summaryrefslogtreecommitdiffstats
path: root/libnetdata/libjudy/src/JudyL/JudyLNextEmpty.c
blob: 4da43565d2003137d9ebdf316e744fe0d6c71252 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
// Copyright (C) 2000 - 2002 Hewlett-Packard Company
//
// This program is free software; you can redistribute it and/or modify it
// under the term of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License
// for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
// _________________

// @(#) $Revision: 4.32 $ $Source: /judy/src/JudyCommon/JudyPrevNextEmpty.c $
//
// Judy*PrevEmpty() and Judy*NextEmpty() functions for Judy1 and JudyL.
// Compile with one of -DJUDY1 or -DJUDYL.
//
// Compile with -DJUDYNEXT for the Judy*NextEmpty() function; otherwise
// defaults to Judy*PrevEmpty().
//
// Compile with -DTRACEJPSE to trace JP traversals.
//
// This file is separate from JudyPrevNext.c because it differs too greatly for
// ifdefs.  This might be a bit surprising, but there are two reasons:
//
// - First, down in the details, searching for an empty index (SearchEmpty) is
//   remarkably asymmetric with searching for a valid index (SearchValid),
//   mainly with respect to:  No return of a value area for JudyL; partially-
//   full versus totally-full JPs; and handling of narrow pointers.
//
// - Second, we chose to implement SearchEmpty without a backtrack stack or
//   backtrack engine, partly as an experiment, and partly because we think
//   restarting from the top of the tree is less likely for SearchEmpty than
//   for SearchValid, because empty indexes are more likely than valid indexes.
//
// A word about naming:  A prior version of this feature (see 4.13) was named
// Judy*Free(), but there were concerns about that being read as a verb rather
// than an adjective.  After prolonged debate and based on user input, we
// changed "Free" to "Empty".

#if (! (defined(JUDY1) || defined(JUDYL)))
#error:  One of -DJUDY1 or -DJUDYL must be specified.
#endif

#ifndef JUDYNEXT
#ifndef JUDYPREV
#define	JUDYPREV 1		// neither set => use default.
#endif
#endif

#ifdef JUDY1
#include "Judy1.h"
#else
#include "JudyL.h"
#endif

#include "JudyPrivate1L.h"

#ifdef TRACEJPSE
#include "JudyPrintJP.c"
#endif


// ****************************************************************************
// J U D Y   1   P R E V   E M P T Y
// J U D Y   1   N E X T   E M P T Y
// J U D Y   L   P R E V   E M P T Y
// J U D Y   L   N E X T   E M P T Y
//
// See the manual entry for the API.
//
// OVERVIEW OF Judy*PrevEmpty() / Judy*NextEmpty():
//
// See also for comparison the equivalent comments in JudyPrevNext.c.
//
// Take the callers *PIndex and subtract/add 1, but watch out for
// underflow/overflow, which means "no previous/next empty index found."  Use a
// reentrant switch statement (state machine, see SMGetRestart and
// SMGetContinue) to decode Index, starting with the JRP (PArray), through a
// JPM and branches, if any, down to an immediate or a leaf.  Look for Index in
// that immediate or leaf, and if not found (invalid index), return success
// (Index is empty).
//
// This search can result in a dead end where taking a different path is
// required.  There are four kinds of dead ends:
//
// BRANCH PRIMARY dead end:  Encountering a fully-populated JP for the
// appropriate digit in Index.  Search sideways in the branch for the
// previous/next absent/null/non-full JP, and if one is found, set Index to the
// highest/lowest index possible in that JPs expanse.  Then if the JP is an
// absent or null JP, return success; otherwise for a non-full JP, traverse
// through the partially populated JP.
//
// BRANCH SECONDARY dead end:  Reaching the end of a branch during a sideways
// search after a branch primary dead end.  Set Index to the lowest/highest
// index possible in the whole branchs expanse (one higher/lower than the
// previous/next branchs expanse), then restart at the top of the tree, which
// includes pre-decrementing/incrementing Index (again) and watching for
// underflow/overflow (again).
//
// LEAF PRIMARY dead end:  Finding a valid (non-empty) index in an immediate or
// leaf matching Index.  Search sideways in the immediate/leaf for the
// previous/next empty index; if found, set *PIndex to match and return success.
//
// LEAF SECONDARY dead end:  Reaching the end of an immediate or leaf during a
// sideways search after a leaf primary dead end.  Just as for a branch
// secondary dead end, restart at the top of the tree with Index set to the
// lowest/highest index possible in the whole immediate/leafs expanse.
// TBD:  If leaf secondary dead end occurs, could shortcut and treat it as a
// branch primary dead end; but this would require remembering the parent
// branchs type and offset (a "one-deep stack"), and also wrestling with
// narrow pointers, at least for leaves (but not for immediates).
//
// Note some ASYMMETRIES between SearchValid and SearchEmpty:
//
// - The SearchValid code, upon descending through a narrow pointer, if Index
//   is outside the expanse of the subsidiary node (effectively a secondary
//   dead end), must decide whether to backtrack or findlimit.  But the
//   SearchEmpty code simply returns success (Index is empty).
//
// - Similarly, the SearchValid code, upon finding no previous/next index in
//   the expanse of a narrow pointer (again, a secondary dead end), can simply
//   start to backtrack at the parent JP.  But the SearchEmpty code would have
//   to first determine whether or not the parent JPs narrow expanse contains
//   a previous/next empty index outside the subexpanse.  Rather than keeping a
//   parent state stack and backtracking this way, upon a secondary dead end,
//   the SearchEmpty code simply restarts at the top of the tree, whether or
//   not a narrow pointer is involved.  Again, see the equivalent comments in
//   JudyPrevNext.c for comparison.
//
// This function is written iteratively for speed, rather than recursively.
//
// TBD:  Wed like to enhance this function to make successive searches faster.
// This would require saving some previous state, including the previous Index
// returned, and in which leaf it was found.  If the next call is for the same
// Index and the array has not been modified, start at the same leaf.  This
// should be much easier to implement since this is iterative rather than
// recursive code.

#ifdef JUDY1
#ifdef JUDYPREV
FUNCTION int Judy1PrevEmpty
#else
FUNCTION int Judy1NextEmpty
#endif
#else
#ifdef JUDYPREV
FUNCTION int JudyLPrevEmpty
#else
FUNCTION int JudyLNextEmpty
#endif
#endif
        (
	Pcvoid_t  PArray,	// Judy array to search.
	Word_t *  PIndex,	// starting point and result.
	PJError_t PJError	// optional, for returning error info.
        )
{
	Word_t	  Index;	// fast copy, in a register.
	Pjp_t	  Pjp;		// current JP.
	Pjbl_t	  Pjbl;		// Pjp->jp_Addr masked and cast to types:
	Pjbb_t	  Pjbb;
	Pjbu_t	  Pjbu;
	Pjlb_t	  Pjlb;
	PWord_t	  Pword;	// alternate name for use by GET* macros.

	Word_t	  digit;	// next digit to decode from Index.
	Word_t	  digits;	// current state in SM = digits left to decode.
	Word_t	  pop0;		// in a leaf.
	Word_t	  pop0mask;	// precalculated to avoid variable shifts.
	long	  offset;	// within a branch or leaf (can be large).
	int	  subexp;	// subexpanse in a bitmap branch.
	BITMAPB_t bitposmaskB;	// bit in bitmap for bitmap branch.
	BITMAPL_t bitposmaskL;	// bit in bitmap for bitmap leaf.
	Word_t	  possfullJP1;	// JP types for possibly full subexpanses:
	Word_t	  possfullJP2;
	Word_t	  possfullJP3;


// ----------------------------------------------------------------------------
// M A C R O S
//
// These are intended to make the code a bit more readable and less redundant.


// CHECK FOR NULL JP:
//
// TBD:  In principle this can be reduced (here and in other *.c files) to just
// the latter clause since no Type should ever be below cJU_JPNULL1, but in
// fact some root pointer types can be lower, so for safety do both checks.

#define	JPNULL(Type)  (((Type) >= cJU_JPNULL1) && ((Type) <= cJU_JPNULLMAX))


// CHECK FOR A FULL JP:
//
// Given a JP, indicate if it is fully populated.  Use digits, pop0mask, and
// possfullJP1..3 in the context.
//
// This is a difficult problem because it requires checking the Pop0 bits for
// all-ones, but the number of bytes depends on the JP type, which is not
// directly related to the parent branchs type or level -- the JPs child
// could be under a narrow pointer (hence not full).  The simple answer
// requires switching on or otherwise calculating the JP type, which could be
// slow.  Instead, in SMPREPB* precalculate pop0mask and also record in
// possfullJP1..3 the child JP (branch) types that could possibly be full (one
// level down), and use them here.  For level-2 branches (with digits == 2),
// the test for a full child depends on Judy1/JudyL.
//
// Note:  This cannot be applied to the JP in a JPM because it doesnt have
// enough pop0 digits.
//
// TBD:  JPFULL_BRANCH diligently checks for BranchL or BranchB, where neither
// of those can ever be full as it turns out.  Could just check for a BranchU
// at the right level.  Also, pop0mask might be overkill, its not used much,
// so perhaps just call cJU_POP0MASK(digits - 1) here?
//
// First, JPFULL_BRANCH checks for a full expanse for a JP whose child can be a
// branch, that is, a JP in a branch at level 3 or higher:

#define	JPFULL_BRANCH(Pjp)						\
	  ((((JU_JPDCDPOP0(Pjp) ^ cJU_ALLONES) & pop0mask) == 0)	\
	&& ((JU_JPTYPE(Pjp) == possfullJP1)				\
	 || (JU_JPTYPE(Pjp) == possfullJP2)				\
	 || (JU_JPTYPE(Pjp) == possfullJP3)))

#ifdef JUDY1
#define	JPFULL(Pjp)							\
	((digits == 2) ?						\
	 (JU_JPTYPE(Pjp) == cJ1_JPFULLPOPU1) : JPFULL_BRANCH(Pjp))
#else
#define	JPFULL(Pjp)							\
	((digits == 2) ?						\
	   (JU_JPTYPE(Pjp) == cJU_JPLEAF_B1)				\
	 && (((JU_JPDCDPOP0(Pjp) & cJU_POP0MASK(1)) == cJU_POP0MASK(1))) : \
	 JPFULL_BRANCH(Pjp))
#endif


// RETURN SUCCESS:
//
// This hides the need to set *PIndex back to the local value of Index -- use a
// local value for faster operation.  Note that the callers *PIndex is ALWAYS
// modified upon success, at least decremented/incremented.

#define	RET_SUCCESS { *PIndex = Index; return(1); }


// RETURN A CORRUPTION:

#define	RET_CORRUPT { JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); return(JERRI); }


// SEARCH A BITMAP BRANCH:
//
// This is a weak analog of j__udySearchLeaf*() for bitmap branches.  Return
// the actual or next-left position, base 0, of Digit in a BITMAPB_t bitmap
// (subexpanse of a full bitmap), also given a Bitposmask for Digit.  The
// position is the offset within the set bits.
//
// Unlike j__udySearchLeaf*(), the offset is not returned bit-complemented if
// Digits bit is unset, because the caller can check the bitmap themselves to
// determine that.  Also, if Digits bit is unset, the returned offset is to
// the next-left JP or index (including -1), not to the "ideal" position for
// the index = next-right JP or index.
//
// Shortcut and skip calling j__udyCountBitsB() if the bitmap is full, in which
// case (Digit % cJU_BITSPERSUBEXPB) itself is the base-0 offset.

#define	SEARCHBITMAPB(Bitmap,Digit,Bitposmask)				\
	(((Bitmap) == cJU_FULLBITMAPB) ? (Digit % cJU_BITSPERSUBEXPB) :	\
	 j__udyCountBitsB((Bitmap) & JU_MASKLOWERINC(Bitposmask)) - 1)

#ifdef JUDYPREV
// Equivalent to search for the highest offset in Bitmap, that is, one less
// than the number of bits set:

#define	SEARCHBITMAPMAXB(Bitmap)					\
	(((Bitmap) == cJU_FULLBITMAPB) ? cJU_BITSPERSUBEXPB - 1 :	\
	 j__udyCountBitsB(Bitmap) - 1)
#endif


// CHECK DECODE BYTES:
//
// Check Decode bytes in a JP against the equivalent portion of Index.  If they
// dont match, Index is outside the subexpanse of a narrow pointer, hence is
// empty.

#define	CHECKDCD(cDigits) \
	if (JU_DCDNOTMATCHINDEX(Index, Pjp, cDigits)) RET_SUCCESS


// REVISE REMAINDER OF INDEX:
//
// Put one digit in place in Index and clear/set the lower digits, if any, so
// the resulting Index is at the start/end of an expanse, or just clear/set the
// least digits.
//
// Actually, to make simple use of JU_LEASTBYTESMASK, first clear/set all least
// digits of Index including the digit to be overridden, then set the value of
// that one digit.  If Digits == 1 the first operation is redundant, but either
// very fast or even removed by the optimizer.

#define	CLEARLEASTDIGITS(Digits) Index &= ~JU_LEASTBYTESMASK(Digits)
#define	SETLEASTDIGITS(  Digits) Index |=  JU_LEASTBYTESMASK(Digits)

#define	CLEARLEASTDIGITS_D(Digit,Digits)	\
	{					\
	    CLEARLEASTDIGITS(Digits);		\
	    JU_SETDIGIT(Index, Digit, Digits);	\
	}

#define	SETLEASTDIGITS_D(Digit,Digits)		\
	{					\
	    SETLEASTDIGITS(Digits);		\
	    JU_SETDIGIT(Index, Digit, Digits);	\
	}


// SET REMAINDER OF INDEX AND THEN RETURN OR CONTINUE:

#define	SET_AND_RETURN(OpLeastDigits,Digit,Digits)	\
	{						\
	    OpLeastDigits(Digit, Digits);		\
	    RET_SUCCESS;				\
	}

#define	SET_AND_CONTINUE(OpLeastDigits,Digit,Digits)	\
	{						\
	    OpLeastDigits(Digit, Digits);		\
	    goto SMGetContinue;				\
	}


// PREPARE TO HANDLE A LEAFW OR JP BRANCH IN THE STATE MACHINE:
//
// Extract a state-dependent digit from Index in a "constant" way, then jump to
// common code for multiple cases.
//
// TBD:  Should this macro do more, such as preparing variable-shift masks for
// use in CLEARLEASTDIGITS and SETLEASTDIGITS?

#define	SMPREPB(cDigits,Next,PossFullJP1,PossFullJP2,PossFullJP3)	\
	digits	 = (cDigits);						\
	digit	 = JU_DIGITATSTATE(Index, cDigits);			\
	pop0mask = cJU_POP0MASK((cDigits) - 1);	 /* for branchs JPs */	\
	possfullJP1 = (PossFullJP1);					\
	possfullJP2 = (PossFullJP2);					\
	possfullJP3 = (PossFullJP3);					\
	goto Next

// Variations for specific-level branches and for shorthands:
//
// Note:  SMPREPB2 need not initialize possfullJP* because JPFULL does not use
// them for digits == 2, but gcc -Wall isnt quite smart enough to see this, so
// waste a bit of time and space to get rid of the warning:

#define	SMPREPB2(Next)				\
	digits	 = 2;				\
	digit	 = JU_DIGITATSTATE(Index, 2);	\
	pop0mask = cJU_POP0MASK(1);  /* for branchs JPs */ \
	possfullJP1 = possfullJP2 = possfullJP3 = 0;	    \
	goto Next

#define	SMPREPB3(Next) SMPREPB(3,	      Next, cJU_JPBRANCH_L2, \
						    cJU_JPBRANCH_B2, \
						    cJU_JPBRANCH_U2)
#ifndef JU_64BIT
#define	SMPREPBL(Next) SMPREPB(cJU_ROOTSTATE, Next, cJU_JPBRANCH_L3, \
						    cJU_JPBRANCH_B3, \
						    cJU_JPBRANCH_U3)
#else
#define	SMPREPB4(Next) SMPREPB(4,	      Next, cJU_JPBRANCH_L3, \
						    cJU_JPBRANCH_B3, \
						    cJU_JPBRANCH_U3)
#define	SMPREPB5(Next) SMPREPB(5,	      Next, cJU_JPBRANCH_L4, \
						    cJU_JPBRANCH_B4, \
						    cJU_JPBRANCH_U4)
#define	SMPREPB6(Next) SMPREPB(6,	      Next, cJU_JPBRANCH_L5, \
						    cJU_JPBRANCH_B5, \
						    cJU_JPBRANCH_U5)
#define	SMPREPB7(Next) SMPREPB(7,	      Next, cJU_JPBRANCH_L6, \
						    cJU_JPBRANCH_B6, \
						    cJU_JPBRANCH_U6)
#define	SMPREPBL(Next) SMPREPB(cJU_ROOTSTATE, Next, cJU_JPBRANCH_L7, \
						    cJU_JPBRANCH_B7, \
						    cJU_JPBRANCH_U7)
#endif


// RESTART AFTER SECONDARY DEAD END:
//
// Set Index to the first/last index in the branch or leaf subexpanse and start
// over at the top of the tree.

#ifdef JUDYPREV
#define	SMRESTART(Digits) { CLEARLEASTDIGITS(Digits); goto SMGetRestart; }
#else
#define	SMRESTART(Digits) { SETLEASTDIGITS(  Digits); goto SMGetRestart; }
#endif


// CHECK EDGE OF LEAFS EXPANSE:
//
// Given the LSBs of the lowest/highest valid index in a leaf (or equivalently
// in an immediate JP), the level (index size) of the leaf, and the full index
// to return (as Index in the context) already set to the full index matching
// the lowest/highest one, determine if there is an empty index in the leafs
// expanse below/above the lowest/highest index, which is true if the
// lowest/highest index is not at the "edge" of the leafs expanse based on its
// LSBs.  If so, return Index decremented/incremented; otherwise restart at the
// top of the tree.
//
// Note:  In many cases Index is already at the right spot and calling
// SMRESTART instead of just going directly to SMGetRestart is a bit of
// overkill.
//
// Note:  Variable shift occurs if Digits is not a constant.

#ifdef JUDYPREV
#define	LEAF_EDGE(MinIndex,Digits)			\
	{						\
	    if (MinIndex) { --Index; RET_SUCCESS; }	\
	    SMRESTART(Digits);				\
	}
#else
#define	LEAF_EDGE(MaxIndex,Digits)			\
	{						\
	    if ((MaxIndex) != JU_LEASTBYTES(cJU_ALLONES, Digits)) \
	    { ++Index; RET_SUCCESS; }			\
	    SMRESTART(Digits);				\
	}
#endif

// Same as above except Index is not already set to match the lowest/highest
// index, so do that before decrementing/incrementing it:

#ifdef JUDYPREV
#define	LEAF_EDGE_SET(MinIndex,Digits)	\
	{				\
	    if (MinIndex)		\
	    { JU_SETDIGITS(Index, MinIndex, Digits); --Index; RET_SUCCESS; } \
	    SMRESTART(Digits);		\
	}
#else
#define	LEAF_EDGE_SET(MaxIndex,Digits)	\
	{				\
	    if ((MaxIndex) != JU_LEASTBYTES(cJU_ALLONES, Digits))	    \
	    { JU_SETDIGITS(Index, MaxIndex, Digits); ++Index; RET_SUCCESS; } \
	    SMRESTART(Digits);		\
	}
#endif


// FIND A HOLE (EMPTY INDEX) IN AN IMMEDIATE OR LEAF:
//
// Given an index location in a leaf (or equivalently an immediate JP) known to
// contain a usable hole (an empty index less/greater than Index), and the LSBs
// of a minimum/maximum index to locate, find the previous/next empty index and
// return it.
//
// Note:  "Even" index sizes (1,2,4[,8] bytes) have corresponding native C
// types; "odd" index sizes dont, but they are not represented here because
// they are handled completely differently; see elsewhere.

#ifdef JUDYPREV

#define	LEAF_HOLE_EVEN(cDigits,Pjll,IndexLSB)				\
	{								\
	    while (*(Pjll) > (IndexLSB)) --(Pjll); /* too high */	\
	    if (*(Pjll) < (IndexLSB)) RET_SUCCESS  /* Index is empty */	\
	    while (*(--(Pjll)) == --(IndexLSB)) /* null, find a hole */;\
	    JU_SETDIGITS(Index, IndexLSB, cDigits);			\
	    RET_SUCCESS;						\
	}
#else
#define	LEAF_HOLE_EVEN(cDigits,Pjll,IndexLSB)				\
	{								\
	    while (*(Pjll) < (IndexLSB)) ++(Pjll); /* too low */	\
	    if (*(Pjll) > (IndexLSB)) RET_SUCCESS  /* Index is empty */	\
	    while (*(++(Pjll)) == ++(IndexLSB)) /* null, find a hole */;\
	    JU_SETDIGITS(Index, IndexLSB, cDigits);			\
	    RET_SUCCESS;						\
	}
#endif


// SEARCH FOR AN EMPTY INDEX IN AN IMMEDIATE OR LEAF:
//
// Given a pointer to the first index in a leaf (or equivalently an immediate
// JP), the population of the leaf, and a first empty Index to find (inclusive,
// as Index in the context), where Index is known to fall within the expanse of
// the leaf to search, efficiently find the previous/next empty index in the
// leaf, if any.  For simplicity the following overview is stated in terms of
// Judy*NextEmpty() only, but the same concepts apply symmetrically for
// Judy*PrevEmpty().  Also, in each case the comparisons are for the LSBs of
// Index and leaf indexes, according to the leafs level.
//
// 1.  If Index is GREATER than the last (highest) index in the leaf
//     (maxindex), return success, Index is empty.  (Remember, Index is known
//     to be in the leafs expanse.)
//
// 2.  If Index is EQUAL to maxindex:  If maxindex is not at the edge of the
//     leafs expanse, increment Index and return success, there is an empty
//     Index one higher than any in the leaf; otherwise restart with Index
//     reset to the upper edge of the leafs expanse.  Note:  This might cause
//     an extra cache line fill, but this is OK for repeatedly-called search
//     code, and it saves CPU time.
//
// 3.  If Index is LESS than maxindex, check for "dense to end of leaf":
//     Subtract Index from maxindex, and back up that many slots in the leaf.
//     If the resulting offset is not before the start of the leaf then compare
//     the index at this offset (baseindex) with Index:
//
// 3a.  If GREATER, the leaf must be corrupt, since indexes are sorted and
//      there are no duplicates.
//
// 3b.  If EQUAL, the leaf is "dense" from Index to maxindex, meaning there is
//      no reason to search it.  "Slide right" to the high end of the leaf
//      (modify Index to maxindex) and continue with step 2 above.
//
// 3c.  If LESS, continue with step 4.
//
// 4.  If the offset based on maxindex minus Index falls BEFORE the start of
//     the leaf, or if, per 3c above, baseindex is LESS than Index, the leaf is
//     guaranteed "not dense to the end" and a usable empty Index must exist.
//     This supports a more efficient search loop.  Start at the FIRST index in
//     the leaf, or one BEYOND baseindex, respectively, and search the leaf as
//     follows, comparing each current index (currindex) with Index:
//
// 4a.  If LESS, keep going to next index.  Note:  This is certain to terminate
//      because maxindex is known to be greater than Index, hence the loop can
//      be small and fast.
//
// 4b.  If EQUAL, loop and increment Index until finding currindex greater than
//      Index, and return success with the modified Index.
//
// 4c.  If GREATER, return success, Index (unmodified) is empty.
//
// Note:  These are macros rather than functions for speed.

#ifdef JUDYPREV

#define	JSLE_EVEN(Addr,Pop0,cDigits,LeafType)				\
	{								\
	    LeafType * PjllLSB  = (LeafType *) (Addr);			\
	    LeafType   IndexLSB = Index;	/* auto-masking */	\
									\
	/* Index before or at start of leaf: */				\
									\
	    if (*PjllLSB >= IndexLSB)		/* no need to search */	\
	    {								\
		if (*PjllLSB > IndexLSB) RET_SUCCESS; /* Index empty */	\
		LEAF_EDGE(*PjllLSB, cDigits);				\
	    }								\
									\
	/* Index in or after leaf: */					\
									\
	    offset = IndexLSB - *PjllLSB;	/* tentative offset  */	\
	    if (offset <= (Pop0))		/* can check density */	\
	    {								\
		PjllLSB += offset;		/* move to slot */	\
									\
		if (*PjllLSB <= IndexLSB)	/* dense or corrupt */	\
		{							\
		    if (*PjllLSB == IndexLSB)	/* dense, check edge */	\
			LEAF_EDGE_SET(PjllLSB[-offset], cDigits);	\
		    RET_CORRUPT;					\
		}							\
		--PjllLSB;	/* not dense, start at previous */	\
	    }								\
	    else PjllLSB = ((LeafType *) (Addr)) + (Pop0); /* start at max */ \
									\
	    LEAF_HOLE_EVEN(cDigits, PjllLSB, IndexLSB);			\
	}

// JSLE_ODD is completely different from JSLE_EVEN because its important to
// minimize copying odd indexes to compare them (see 4.14).  Furthermore, a
// very complex version (4.17, but abandoned before fully debugged) that
// avoided calling j__udySearchLeaf*() ran twice as fast as 4.14, but still
// half as fast as SearchValid.  Doug suggested that to minimize complexity and
// share common code we should use j__udySearchLeaf*() for the initial search
// to establish if Index is empty, which should be common.  If Index is valid
// in a leaf or immediate indexes, odds are good that an empty Index is nearby,
// so for simplicity just use a *COPY* function to linearly search the
// remainder.
//
// TBD:  Pathological case?  Average performance should be good, but worst-case
// might suffer.  When Search says the initial Index is valid, so a linear
// copy-and-compare is begun, if the caller builds fairly large leaves with
// dense clusters AND frequently does a SearchEmpty at one end of such a
// cluster, performance wont be very good.  Might a dense-check help?  This
// means checking offset against the index at offset, and then against the
// first/last index in the leaf.  We doubt the pathological case will appear
// much in real applications because they will probably alternate SearchValid
// and SearchEmpty calls.

#define	JSLE_ODD(cDigits,Pjll,Pop0,Search,Copy)				\
	{								\
	    Word_t IndexLSB;		/* least bytes only */		\
	    Word_t IndexFound;		/* in leaf	    */		\
									\
	    if ((offset = Search(Pjll, (Pop0) + 1, Index)) < 0)		\
		RET_SUCCESS;		/* Index is empty */		\
									\
	    IndexLSB = JU_LEASTBYTES(Index, cDigits);			\
	    offset  *= (cDigits);					\
									\
	    while ((offset -= (cDigits)) >= 0)				\
	    {				/* skip until empty or start */	\
		Copy(IndexFound, ((uint8_t *) (Pjll)) + offset);	\
		if (IndexFound != (--IndexLSB))	/* found an empty */	\
		{ JU_SETDIGITS(Index, IndexLSB, cDigits); RET_SUCCESS; }\
	    }								\
	    LEAF_EDGE_SET(IndexLSB, cDigits);				\
	}

#else // JUDYNEXT

#define	JSLE_EVEN(Addr,Pop0,cDigits,LeafType)				\
	{								\
	    LeafType * PjllLSB   = ((LeafType *) (Addr)) + (Pop0);	\
	    LeafType   IndexLSB = Index;	/* auto-masking */	\
									\
	/* Index at or after end of leaf: */				\
									\
	    if (*PjllLSB <= IndexLSB)		/* no need to search */	\
	    {								\
		if (*PjllLSB < IndexLSB) RET_SUCCESS;  /* Index empty */\
		LEAF_EDGE(*PjllLSB, cDigits);				\
	    }								\
									\
	/* Index before or in leaf: */					\
									\
	    offset = *PjllLSB - IndexLSB;	/* tentative offset  */	\
	    if (offset <= (Pop0))		/* can check density */	\
	    {								\
		PjllLSB -= offset;		/* move to slot */	\
									\
		if (*PjllLSB >= IndexLSB)	/* dense or corrupt */	\
		{							\
		    if (*PjllLSB == IndexLSB)	/* dense, check edge */	\
			LEAF_EDGE_SET(PjllLSB[offset], cDigits);	\
		    RET_CORRUPT;					\
		}							\
		++PjllLSB;		/* not dense, start at next */	\
	    }								\
	    else PjllLSB = (LeafType *) (Addr);	/* start at minimum */	\
									\
	    LEAF_HOLE_EVEN(cDigits, PjllLSB, IndexLSB);			\
	}

#define	JSLE_ODD(cDigits,Pjll,Pop0,Search,Copy)				\
	{								\
	    Word_t IndexLSB;		/* least bytes only */		\
	    Word_t IndexFound;		/* in leaf	    */		\
	    int	   offsetmax;		/* in bytes	    */		\
									\
	    if ((offset = Search(Pjll, (Pop0) + 1, Index)) < 0)		\
		RET_SUCCESS;			/* Index is empty */	\
									\
	    IndexLSB  = JU_LEASTBYTES(Index, cDigits);			\
	    offset   *= (cDigits);					\
	    offsetmax = (Pop0) * (cDigits);	/* single multiply */	\
									\
	    while ((offset += (cDigits)) <= offsetmax)			\
	    {				/* skip until empty or end */	\
		Copy(IndexFound, ((uint8_t *) (Pjll)) + offset);	\
		if (IndexFound != (++IndexLSB))	/* found an empty */	\
		{ JU_SETDIGITS(Index, IndexLSB, cDigits); RET_SUCCESS; } \
	    }								\
	    LEAF_EDGE_SET(IndexLSB, cDigits);				\
	}

#endif // JUDYNEXT

// Note:  Immediate indexes never fill a single index group, so for odd index
// sizes, save time by calling JSLE_ODD_IMM instead of JSLE_ODD.

#define	j__udySearchLeafEmpty1(Addr,Pop0) \
	JSLE_EVEN(Addr, Pop0, 1, uint8_t)

#define	j__udySearchLeafEmpty2(Addr,Pop0) \
	JSLE_EVEN(Addr, Pop0, 2, uint16_t)

#define	j__udySearchLeafEmpty3(Addr,Pop0) \
	JSLE_ODD(3, Addr, Pop0, j__udySearchLeaf3, JU_COPY3_PINDEX_TO_LONG)

#ifndef JU_64BIT

#define	j__udySearchLeafEmptyL(Addr,Pop0) \
	JSLE_EVEN(Addr, Pop0, 4, Word_t)

#else

#define	j__udySearchLeafEmpty4(Addr,Pop0) \
	JSLE_EVEN(Addr, Pop0, 4, uint32_t)

#define	j__udySearchLeafEmpty5(Addr,Pop0) \
	JSLE_ODD(5, Addr, Pop0, j__udySearchLeaf5, JU_COPY5_PINDEX_TO_LONG)

#define	j__udySearchLeafEmpty6(Addr,Pop0) \
	JSLE_ODD(6, Addr, Pop0, j__udySearchLeaf6, JU_COPY6_PINDEX_TO_LONG)

#define	j__udySearchLeafEmpty7(Addr,Pop0) \
	JSLE_ODD(7, Addr, Pop0, j__udySearchLeaf7, JU_COPY7_PINDEX_TO_LONG)

#define	j__udySearchLeafEmptyL(Addr,Pop0) \
	JSLE_EVEN(Addr, Pop0, 8, Word_t)

#endif // JU_64BIT


// ----------------------------------------------------------------------------
// START OF CODE:
//
// CHECK FOR SHORTCUTS:
//
// Error out if PIndex is null.

	if (PIndex == (PWord_t) NULL)
	{
	    JU_SET_ERRNO(PJError, JU_ERRNO_NULLPINDEX);
	    return(JERRI);
	}

	Index = *PIndex;			// fast local copy.

// Set and pre-decrement/increment Index, watching for underflow/overflow:
//
// An out-of-bounds Index means failure:  No previous/next empty index.

SMGetRestart:		// return here with revised Index.

#ifdef JUDYPREV
	if (Index-- == 0) return(0);
#else
	if (++Index == 0) return(0);
#endif

// An empty array with an in-bounds (not underflowed/overflowed) Index means
// success:
//
// Note:  This check is redundant after restarting at SMGetRestart, but should
// take insignificant time.

	if (PArray == (Pvoid_t) NULL) RET_SUCCESS;

// ----------------------------------------------------------------------------
// ROOT-LEVEL LEAF that starts with a Pop0 word; just look within the leaf:
//
// If Index is not in the leaf, return success; otherwise return the first
// empty Index, if any, below/above where it would belong.

	if (JU_LEAFW_POP0(PArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
	{
	    Pjlw_t Pjlw = P_JLW(PArray);	// first word of leaf.
	    pop0 = Pjlw[0];

#ifdef	JUDY1
	    if (pop0 == 0)			// special case.
	    {
#ifdef JUDYPREV
		if ((Index != Pjlw[1]) || (Index-- != 0)) RET_SUCCESS;
#else
		if ((Index != Pjlw[1]) || (++Index != 0)) RET_SUCCESS;
#endif
		return(0);		// no previous/next empty index.
	    }
#endif // JUDY1

	    j__udySearchLeafEmptyL(Pjlw + 1, pop0);

//  No return -- thanks ALAN

	}
	else

// ----------------------------------------------------------------------------
// HANDLE JRP Branch:
//
// For JRP branches, traverse the JPM; handle LEAFW
// directly; but look for the most common cases first.

	{
	    Pjpm_t Pjpm = P_JPM(PArray);
	    Pjp = &(Pjpm->jpm_JP);

//	    goto SMGetContinue;
	}


// ============================================================================
// STATE MACHINE -- GET INDEX:
//
// Search for Index (already decremented/incremented so as to be an inclusive
// search).  If not found (empty index), return success.  Otherwise do a
// previous/next search, and if successful modify Index to the empty index
// found.  See function header comments.
//
// ENTRY:  Pjp points to next JP to interpret, whose Decode bytes have not yet
// been checked.
//
// Note:  Check Decode bytes at the start of each loop, not after looking up a
// new JP, so its easy to do constant shifts/masks.
//
// EXIT:  Return, or branch to SMGetRestart with modified Index, or branch to
// SMGetContinue with a modified Pjp, as described elsewhere.
//
// WARNING:  For run-time efficiency the following cases replicate code with
// varying constants, rather than using common code with variable values!

SMGetContinue:			// return here for next branch/leaf.

#ifdef TRACEJPSE
	JudyPrintJP(Pjp, "sf", __LINE__);
#endif

	switch (JU_JPTYPE(Pjp))
	{


// ----------------------------------------------------------------------------
// LINEAR BRANCH:
//
// Check Decode bytes, if any, in the current JP, then search for a JP for the
// next digit in Index.

	case cJU_JPBRANCH_L2: CHECKDCD(2); SMPREPB2(SMBranchL);
	case cJU_JPBRANCH_L3: CHECKDCD(3); SMPREPB3(SMBranchL);
#ifdef JU_64BIT
	case cJU_JPBRANCH_L4: CHECKDCD(4); SMPREPB4(SMBranchL);
	case cJU_JPBRANCH_L5: CHECKDCD(5); SMPREPB5(SMBranchL);
	case cJU_JPBRANCH_L6: CHECKDCD(6); SMPREPB6(SMBranchL);
	case cJU_JPBRANCH_L7: CHECKDCD(7); SMPREPB7(SMBranchL);
#endif
	case cJU_JPBRANCH_L:		   SMPREPBL(SMBranchL);

// Common code (state-independent) for all cases of linear branches:

SMBranchL:
	    Pjbl = P_JBL(Pjp->jp_Addr);

// First, check if Indexs expanse (digit) is below/above the first/last
// populated expanse in the BranchL, in which case Index is empty; otherwise
// find the offset of the lowest/highest populated expanse at or above/below
// digit, if any:
//
// Note:  The for-loop is guaranteed to exit eventually because the first/last
// expanse is known to be a terminator.
//
// Note:  Cannot use j__udySearchLeaf*Empty1() here because it only applies to
// leaves and does not know about partial versus full JPs, unlike the use of
// j__udySearchLeaf1() for BranchLs in SearchValid code.  Also, since linear
// leaf expanse lists are small, dont waste time calling j__udySearchLeaf1(),
// just scan the expanse list.

#ifdef JUDYPREV
	    if ((Pjbl->jbl_Expanse[0]) > digit) RET_SUCCESS;

	    for (offset = (Pjbl->jbl_NumJPs) - 1; /* null */; --offset)
#else
	    if ((Pjbl->jbl_Expanse[(Pjbl->jbl_NumJPs) - 1]) < digit)
		RET_SUCCESS;

	    for (offset = 0; /* null */; ++offset)
#endif
	    {

// Too low/high, keep going; or too high/low, meaning the loop passed a hole
// and the initial Index is empty:

#ifdef JUDYPREV
		if ((Pjbl->jbl_Expanse[offset]) > digit) continue;
		if ((Pjbl->jbl_Expanse[offset]) < digit) RET_SUCCESS;
#else
		if ((Pjbl->jbl_Expanse[offset]) < digit) continue;
		if ((Pjbl->jbl_Expanse[offset]) > digit) RET_SUCCESS;
#endif

// Found expanse matching digit; if its not full, traverse through it:

		if (! JPFULL((Pjbl->jbl_jp) + offset))
		{
		    Pjp = (Pjbl->jbl_jp) + offset;
		    goto SMGetContinue;
		}

// Common code:  While searching for a lower/higher hole or a non-full JP, upon
// finding a lower/higher hole, adjust Index using the revised digit and
// return; or upon finding a consecutive lower/higher expanse, if the expanses
// JP is non-full, modify Index and traverse through the JP:

#define	BRANCHL_CHECK(OpIncDec,OpLeastDigits,Digit,Digits)	\
	{							\
	    if ((Pjbl->jbl_Expanse[offset]) != OpIncDec digit)	\
		SET_AND_RETURN(OpLeastDigits, Digit, Digits);	\
								\
	    if (! JPFULL((Pjbl->jbl_jp) + offset))		\
	    {							\
		Pjp = (Pjbl->jbl_jp) + offset;			\
		SET_AND_CONTINUE(OpLeastDigits, Digit, Digits);	\
	    }							\
	}

// BranchL primary dead end:  Expanse matching Index/digit is full (rare except
// for dense/sequential indexes):
//
// Search for a lower/higher hole, a non-full JP, or the end of the expanse
// list, while decrementing/incrementing digit.

#ifdef JUDYPREV
		while (--offset >= 0)
		    BRANCHL_CHECK(--, SETLEASTDIGITS_D, digit, digits)
#else
		while (++offset < Pjbl->jbl_NumJPs)
		    BRANCHL_CHECK(++, CLEARLEASTDIGITS_D, digit, digits)
#endif

// Passed end of BranchL expanse list after finding a matching but full
// expanse:
//
// Digit now matches the lowest/highest expanse, which is a full expanse; if
// digit is at the end of BranchLs expanse (no hole before/after), break out
// of the loop; otherwise modify Index to the next lower/higher digit and
// return success:

#ifdef JUDYPREV
		if (digit == 0) break;
		--digit; SET_AND_RETURN(SETLEASTDIGITS_D, digit, digits);
#else
		if (digit == JU_LEASTBYTES(cJU_ALLONES, 1)) break;
		++digit; SET_AND_RETURN(CLEARLEASTDIGITS_D, digit, digits);
#endif
	    } // for-loop

// BranchL secondary dead end, no non-full previous/next JP:

	    SMRESTART(digits);


// ----------------------------------------------------------------------------
// BITMAP BRANCH:
//
// Check Decode bytes, if any, in the current JP, then search for a JP for the
// next digit in Index.

	case cJU_JPBRANCH_B2: CHECKDCD(2); SMPREPB2(SMBranchB);
	case cJU_JPBRANCH_B3: CHECKDCD(3); SMPREPB3(SMBranchB);
#ifdef JU_64BIT
	case cJU_JPBRANCH_B4: CHECKDCD(4); SMPREPB4(SMBranchB);
	case cJU_JPBRANCH_B5: CHECKDCD(5); SMPREPB5(SMBranchB);
	case cJU_JPBRANCH_B6: CHECKDCD(6); SMPREPB6(SMBranchB);
	case cJU_JPBRANCH_B7: CHECKDCD(7); SMPREPB7(SMBranchB);
#endif
	case cJU_JPBRANCH_B:		   SMPREPBL(SMBranchB);

// Common code (state-independent) for all cases of bitmap branches:

SMBranchB:
	    Pjbb = P_JBB(Pjp->jp_Addr);

// Locate the digits JP in the subexpanse list, if present:

	    subexp     = digit / cJU_BITSPERSUBEXPB;
	    assert(subexp < cJU_NUMSUBEXPB);	// falls in expected range.
	    bitposmaskB = JU_BITPOSMASKB(digit);

// Absent JP = no JP matches current digit in Index:

//	    if (! JU_BITMAPTESTB(Pjbb, digit))			// slower.
	    if (! (JU_JBB_BITMAP(Pjbb, subexp) & bitposmaskB))	// faster.
		RET_SUCCESS;

// Non-full JP matches current digit in Index:
//
// Iterate to the subsidiary non-full JP.

	    offset = SEARCHBITMAPB(JU_JBB_BITMAP(Pjbb, subexp), digit,
				   bitposmaskB);
	    // not negative since at least one bit is set:
	    assert(offset >= 0);
	    assert(offset < (int) cJU_BITSPERSUBEXPB);

// Watch for null JP subarray pointer with non-null bitmap (a corruption):

	    if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp)))
	     == (Pjp_t) NULL) RET_CORRUPT;

	    Pjp += offset;
	    if (! JPFULL(Pjp)) goto SMGetContinue;

// BranchB primary dead end:
//
// Upon hitting a full JP in a BranchB for the next digit in Index, search
// sideways for a previous/next absent JP (unset bit) or non-full JP (set bit
// with non-full JP); first in the current bitmap subexpanse, then in
// lower/higher subexpanses.  Upon entry, Pjp points to a known-unusable JP,
// ready to decrement/increment.
//
// Note:  The preceding code is separate from this loop because Index does not
// need revising (see SET_AND_*()) if the initial index is an empty index.
//
// TBD:  For speed, shift bitposmaskB instead of using JU_BITMAPTESTB or
// JU_BITPOSMASKB, but this shift has knowledge of bit order that really should
// be encapsulated in a header file.

#define	BRANCHB_CHECKBIT(OpLeastDigits)					\
    if (! (JU_JBB_BITMAP(Pjbb, subexp) & bitposmaskB))  /* absent JP */	\
	SET_AND_RETURN(OpLeastDigits, digit, digits)

#define	BRANCHB_CHECKJPFULL(OpLeastDigits)				\
    if (! JPFULL(Pjp))							\
	SET_AND_CONTINUE(OpLeastDigits, digit, digits)

#define	BRANCHB_STARTSUBEXP(OpLeastDigits)				\
    if (! JU_JBB_BITMAP(Pjbb, subexp)) /* empty subexpanse, shortcut */ \
	SET_AND_RETURN(OpLeastDigits, digit, digits)			\
    if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL) RET_CORRUPT

#ifdef JUDYPREV

	    --digit;				// skip initial digit.
	    bitposmaskB >>= 1;			// see TBD above.

BranchBNextSubexp:	// return here to check next bitmap subexpanse.

	    while (bitposmaskB)			// more bits to check in subexp.
	    {
		BRANCHB_CHECKBIT(SETLEASTDIGITS_D);
		--Pjp;				// previous in subarray.
		BRANCHB_CHECKJPFULL(SETLEASTDIGITS_D);
		assert(digit >= 0);
		--digit;
		bitposmaskB >>= 1;
	    }

	    if (subexp-- > 0)			// more subexpanses.
	    {
		BRANCHB_STARTSUBEXP(SETLEASTDIGITS_D);
		Pjp += SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp)) + 1;
		bitposmaskB = (1U << (cJU_BITSPERSUBEXPB - 1));
		goto BranchBNextSubexp;
	    }

#else // JUDYNEXT

	    ++digit;				// skip initial digit.
	    bitposmaskB <<= 1;			// note:  BITMAPB_t.

BranchBNextSubexp:	// return here to check next bitmap subexpanse.

	    while (bitposmaskB)			// more bits to check in subexp.
	    {
		BRANCHB_CHECKBIT(CLEARLEASTDIGITS_D);
		++Pjp;				// previous in subarray.
		BRANCHB_CHECKJPFULL(CLEARLEASTDIGITS_D);
		assert(digit < cJU_SUBEXPPERSTATE);
		++digit;
		bitposmaskB <<= 1;		// note:  BITMAPB_t.
	    }

	    if (++subexp < cJU_NUMSUBEXPB)	// more subexpanses.
	    {
		BRANCHB_STARTSUBEXP(CLEARLEASTDIGITS_D);
		--Pjp;				// pre-decrement.
		bitposmaskB = 1;
		goto BranchBNextSubexp;
	    }

#endif // JUDYNEXT

// BranchB secondary dead end, no non-full previous/next JP:

	    SMRESTART(digits);


// ----------------------------------------------------------------------------
// UNCOMPRESSED BRANCH:
//
// Check Decode bytes, if any, in the current JP, then search for a JP for the
// next digit in Index.

	case cJU_JPBRANCH_U2: CHECKDCD(2); SMPREPB2(SMBranchU);
	case cJU_JPBRANCH_U3: CHECKDCD(3); SMPREPB3(SMBranchU);
#ifdef JU_64BIT
	case cJU_JPBRANCH_U4: CHECKDCD(4); SMPREPB4(SMBranchU);
	case cJU_JPBRANCH_U5: CHECKDCD(5); SMPREPB5(SMBranchU);
	case cJU_JPBRANCH_U6: CHECKDCD(6); SMPREPB6(SMBranchU);
	case cJU_JPBRANCH_U7: CHECKDCD(7); SMPREPB7(SMBranchU);
#endif
	case cJU_JPBRANCH_U:		   SMPREPBL(SMBranchU);

// Common code (state-independent) for all cases of uncompressed branches:

SMBranchU:
	    Pjbu = P_JBU(Pjp->jp_Addr);
	    Pjp	 = (Pjbu->jbu_jp) + digit;

// Absent JP = null JP for current digit in Index:

	    if (JPNULL(JU_JPTYPE(Pjp))) RET_SUCCESS;

// Non-full JP matches current digit in Index:
//
// Iterate to the subsidiary JP.

	    if (! JPFULL(Pjp)) goto SMGetContinue;

// BranchU primary dead end:
//
// Upon hitting a full JP in a BranchU for the next digit in Index, search
// sideways for a previous/next null or non-full JP.  BRANCHU_CHECKJP() is
// shorthand for common code.
//
// Note:  The preceding code is separate from this loop because Index does not
// need revising (see SET_AND_*()) if the initial index is an empty index.

#define	BRANCHU_CHECKJP(OpIncDec,OpLeastDigits)			\
	{							\
	    OpIncDec Pjp;					\
								\
	    if (JPNULL(JU_JPTYPE(Pjp)))				\
		SET_AND_RETURN(OpLeastDigits, digit, digits)	\
								\
	    if (! JPFULL(Pjp))					\
		SET_AND_CONTINUE(OpLeastDigits, digit, digits)	\
	}

#ifdef JUDYPREV
	    while (digit-- > 0)
		BRANCHU_CHECKJP(--, SETLEASTDIGITS_D);
#else
	    while (++digit < cJU_BRANCHUNUMJPS)
		BRANCHU_CHECKJP(++, CLEARLEASTDIGITS_D);
#endif

// BranchU secondary dead end, no non-full previous/next JP:

	    SMRESTART(digits);


// ----------------------------------------------------------------------------
// LINEAR LEAF:
//
// Check Decode bytes, if any, in the current JP, then search the leaf for the
// previous/next empty index starting at Index.  Primary leaf dead end is
// hidden within j__udySearchLeaf*Empty*().  In case of secondary leaf dead
// end, restart at the top of the tree.
//
// Note:  Pword is the name known to GET*; think of it as Pjlw.

#define	SMLEAFL(cDigits,Func)                   \
	Pword = (PWord_t) P_JLW(Pjp->jp_Addr);  \
	pop0  = JU_JPLEAF_POP0(Pjp);            \
	Func(Pword, pop0)

#if (defined(JUDYL) || (! defined(JU_64BIT)))
	case cJU_JPLEAF1:  CHECKDCD(1); SMLEAFL(1, j__udySearchLeafEmpty1);
#endif
	case cJU_JPLEAF2:  CHECKDCD(2); SMLEAFL(2, j__udySearchLeafEmpty2);
	case cJU_JPLEAF3:  CHECKDCD(3); SMLEAFL(3, j__udySearchLeafEmpty3);

#ifdef JU_64BIT
	case cJU_JPLEAF4:  CHECKDCD(4); SMLEAFL(4, j__udySearchLeafEmpty4);
	case cJU_JPLEAF5:  CHECKDCD(5); SMLEAFL(5, j__udySearchLeafEmpty5);
	case cJU_JPLEAF6:  CHECKDCD(6); SMLEAFL(6, j__udySearchLeafEmpty6);
	case cJU_JPLEAF7:  CHECKDCD(7); SMLEAFL(7, j__udySearchLeafEmpty7);
#endif


// ----------------------------------------------------------------------------
// BITMAP LEAF:
//
// Check Decode bytes, if any, in the current JP, then search the leaf for the
// previous/next empty index starting at Index.

	case cJU_JPLEAF_B1:

	    CHECKDCD(1);

	    Pjlb	= P_JLB(Pjp->jp_Addr);
	    digit	= JU_DIGITATSTATE(Index, 1);
	    subexp	= digit / cJU_BITSPERSUBEXPL;
	    bitposmaskL	= JU_BITPOSMASKL(digit);
	    assert(subexp < cJU_NUMSUBEXPL);	// falls in expected range.

// Absent index = no index matches current digit in Index:

//	    if (! JU_BITMAPTESTL(Pjlb, digit))			// slower.
	    if (! (JU_JLB_BITMAP(Pjlb, subexp) & bitposmaskL))	// faster.
		RET_SUCCESS;

// LeafB1 primary dead end:
//
// Upon hitting a valid (non-empty) index in a LeafB1 for the last digit in
// Index, search sideways for a previous/next absent index, first in the
// current bitmap subexpanse, then in lower/higher subexpanses.
// LEAFB1_CHECKBIT() is shorthand for common code to handle one bit in one
// bitmap subexpanse.
//
// Note:  The preceding code is separate from this loop because Index does not
// need revising (see SET_AND_*()) if the initial index is an empty index.
//
// TBD:  For speed, shift bitposmaskL instead of using JU_BITMAPTESTL or
// JU_BITPOSMASKL, but this shift has knowledge of bit order that really should
// be encapsulated in a header file.

#define	LEAFB1_CHECKBIT(OpLeastDigits)				\
	if (! (JU_JLB_BITMAP(Pjlb, subexp) & bitposmaskL))	\
	    SET_AND_RETURN(OpLeastDigits, digit, 1)

#define	LEAFB1_STARTSUBEXP(OpLeastDigits)			\
	if (! JU_JLB_BITMAP(Pjlb, subexp)) /* empty subexp */	\
	    SET_AND_RETURN(OpLeastDigits, digit, 1)

#ifdef JUDYPREV

	    --digit;				// skip initial digit.
	    bitposmaskL >>= 1;			// see TBD above.

LeafB1NextSubexp:	// return here to check next bitmap subexpanse.

	    while (bitposmaskL)			// more bits to check in subexp.
	    {
		LEAFB1_CHECKBIT(SETLEASTDIGITS_D);
		assert(digit >= 0);
		--digit;
		bitposmaskL >>= 1;
	    }

	    if (subexp-- > 0)		// more subexpanses.
	    {
		LEAFB1_STARTSUBEXP(SETLEASTDIGITS_D);
		bitposmaskL = (1UL << (cJU_BITSPERSUBEXPL - 1));
		goto LeafB1NextSubexp;
	    }

#else // JUDYNEXT

	    ++digit;				// skip initial digit.
	    bitposmaskL <<= 1;			// note:  BITMAPL_t.

LeafB1NextSubexp:	// return here to check next bitmap subexpanse.

	    while (bitposmaskL)			// more bits to check in subexp.
	    {
		LEAFB1_CHECKBIT(CLEARLEASTDIGITS_D);
		assert(digit < cJU_SUBEXPPERSTATE);
		++digit;
		bitposmaskL <<= 1;		// note:  BITMAPL_t.
	    }

	    if (++subexp < cJU_NUMSUBEXPL)	// more subexpanses.
	    {
		LEAFB1_STARTSUBEXP(CLEARLEASTDIGITS_D);
		bitposmaskL = 1;
		goto LeafB1NextSubexp;
	    }

#endif // JUDYNEXT

// LeafB1 secondary dead end, no empty index:

	    SMRESTART(1);


#ifdef JUDY1
// ----------------------------------------------------------------------------
// FULL POPULATION:
//
// If the Decode bytes do not match, Index is empty (without modification);
// otherwise restart.

	case cJ1_JPFULLPOPU1:

	    CHECKDCD(1);
	    SMRESTART(1);
#endif


// ----------------------------------------------------------------------------
// IMMEDIATE:
//
// Pop1 = 1 Immediate JPs:
//
// If Index is not in the immediate JP, return success; otherwise check if
// there is an empty index below/above the immediate JPs index, and if so,
// return success with modified Index, else restart.
//
// Note:  Doug says its fast enough to calculate the index size (digits) in
// the following; no need to set it separately for each case.

	case cJU_JPIMMED_1_01:
	case cJU_JPIMMED_2_01:
	case cJU_JPIMMED_3_01:
#ifdef JU_64BIT
	case cJU_JPIMMED_4_01:
	case cJU_JPIMMED_5_01:
	case cJU_JPIMMED_6_01:
	case cJU_JPIMMED_7_01:
#endif
	    if (JU_JPDCDPOP0(Pjp) != JU_TRIMTODCDSIZE(Index)) RET_SUCCESS;
	    digits = JU_JPTYPE(Pjp) - cJU_JPIMMED_1_01 + 1;
	    LEAF_EDGE(JU_LEASTBYTES(JU_JPDCDPOP0(Pjp), digits), digits);

// Immediate JPs with Pop1 > 1:

#define	IMM_MULTI(Func,BaseJPType)			\
	JUDY1CODE(Pword = (PWord_t) (Pjp->jp_1Index);)	\
	JUDYLCODE(Pword = (PWord_t) (Pjp->jp_LIndex);)	\
	Func(Pword, JU_JPTYPE(Pjp) - (BaseJPType) + 1)

	case cJU_JPIMMED_1_02:
	case cJU_JPIMMED_1_03:
#if (defined(JUDY1) || defined(JU_64BIT))
	case cJU_JPIMMED_1_04:
	case cJU_JPIMMED_1_05:
	case cJU_JPIMMED_1_06:
	case cJU_JPIMMED_1_07:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
	case cJ1_JPIMMED_1_08:
	case cJ1_JPIMMED_1_09:
	case cJ1_JPIMMED_1_10:
	case cJ1_JPIMMED_1_11:
	case cJ1_JPIMMED_1_12:
	case cJ1_JPIMMED_1_13:
	case cJ1_JPIMMED_1_14:
	case cJ1_JPIMMED_1_15:
#endif
	    IMM_MULTI(j__udySearchLeafEmpty1, cJU_JPIMMED_1_02);

#if (defined(JUDY1) || defined(JU_64BIT))
	case cJU_JPIMMED_2_02:
	case cJU_JPIMMED_2_03:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
	case cJ1_JPIMMED_2_04:
	case cJ1_JPIMMED_2_05:
	case cJ1_JPIMMED_2_06:
	case cJ1_JPIMMED_2_07:
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
	    IMM_MULTI(j__udySearchLeafEmpty2, cJU_JPIMMED_2_02);
#endif

#if (defined(JUDY1) || defined(JU_64BIT))
	case cJU_JPIMMED_3_02:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
	case cJ1_JPIMMED_3_03:
	case cJ1_JPIMMED_3_04:
	case cJ1_JPIMMED_3_05:
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
	    IMM_MULTI(j__udySearchLeafEmpty3, cJU_JPIMMED_3_02);
#endif

#if (defined(JUDY1) && defined(JU_64BIT))
	case cJ1_JPIMMED_4_02:
	case cJ1_JPIMMED_4_03:
	    IMM_MULTI(j__udySearchLeafEmpty4, cJ1_JPIMMED_4_02);

	case cJ1_JPIMMED_5_02:
	case cJ1_JPIMMED_5_03:
	    IMM_MULTI(j__udySearchLeafEmpty5, cJ1_JPIMMED_5_02);

	case cJ1_JPIMMED_6_02:
	    IMM_MULTI(j__udySearchLeafEmpty6, cJ1_JPIMMED_6_02);

	case cJ1_JPIMMED_7_02:
	    IMM_MULTI(j__udySearchLeafEmpty7, cJ1_JPIMMED_7_02);
#endif


// ----------------------------------------------------------------------------
// INVALID JP TYPE:

	default: RET_CORRUPT;

	} // SMGet switch.

} // Judy1PrevEmpty() / Judy1NextEmpty() / JudyLPrevEmpty() / JudyLNextEmpty()