[] for correct entry to
// SM2Backtrack.
//
// EXIT: Return, or branch to SM2Backtrack or SM3Findlimit with correct
// interface, as described elsewhere.
//
// WARNING: For run-time efficiency the following cases replicate code with
// varying constants, rather than using common code with variable values!
SM1Get: // return here for next branch/leaf.
switch (JU_JPTYPE(Pjp))
{
// ----------------------------------------------------------------------------
// LINEAR BRANCH:
//
// Check Decode bytes, if any, in the current JP, then search for a JP for the
// next digit in *PIndex.
case cJU_JPBRANCH_L2: CHECKDCD(2); SM1PREPB(2, SM1BranchL);
case cJU_JPBRANCH_L3: CHECKDCD(3); SM1PREPB(3, SM1BranchL);
#ifdef JU_64BIT
case cJU_JPBRANCH_L4: CHECKDCD(4); SM1PREPB(4, SM1BranchL);
case cJU_JPBRANCH_L5: CHECKDCD(5); SM1PREPB(5, SM1BranchL);
case cJU_JPBRANCH_L6: CHECKDCD(6); SM1PREPB(6, SM1BranchL);
case cJU_JPBRANCH_L7: CHECKDCD(7); SM1PREPB(7, SM1BranchL);
#endif
case cJU_JPBRANCH_L: SM1PREPB(cJU_ROOTSTATE, SM1BranchL);
// Common code (state-independent) for all cases of linear branches:
SM1BranchL:
Pjbl = P_JBL(Pjp->jp_Addr);
// Found JP matching current digit in *PIndex; record parent JP and the next
// JPs offset, and iterate to the next JP:
if ((offset = j__udySearchLeaf1((Pjll_t) (Pjbl->jbl_Expanse),
Pjbl->jbl_NumJPs, digit)) >= 0)
{
HISTPUSH(Pjp, offset);
Pjp = (Pjbl->jbl_jp) + offset;
goto SM1Get;
}
// Dead end, no JP in BranchL for next digit in *PIndex:
//
// Get the ideal location of digits JP, and if theres no next-left/right JP
// in the BranchL, shortcut and start backtracking one level up; ignore the
// current Pjp because it points to a BranchL with no next-left/right JP.
#ifdef JUDYPREV
if ((offset = (~offset) - 1) < 0) // no next-left JP in BranchL.
#else
if ((offset = (~offset)) >= Pjbl->jbl_NumJPs) // no next-right.
#endif
goto SM2Backtrack;
// Theres a next-left/right JP in the current BranchL; save its digit in
// *PIndex and shortcut to SM3Findlimit:
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
Pjp = (Pjbl->jbl_jp) + offset;
goto SM3Findlimit;
// ----------------------------------------------------------------------------
// BITMAP BRANCH:
//
// Check Decode bytes, if any, in the current JP, then look for a JP for the
// next digit in *PIndex.
case cJU_JPBRANCH_B2: CHECKDCD(2); SM1PREPB(2, SM1BranchB);
case cJU_JPBRANCH_B3: CHECKDCD(3); SM1PREPB(3, SM1BranchB);
#ifdef JU_64BIT
case cJU_JPBRANCH_B4: CHECKDCD(4); SM1PREPB(4, SM1BranchB);
case cJU_JPBRANCH_B5: CHECKDCD(5); SM1PREPB(5, SM1BranchB);
case cJU_JPBRANCH_B6: CHECKDCD(6); SM1PREPB(6, SM1BranchB);
case cJU_JPBRANCH_B7: CHECKDCD(7); SM1PREPB(7, SM1BranchB);
#endif
case cJU_JPBRANCH_B: SM1PREPB(cJU_ROOTSTATE, SM1BranchB);
// Common code (state-independent) for all cases of bitmap branches:
SM1BranchB:
Pjbb = P_JBB(Pjp->jp_Addr);
// Locate the digits JP in the subexpanse list, if present, otherwise the
// offset of the next-left JP, if any:
subexp = digit / cJU_BITSPERSUBEXPB;
assert(subexp < cJU_NUMSUBEXPB); // falls in expected range.
bitposmask = JU_BITPOSMASKB(digit);
offset = SEARCHBITMAPB(JU_JBB_BITMAP(Pjbb, subexp), digit,
bitposmask);
// right range:
assert((offset >= -1) && (offset < (int) cJU_BITSPERSUBEXPB));
// Found JP matching current digit in *PIndex:
//
// Record the parent JP and the next JPs offset; and iterate to the next JP.
// if (JU_BITMAPTESTB(Pjbb, digit)) // slower.
if (JU_JBB_BITMAP(Pjbb, subexp) & bitposmask) // faster.
{
// not negative since at least one bit is set:
assert(offset >= 0);
HISTPUSH(Pjp, HISTPUSHBOFF(subexp, offset, digit));
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjp += offset;
goto SM1Get; // iterate to next JP.
}
// Dead end, no JP in BranchB for next digit in *PIndex:
//
// If theres a next-left/right JP in the current BranchB, shortcut to
// SM3Findlimit. Note: offset is already set to the correct value for the
// next-left/right JP.
#ifdef JUDYPREV
if (offset >= 0) // next-left JP is in this subexpanse.
goto SM1BranchBFindlimit;
while (--subexp >= 0) // search next-left subexpanses.
#else
if (JU_JBB_BITMAP(Pjbb, subexp) & JU_MASKHIGHEREXC(bitposmask))
{
++offset; // next-left => next-right.
goto SM1BranchBFindlimit;
}
while (++subexp < cJU_NUMSUBEXPB) // search next-right subexps.
#endif
{
if (! JU_JBB_PJP(Pjbb, subexp)) continue; // empty subexpanse.
#ifdef JUDYPREV
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
// expected range:
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
#else
offset = 0;
#endif
// Save the next-left/right JPs digit in *PIndex:
SM1BranchBFindlimit:
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp),
offset);
JU_SETDIGIT(*PIndex, digit, state);
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjp += offset;
goto SM3Findlimit;
}
// Theres no next-left/right JP in the BranchB:
//
// Shortcut and start backtracking one level up; ignore the current Pjp because
// it points to a BranchB with no next-left/right JP.
goto SM2Backtrack;
// ----------------------------------------------------------------------------
// UNCOMPRESSED BRANCH:
//
// Check Decode bytes, if any, in the current JP, then look for a JP for the
// next digit in *PIndex.
case cJU_JPBRANCH_U2: CHECKDCD(2); SM1PREPB(2, SM1BranchU);
case cJU_JPBRANCH_U3: CHECKDCD(3); SM1PREPB(3, SM1BranchU);
#ifdef JU_64BIT
case cJU_JPBRANCH_U4: CHECKDCD(4); SM1PREPB(4, SM1BranchU);
case cJU_JPBRANCH_U5: CHECKDCD(5); SM1PREPB(5, SM1BranchU);
case cJU_JPBRANCH_U6: CHECKDCD(6); SM1PREPB(6, SM1BranchU);
case cJU_JPBRANCH_U7: CHECKDCD(7); SM1PREPB(7, SM1BranchU);
#endif
case cJU_JPBRANCH_U: SM1PREPB(cJU_ROOTSTATE, SM1BranchU);
// Common code (state-independent) for all cases of uncompressed branches:
SM1BranchU:
Pjbu = P_JBU(Pjp->jp_Addr);
Pjp2 = (Pjbu->jbu_jp) + digit;
// Found JP matching current digit in *PIndex:
//
// Record the parent JP and the next JPs digit, and iterate to the next JP.
//
// TBD: Instead of this, just goto SM1Get, and add cJU_JPNULL* cases to the
// SM1Get state machine? Then backtrack? However, it means you cant detect
// an inappropriate cJU_JPNULL*, when it occurs in other than a BranchU, and
// return JU_RET_CORRUPT.
if (! JPNULL(JU_JPTYPE(Pjp2))) // digit has a JP.
{
HISTPUSH(Pjp, digit);
Pjp = Pjp2;
goto SM1Get;
}
// Dead end, no JP in BranchU for next digit in *PIndex:
//
// Search for a next-left/right JP in the current BranchU, and if one is found,
// save its digit in *PIndex and shortcut to SM3Findlimit:
#ifdef JUDYPREV
while (digit >= 1)
{
Pjp = (Pjbu->jbu_jp) + (--digit);
#else
while (digit < cJU_BRANCHUNUMJPS - 1)
{
Pjp = (Pjbu->jbu_jp) + (++digit);
#endif
if (JPNULL(JU_JPTYPE(Pjp))) continue;
JU_SETDIGIT(*PIndex, digit, state);
goto SM3Findlimit;
}
// Theres no next-left/right JP in the BranchU:
//
// Shortcut and start backtracking one level up; ignore the current Pjp because
// it points to a BranchU with no next-left/right JP.
goto SM2Backtrack;
// ----------------------------------------------------------------------------
// LINEAR LEAF:
//
// Check Decode bytes, if any, in the current JP, then search the leaf for
// *PIndex.
#define SM1LEAFL(Func) \
Pjll = P_JLL(Pjp->jp_Addr); \
pop1 = JU_JPLEAF_POP0(Pjp) + 1; \
offset = Func(Pjll, pop1, *PIndex); \
goto SM1LeafLImm
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1: CHECKDCD(1); SM1LEAFL(j__udySearchLeaf1);
#endif
case cJU_JPLEAF2: CHECKDCD(2); SM1LEAFL(j__udySearchLeaf2);
case cJU_JPLEAF3: CHECKDCD(3); SM1LEAFL(j__udySearchLeaf3);
#ifdef JU_64BIT
case cJU_JPLEAF4: CHECKDCD(4); SM1LEAFL(j__udySearchLeaf4);
case cJU_JPLEAF5: CHECKDCD(5); SM1LEAFL(j__udySearchLeaf5);
case cJU_JPLEAF6: CHECKDCD(6); SM1LEAFL(j__udySearchLeaf6);
case cJU_JPLEAF7: CHECKDCD(7); SM1LEAFL(j__udySearchLeaf7);
#endif
// Common code (state-independent) for all cases of linear leaves and
// immediates:
SM1LeafLImm:
if (offset >= 0) // *PIndex is in LeafL / Immed.
#ifdef JUDY1
JU_RET_FOUND;
#else
{ // JudyL is trickier...
switch (JU_JPTYPE(Pjp))
{
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1: JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
#endif
case cJU_JPLEAF2: JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
case cJU_JPLEAF3: JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
#ifdef JU_64BIT
case cJU_JPLEAF4: JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
case cJU_JPLEAF5: JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
case cJU_JPLEAF6: JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
case cJU_JPLEAF7: JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
#endif
case cJU_JPIMMED_1_01:
case cJU_JPIMMED_2_01:
case cJU_JPIMMED_3_01:
#ifdef JU_64BIT
case cJU_JPIMMED_4_01:
case cJU_JPIMMED_5_01:
case cJU_JPIMMED_6_01:
case cJU_JPIMMED_7_01:
#endif
JU_RET_FOUND_IMM_01(Pjp);
case cJU_JPIMMED_1_02:
case cJU_JPIMMED_1_03:
#ifdef JU_64BIT
case cJU_JPIMMED_1_04:
case cJU_JPIMMED_1_05:
case cJU_JPIMMED_1_06:
case cJU_JPIMMED_1_07:
case cJU_JPIMMED_2_02:
case cJU_JPIMMED_2_03:
case cJU_JPIMMED_3_02:
#endif
JU_RET_FOUND_IMM(Pjp, offset);
}
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // impossible?
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // found *PIndex
#endif // JUDYL
// Dead end, no Index in LeafL / Immed for remaining digit(s) in *PIndex:
//
// Get the ideal location of Index, and if theres no next-left/right Index in
// the LeafL / Immed, shortcut and start backtracking one level up; ignore the
// current Pjp because it points to a LeafL / Immed with no next-left/right
// Index.
#ifdef JUDYPREV
if ((offset = (~offset) - 1) < 0) // no next-left Index.
#else
if ((offset = (~offset)) >= pop1) // no next-right Index.
#endif
goto SM2Backtrack;
// Theres a next-left/right Index in the current LeafL / Immed; shortcut by
// copying its digit(s) to *PIndex and returning it.
//
// Unfortunately this is pretty hairy, especially avoiding endian issues.
//
// The cJU_JPLEAF* cases are very similar to same-index-size cJU_JPIMMED* cases
// for *_02 and above, but must return differently, at least for JudyL, so
// spell them out separately here at the cost of a little redundant code for
// Judy1.
switch (JU_JPTYPE(Pjp))
{
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1:
JU_SETDIGIT1(*PIndex, ((uint8_t *) Pjll)[offset]);
JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
#endif
case cJU_JPLEAF2:
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) Pjll)[offset];
JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
case cJU_JPLEAF3:
{
Word_t lsb;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
}
#ifdef JU_64BIT
case cJU_JPLEAF4:
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) Pjll)[offset];
JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
case cJU_JPLEAF5:
{
Word_t lsb;
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
}
case cJU_JPLEAF6:
{
Word_t lsb;
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
}
case cJU_JPLEAF7:
{
Word_t lsb;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
}
#endif // JU_64BIT
#define SET_01(cState) JU_SETDIGITS(*PIndex, JU_JPDCDPOP0(Pjp), cState)
case cJU_JPIMMED_1_01: SET_01(1); goto SM1Imm_01;
case cJU_JPIMMED_2_01: SET_01(2); goto SM1Imm_01;
case cJU_JPIMMED_3_01: SET_01(3); goto SM1Imm_01;
#ifdef JU_64BIT
case cJU_JPIMMED_4_01: SET_01(4); goto SM1Imm_01;
case cJU_JPIMMED_5_01: SET_01(5); goto SM1Imm_01;
case cJU_JPIMMED_6_01: SET_01(6); goto SM1Imm_01;
case cJU_JPIMMED_7_01: SET_01(7); goto SM1Imm_01;
#endif
SM1Imm_01: JU_RET_FOUND_IMM_01(Pjp);
// Shorthand for where to find start of Index bytes array:
#ifdef JUDY1
#define PJI (Pjp->jp_1Index)
#else
#define PJI (Pjp->jp_LIndex)
#endif
case cJU_JPIMMED_1_02:
case cJU_JPIMMED_1_03:
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_04:
case cJU_JPIMMED_1_05:
case cJU_JPIMMED_1_06:
case cJU_JPIMMED_1_07:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_08:
case cJ1_JPIMMED_1_09:
case cJ1_JPIMMED_1_10:
case cJ1_JPIMMED_1_11:
case cJ1_JPIMMED_1_12:
case cJ1_JPIMMED_1_13:
case cJ1_JPIMMED_1_14:
case cJ1_JPIMMED_1_15:
#endif
JU_SETDIGIT1(*PIndex, ((uint8_t *) PJI)[offset]);
JU_RET_FOUND_IMM(Pjp, offset);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02:
case cJU_JPIMMED_2_03:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_04:
case cJ1_JPIMMED_2_05:
case cJ1_JPIMMED_2_06:
case cJ1_JPIMMED_2_07:
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_03:
case cJ1_JPIMMED_3_04:
case cJ1_JPIMMED_3_05:
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
{
Word_t lsb;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_4_02:
case cJ1_JPIMMED_4_03:
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
case cJ1_JPIMMED_5_02:
case cJ1_JPIMMED_5_03:
{
Word_t lsb;
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_6_02:
{
Word_t lsb;
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_7_02:
{
Word_t lsb;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif // (JUDY1 && JU_64BIT)
} // switch for not-found *PIndex
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // impossible?
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
// ----------------------------------------------------------------------------
// BITMAP LEAF:
//
// Check Decode bytes, if any, in the current JP, then look in the leaf for
// *PIndex.
case cJU_JPLEAF_B1:
{
Pjlb_t Pjlb;
CHECKDCD(1);
Pjlb = P_JLB(Pjp->jp_Addr);
digit = JU_DIGITATSTATE(*PIndex, 1);
subexp = JU_SUBEXPL(digit);
bitposmask = JU_BITPOSMASKL(digit);
assert(subexp < cJU_NUMSUBEXPL); // falls in expected range.
// *PIndex exists in LeafB1:
// if (JU_BITMAPTESTL(Pjlb, digit)) // slower.
if (JU_JLB_BITMAP(Pjlb, subexp) & bitposmask) // faster.
{
#ifdef JUDYL // needs offset at this point:
offset = SEARCHBITMAPL(JU_JLB_BITMAP(Pjlb, subexp), digit, bitposmask);
#endif
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
}
// Dead end, no Index in LeafB1 for remaining digit in *PIndex:
//
// If theres a next-left/right Index in the current LeafB1, which for
// Judy*Next() is true if any bits are set for higher Indexes, shortcut by
// returning it. Note: For Judy*Prev(), offset is set here to the correct
// value for the next-left JP.
offset = SEARCHBITMAPL(JU_JLB_BITMAP(Pjlb, subexp), digit,
bitposmask);
// right range:
assert((offset >= -1) && (offset < (int) cJU_BITSPERSUBEXPL));
#ifdef JUDYPREV
if (offset >= 0) // next-left JP is in this subexpanse.
goto SM1LeafB1Findlimit;
while (--subexp >= 0) // search next-left subexpanses.
#else
if (JU_JLB_BITMAP(Pjlb, subexp) & JU_MASKHIGHEREXC(bitposmask))
{
++offset; // next-left => next-right.
goto SM1LeafB1Findlimit;
}
while (++subexp < cJU_NUMSUBEXPL) // search next-right subexps.
#endif
{
if (! JU_JLB_BITMAP(Pjlb, subexp)) continue; // empty subexp.
#ifdef JUDYPREV
offset = SEARCHBITMAPMAXL(JU_JLB_BITMAP(Pjlb, subexp));
// expected range:
assert((offset >= 0) && (offset < (int) cJU_BITSPERSUBEXPL));
#else
offset = 0;
#endif
// Save the next-left/right Indexess digit in *PIndex:
SM1LeafB1Findlimit:
JU_BITMAPDIGITL(digit, subexp, JU_JLB_BITMAP(Pjlb, subexp), offset);
JU_SETDIGIT1(*PIndex, digit);
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
}
// Theres no next-left/right Index in the LeafB1:
//
// Shortcut and start backtracking one level up; ignore the current Pjp because
// it points to a LeafB1 with no next-left/right Index.
goto SM2Backtrack;
} // case cJU_JPLEAF_B1
#ifdef JUDY1
// ----------------------------------------------------------------------------
// FULL POPULATION:
//
// If the Decode bytes match, *PIndex is found (without modification).
case cJ1_JPFULLPOPU1:
CHECKDCD(1);
JU_RET_FOUND_FULLPOPU1;
#endif
// ----------------------------------------------------------------------------
// IMMEDIATE:
#ifdef JUDYPREV
#define SM1IMM_SETPOP1(cPop1)
#else
#define SM1IMM_SETPOP1(cPop1) pop1 = (cPop1)
#endif
#define SM1IMM(Func,cPop1) \
SM1IMM_SETPOP1(cPop1); \
offset = Func((Pjll_t) (PJI), cPop1, *PIndex); \
goto SM1LeafLImm
// Special case for Pop1 = 1 Immediate JPs:
//
// If *PIndex is in the immediate, offset is 0, otherwise the binary NOT of the
// offset where it belongs, 0 or 1, same as from the search functions.
#ifdef JUDYPREV
#define SM1IMM_01_SETPOP1
#else
#define SM1IMM_01_SETPOP1 pop1 = 1
#endif
#define SM1IMM_01 \
SM1IMM_01_SETPOP1; \
offset = ((JU_JPDCDPOP0(Pjp) < JU_TRIMTODCDSIZE(*PIndex)) ? ~1 : \
(JU_JPDCDPOP0(Pjp) == JU_TRIMTODCDSIZE(*PIndex)) ? 0 : \
~0); \
goto SM1LeafLImm
case cJU_JPIMMED_1_01:
case cJU_JPIMMED_2_01:
case cJU_JPIMMED_3_01:
#ifdef JU_64BIT
case cJU_JPIMMED_4_01:
case cJU_JPIMMED_5_01:
case cJU_JPIMMED_6_01:
case cJU_JPIMMED_7_01:
#endif
SM1IMM_01;
// TBD: Doug says it would be OK to have fewer calls and calculate arg 2, here
// and in Judy*Count() also.
case cJU_JPIMMED_1_02: SM1IMM(j__udySearchLeaf1, 2);
case cJU_JPIMMED_1_03: SM1IMM(j__udySearchLeaf1, 3);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_04: SM1IMM(j__udySearchLeaf1, 4);
case cJU_JPIMMED_1_05: SM1IMM(j__udySearchLeaf1, 5);
case cJU_JPIMMED_1_06: SM1IMM(j__udySearchLeaf1, 6);
case cJU_JPIMMED_1_07: SM1IMM(j__udySearchLeaf1, 7);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_08: SM1IMM(j__udySearchLeaf1, 8);
case cJ1_JPIMMED_1_09: SM1IMM(j__udySearchLeaf1, 9);
case cJ1_JPIMMED_1_10: SM1IMM(j__udySearchLeaf1, 10);
case cJ1_JPIMMED_1_11: SM1IMM(j__udySearchLeaf1, 11);
case cJ1_JPIMMED_1_12: SM1IMM(j__udySearchLeaf1, 12);
case cJ1_JPIMMED_1_13: SM1IMM(j__udySearchLeaf1, 13);
case cJ1_JPIMMED_1_14: SM1IMM(j__udySearchLeaf1, 14);
case cJ1_JPIMMED_1_15: SM1IMM(j__udySearchLeaf1, 15);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02: SM1IMM(j__udySearchLeaf2, 2);
case cJU_JPIMMED_2_03: SM1IMM(j__udySearchLeaf2, 3);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_04: SM1IMM(j__udySearchLeaf2, 4);
case cJ1_JPIMMED_2_05: SM1IMM(j__udySearchLeaf2, 5);
case cJ1_JPIMMED_2_06: SM1IMM(j__udySearchLeaf2, 6);
case cJ1_JPIMMED_2_07: SM1IMM(j__udySearchLeaf2, 7);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02: SM1IMM(j__udySearchLeaf3, 2);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_03: SM1IMM(j__udySearchLeaf3, 3);
case cJ1_JPIMMED_3_04: SM1IMM(j__udySearchLeaf3, 4);
case cJ1_JPIMMED_3_05: SM1IMM(j__udySearchLeaf3, 5);
case cJ1_JPIMMED_4_02: SM1IMM(j__udySearchLeaf4, 2);
case cJ1_JPIMMED_4_03: SM1IMM(j__udySearchLeaf4, 3);
case cJ1_JPIMMED_5_02: SM1IMM(j__udySearchLeaf5, 2);
case cJ1_JPIMMED_5_03: SM1IMM(j__udySearchLeaf5, 3);
case cJ1_JPIMMED_6_02: SM1IMM(j__udySearchLeaf6, 2);
case cJ1_JPIMMED_7_02: SM1IMM(j__udySearchLeaf7, 2);
#endif
// ----------------------------------------------------------------------------
// INVALID JP TYPE:
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // SM1Get switch.
/*NOTREACHED*/
// ============================================================================
// STATE MACHINE 2 -- BACKTRACK BRANCH TO PREVIOUS JP:
//
// Look for the next-left/right JP in a branch, backing up the history list as
// necessary. Upon finding a next-left/right JP, modify the corresponding
// digit in *PIndex before passing control to SM3Findlimit.
//
// Note: As described earlier, only branch JPs are expected here; other types
// fall into the default case.
//
// Note: If a found JP contains needed Dcd bytes, thats OK, theyre copied to
// *PIndex in SM3Findlimit.
//
// TBD: This code has a lot in common with similar code in the shortcut cases
// in SM1Get. Can combine this code somehow?
//
// ENTRY: List, possibly empty, of JPs and offsets in APjphist[] and
// Aoffhist[]; see earlier comments.
//
// EXIT: Execute JU_RET_NOTFOUND if no previous/next JP; otherwise jump to
// SM3Findlimit to resume a new but different downward search.
SM2Backtrack: // come or return here for first/next sideways search.
HISTPOP(Pjp, offset);
switch (JU_JPTYPE(Pjp))
{
// ----------------------------------------------------------------------------
// LINEAR BRANCH:
case cJU_JPBRANCH_L2: state = 2; goto SM2BranchL;
case cJU_JPBRANCH_L3: state = 3; goto SM2BranchL;
#ifdef JU_64BIT
case cJU_JPBRANCH_L4: state = 4; goto SM2BranchL;
case cJU_JPBRANCH_L5: state = 5; goto SM2BranchL;
case cJU_JPBRANCH_L6: state = 6; goto SM2BranchL;
case cJU_JPBRANCH_L7: state = 7; goto SM2BranchL;
#endif
case cJU_JPBRANCH_L: state = cJU_ROOTSTATE; goto SM2BranchL;
SM2BranchL:
#ifdef JUDYPREV
if (--offset < 0) goto SM2Backtrack; // no next-left JP in BranchL.
#endif
Pjbl = P_JBL(Pjp->jp_Addr);
#ifdef JUDYNEXT
if (++offset >= (Pjbl->jbl_NumJPs)) goto SM2Backtrack;
// no next-right JP in BranchL.
#endif
// Theres a next-left/right JP in the current BranchL; save its digit in
// *PIndex and continue with SM3Findlimit:
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
Pjp = (Pjbl->jbl_jp) + offset;
goto SM3Findlimit;
// ----------------------------------------------------------------------------
// BITMAP BRANCH:
case cJU_JPBRANCH_B2: state = 2; goto SM2BranchB;
case cJU_JPBRANCH_B3: state = 3; goto SM2BranchB;
#ifdef JU_64BIT
case cJU_JPBRANCH_B4: state = 4; goto SM2BranchB;
case cJU_JPBRANCH_B5: state = 5; goto SM2BranchB;
case cJU_JPBRANCH_B6: state = 6; goto SM2BranchB;
case cJU_JPBRANCH_B7: state = 7; goto SM2BranchB;
#endif
case cJU_JPBRANCH_B: state = cJU_ROOTSTATE; goto SM2BranchB;
SM2BranchB:
Pjbb = P_JBB(Pjp->jp_Addr);
HISTPOPBOFF(subexp, offset, digit); // unpack values.
// If theres a next-left/right JP in the current BranchB, which for
// Judy*Next() is true if any bits are set for higher Indexes, continue to
// SM3Findlimit:
//
// Note: offset is set to the JP previously traversed; go one to the
// left/right.
#ifdef JUDYPREV
if (offset > 0) // next-left JP is in this subexpanse.
{
--offset;
goto SM2BranchBFindlimit;
}
while (--subexp >= 0) // search next-left subexpanses.
#else
if (JU_JBB_BITMAP(Pjbb, subexp)
& JU_MASKHIGHEREXC(JU_BITPOSMASKB(digit)))
{
++offset; // next-left => next-right.
goto SM2BranchBFindlimit;
}
while (++subexp < cJU_NUMSUBEXPB) // search next-right subexps.
#endif
{
if (! JU_JBB_PJP(Pjbb, subexp)) continue; // empty subexpanse.
#ifdef JUDYPREV
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
// expected range:
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
#else
offset = 0;
#endif
// Save the next-left/right JPs digit in *PIndex:
SM2BranchBFindlimit:
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp),
offset);
JU_SETDIGIT(*PIndex, digit, state);
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjp += offset;
goto SM3Findlimit;
}
// Theres no next-left/right JP in the BranchB:
goto SM2Backtrack;
// ----------------------------------------------------------------------------
// UNCOMPRESSED BRANCH:
case cJU_JPBRANCH_U2: state = 2; goto SM2BranchU;
case cJU_JPBRANCH_U3: state = 3; goto SM2BranchU;
#ifdef JU_64BIT
case cJU_JPBRANCH_U4: state = 4; goto SM2BranchU;
case cJU_JPBRANCH_U5: state = 5; goto SM2BranchU;
case cJU_JPBRANCH_U6: state = 6; goto SM2BranchU;
case cJU_JPBRANCH_U7: state = 7; goto SM2BranchU;
#endif
case cJU_JPBRANCH_U: state = cJU_ROOTSTATE; goto SM2BranchU;
SM2BranchU:
// Search for a next-left/right JP in the current BranchU, and if one is found,
// save its digit in *PIndex and continue to SM3Findlimit:
Pjbu = P_JBU(Pjp->jp_Addr);
digit = offset;
#ifdef JUDYPREV
while (digit >= 1)
{
Pjp = (Pjbu->jbu_jp) + (--digit);
#else
while (digit < cJU_BRANCHUNUMJPS - 1)
{
Pjp = (Pjbu->jbu_jp) + (++digit);
#endif
if (JPNULL(JU_JPTYPE(Pjp))) continue;
JU_SETDIGIT(*PIndex, digit, state);
goto SM3Findlimit;
}
// Theres no next-left/right JP in the BranchU:
goto SM2Backtrack;
// ----------------------------------------------------------------------------
// INVALID JP TYPE:
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // SM2Backtrack switch.
/*NOTREACHED*/
// ============================================================================
// STATE MACHINE 3 -- FIND LIMIT JP/INDEX:
//
// Look for the highest/lowest (right/left-most) JP in each branch and the
// highest/lowest Index in a leaf or immediate, and return it. While
// traversing, modify appropriate digit(s) in *PIndex to reflect the path
// taken, including Dcd bytes in each JP (which could hold critical missing
// digits for skipped branches).
//
// ENTRY: Pjp set to a JP under which to find max/min JPs (if a branch JP) or
// a max/min Index and return (if a leaf or immediate JP).
//
// EXIT: Execute JU_RET_FOUND* upon reaching a leaf or immediate. Should be
// impossible to fail, unless the Judy array is corrupt.
SM3Findlimit: // come or return here for first/next branch/leaf.
switch (JU_JPTYPE(Pjp))
{
// ----------------------------------------------------------------------------
// LINEAR BRANCH:
//
// Simply use the highest/lowest (right/left-most) JP in the BranchL, but first
// copy the Dcd bytes to *PIndex if there are any (only if state <
// cJU_ROOTSTATE - 1).
case cJU_JPBRANCH_L2: SM3PREPB_DCD(2, SM3BranchL);
#ifndef JU_64BIT
case cJU_JPBRANCH_L3: SM3PREPB( 3, SM3BranchL);
#else
case cJU_JPBRANCH_L3: SM3PREPB_DCD(3, SM3BranchL);
case cJU_JPBRANCH_L4: SM3PREPB_DCD(4, SM3BranchL);
case cJU_JPBRANCH_L5: SM3PREPB_DCD(5, SM3BranchL);
case cJU_JPBRANCH_L6: SM3PREPB_DCD(6, SM3BranchL);
case cJU_JPBRANCH_L7: SM3PREPB( 7, SM3BranchL);
#endif
case cJU_JPBRANCH_L: SM3PREPB( cJU_ROOTSTATE, SM3BranchL);
SM3BranchL:
Pjbl = P_JBL(Pjp->jp_Addr);
#ifdef JUDYPREV
if ((offset = (Pjbl->jbl_NumJPs) - 1) < 0)
#else
offset = 0; if ((Pjbl->jbl_NumJPs) == 0)
#endif
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
Pjp = (Pjbl->jbl_jp) + offset;
goto SM3Findlimit;
// ----------------------------------------------------------------------------
// BITMAP BRANCH:
//
// Look for the highest/lowest (right/left-most) non-null subexpanse, then use
// the highest/lowest JP in that subexpanse, but first copy Dcd bytes, if there
// are any (only if state < cJU_ROOTSTATE - 1), to *PIndex.
case cJU_JPBRANCH_B2: SM3PREPB_DCD(2, SM3BranchB);
#ifndef JU_64BIT
case cJU_JPBRANCH_B3: SM3PREPB( 3, SM3BranchB);
#else
case cJU_JPBRANCH_B3: SM3PREPB_DCD(3, SM3BranchB);
case cJU_JPBRANCH_B4: SM3PREPB_DCD(4, SM3BranchB);
case cJU_JPBRANCH_B5: SM3PREPB_DCD(5, SM3BranchB);
case cJU_JPBRANCH_B6: SM3PREPB_DCD(6, SM3BranchB);
case cJU_JPBRANCH_B7: SM3PREPB( 7, SM3BranchB);
#endif
case cJU_JPBRANCH_B: SM3PREPB( cJU_ROOTSTATE, SM3BranchB);
SM3BranchB:
Pjbb = P_JBB(Pjp->jp_Addr);
#ifdef JUDYPREV
subexp = cJU_NUMSUBEXPB;
while (! (JU_JBB_BITMAP(Pjbb, --subexp))) // find non-empty subexp.
{
if (subexp <= 0) // wholly empty bitmap.
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
}
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
// expected range:
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
#else
subexp = -1;
while (! (JU_JBB_BITMAP(Pjbb, ++subexp))) // find non-empty subexp.
{
if (subexp >= cJU_NUMSUBEXPB - 1) // didnt find one.
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
}
offset = 0;
#endif
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp), offset);
JU_SETDIGIT(*PIndex, digit, state);
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjp += offset;
goto SM3Findlimit;
// ----------------------------------------------------------------------------
// UNCOMPRESSED BRANCH:
//
// Look for the highest/lowest (right/left-most) non-null JP, and use it, but
// first copy Dcd bytes to *PIndex if there are any (only if state <
// cJU_ROOTSTATE - 1).
case cJU_JPBRANCH_U2: SM3PREPB_DCD(2, SM3BranchU);
#ifndef JU_64BIT
case cJU_JPBRANCH_U3: SM3PREPB( 3, SM3BranchU);
#else
case cJU_JPBRANCH_U3: SM3PREPB_DCD(3, SM3BranchU);
case cJU_JPBRANCH_U4: SM3PREPB_DCD(4, SM3BranchU);
case cJU_JPBRANCH_U5: SM3PREPB_DCD(5, SM3BranchU);
case cJU_JPBRANCH_U6: SM3PREPB_DCD(6, SM3BranchU);
case cJU_JPBRANCH_U7: SM3PREPB( 7, SM3BranchU);
#endif
case cJU_JPBRANCH_U: SM3PREPB( cJU_ROOTSTATE, SM3BranchU);
SM3BranchU:
Pjbu = P_JBU(Pjp->jp_Addr);
#ifdef JUDYPREV
digit = cJU_BRANCHUNUMJPS;
while (digit >= 1)
{
Pjp = (Pjbu->jbu_jp) + (--digit);
#else
for (digit = 0; digit < cJU_BRANCHUNUMJPS; ++digit)
{
Pjp = (Pjbu->jbu_jp) + digit;
#endif
if (JPNULL(JU_JPTYPE(Pjp))) continue;
JU_SETDIGIT(*PIndex, digit, state);
goto SM3Findlimit;
}
// No non-null JPs in BranchU:
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
// ----------------------------------------------------------------------------
// LINEAR LEAF:
//
// Simply use the highest/lowest (right/left-most) Index in the LeafL, but the
// details vary depending on leaf Index Size. First copy Dcd bytes, if there
// are any (only if state < cJU_ROOTSTATE - 1), to *PIndex.
#define SM3LEAFLDCD(cState) \
JU_SETDCD(*PIndex, Pjp, cState); \
SM3LEAFLNODCD
#ifdef JUDY1
#define SM3LEAFL_SETPOP1 // not needed in any cases.
#else
#define SM3LEAFL_SETPOP1 pop1 = JU_JPLEAF_POP0(Pjp) + 1
#endif
#ifdef JUDYPREV
#define SM3LEAFLNODCD \
Pjll = P_JLL(Pjp->jp_Addr); \
SM3LEAFL_SETPOP1; \
offset = JU_JPLEAF_POP0(Pjp); assert(offset >= 0)
#else
#define SM3LEAFLNODCD \
Pjll = P_JLL(Pjp->jp_Addr); \
SM3LEAFL_SETPOP1; \
offset = 0; assert(JU_JPLEAF_POP0(Pjp) >= 0);
#endif
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1:
SM3LEAFLDCD(1);
JU_SETDIGIT1(*PIndex, ((uint8_t *) Pjll)[offset]);
JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
#endif
case cJU_JPLEAF2:
SM3LEAFLDCD(2);
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) Pjll)[offset];
JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
#ifndef JU_64BIT
case cJU_JPLEAF3:
{
Word_t lsb;
SM3LEAFLNODCD;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
}
#else
case cJU_JPLEAF3:
{
Word_t lsb;
SM3LEAFLDCD(3);
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
}
case cJU_JPLEAF4:
SM3LEAFLDCD(4);
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) Pjll)[offset];
JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
case cJU_JPLEAF5:
{
Word_t lsb;
SM3LEAFLDCD(5);
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
}
case cJU_JPLEAF6:
{
Word_t lsb;
SM3LEAFLDCD(6);
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
}
case cJU_JPLEAF7:
{
Word_t lsb;
SM3LEAFLNODCD;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
}
#endif
// ----------------------------------------------------------------------------
// BITMAP LEAF:
//
// Look for the highest/lowest (right/left-most) non-null subexpanse, then use
// the highest/lowest Index in that subexpanse, but first copy Dcd bytes
// (always present since state 1 < cJU_ROOTSTATE) to *PIndex.
case cJU_JPLEAF_B1:
{
Pjlb_t Pjlb;
JU_SETDCD(*PIndex, Pjp, 1);
Pjlb = P_JLB(Pjp->jp_Addr);
#ifdef JUDYPREV
subexp = cJU_NUMSUBEXPL;
while (! JU_JLB_BITMAP(Pjlb, --subexp)) // find non-empty subexp.
{
if (subexp <= 0) // wholly empty bitmap.
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
}
// TBD: Might it be faster to just use a variant of BITMAPDIGIT*() that yields
// the digit for the right-most Index with a bit set?
offset = SEARCHBITMAPMAXL(JU_JLB_BITMAP(Pjlb, subexp));
// expected range:
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPL));
#else
subexp = -1;
while (! JU_JLB_BITMAP(Pjlb, ++subexp)) // find non-empty subexp.
{
if (subexp >= cJU_NUMSUBEXPL - 1) // didnt find one.
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
}
offset = 0;
#endif
JU_BITMAPDIGITL(digit, subexp, JU_JLB_BITMAP(Pjlb, subexp), offset);
JU_SETDIGIT1(*PIndex, digit);
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
} // case cJU_JPLEAF_B1
#ifdef JUDY1
// ----------------------------------------------------------------------------
// FULL POPULATION:
//
// Copy Dcd bytes to *PIndex (always present since state 1 < cJU_ROOTSTATE),
// then set the highest/lowest possible digit as the LSB in *PIndex.
case cJ1_JPFULLPOPU1:
JU_SETDCD( *PIndex, Pjp, 1);
#ifdef JUDYPREV
JU_SETDIGIT1(*PIndex, cJU_BITSPERBITMAP - 1);
#else
JU_SETDIGIT1(*PIndex, 0);
#endif
JU_RET_FOUND_FULLPOPU1;
#endif // JUDY1
// ----------------------------------------------------------------------------
// IMMEDIATE:
//
// Simply use the highest/lowest (right/left-most) Index in the Imm, but the
// details vary depending on leaf Index Size and pop1. Note: There are no Dcd
// bytes in an Immediate JP, but in a cJU_JPIMMED_*_01 JP, the field holds the
// least bytes of the immediate Index.
case cJU_JPIMMED_1_01: SET_01(1); goto SM3Imm_01;
case cJU_JPIMMED_2_01: SET_01(2); goto SM3Imm_01;
case cJU_JPIMMED_3_01: SET_01(3); goto SM3Imm_01;
#ifdef JU_64BIT
case cJU_JPIMMED_4_01: SET_01(4); goto SM3Imm_01;
case cJU_JPIMMED_5_01: SET_01(5); goto SM3Imm_01;
case cJU_JPIMMED_6_01: SET_01(6); goto SM3Imm_01;
case cJU_JPIMMED_7_01: SET_01(7); goto SM3Imm_01;
#endif
SM3Imm_01: JU_RET_FOUND_IMM_01(Pjp);
#ifdef JUDYPREV
#define SM3IMM_OFFSET(cPop1) (cPop1) - 1 // highest.
#else
#define SM3IMM_OFFSET(cPop1) 0 // lowest.
#endif
#define SM3IMM(cPop1,Next) \
offset = SM3IMM_OFFSET(cPop1); \
goto Next
case cJU_JPIMMED_1_02: SM3IMM( 2, SM3Imm1);
case cJU_JPIMMED_1_03: SM3IMM( 3, SM3Imm1);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_04: SM3IMM( 4, SM3Imm1);
case cJU_JPIMMED_1_05: SM3IMM( 5, SM3Imm1);
case cJU_JPIMMED_1_06: SM3IMM( 6, SM3Imm1);
case cJU_JPIMMED_1_07: SM3IMM( 7, SM3Imm1);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_08: SM3IMM( 8, SM3Imm1);
case cJ1_JPIMMED_1_09: SM3IMM( 9, SM3Imm1);
case cJ1_JPIMMED_1_10: SM3IMM(10, SM3Imm1);
case cJ1_JPIMMED_1_11: SM3IMM(11, SM3Imm1);
case cJ1_JPIMMED_1_12: SM3IMM(12, SM3Imm1);
case cJ1_JPIMMED_1_13: SM3IMM(13, SM3Imm1);
case cJ1_JPIMMED_1_14: SM3IMM(14, SM3Imm1);
case cJ1_JPIMMED_1_15: SM3IMM(15, SM3Imm1);
#endif
SM3Imm1: JU_SETDIGIT1(*PIndex, ((uint8_t *) PJI)[offset]);
JU_RET_FOUND_IMM(Pjp, offset);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02: SM3IMM(2, SM3Imm2);
case cJU_JPIMMED_2_03: SM3IMM(3, SM3Imm2);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_04: SM3IMM(4, SM3Imm2);
case cJ1_JPIMMED_2_05: SM3IMM(5, SM3Imm2);
case cJ1_JPIMMED_2_06: SM3IMM(6, SM3Imm2);
case cJ1_JPIMMED_2_07: SM3IMM(7, SM3Imm2);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
SM3Imm2: *PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02: SM3IMM(2, SM3Imm3);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_03: SM3IMM(3, SM3Imm3);
case cJ1_JPIMMED_3_04: SM3IMM(4, SM3Imm3);
case cJ1_JPIMMED_3_05: SM3IMM(5, SM3Imm3);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
SM3Imm3:
{
Word_t lsb;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_4_02: SM3IMM(2, SM3Imm4);
case cJ1_JPIMMED_4_03: SM3IMM(3, SM3Imm4);
SM3Imm4: *PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
case cJ1_JPIMMED_5_02: SM3IMM(2, SM3Imm5);
case cJ1_JPIMMED_5_03: SM3IMM(3, SM3Imm5);
SM3Imm5:
{
Word_t lsb;
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_6_02: SM3IMM(2, SM3Imm6);
SM3Imm6:
{
Word_t lsb;
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_7_02: SM3IMM(2, SM3Imm7);
SM3Imm7:
{
Word_t lsb;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif // (JUDY1 && JU_64BIT)
// ----------------------------------------------------------------------------
// OTHER CASES:
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // SM3Findlimit switch.
/*NOTREACHED*/
} // Judy1Prev() / Judy1Next() / JudyLPrev() / JudyLNext()
|