1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "Config.h"
#include "Dimension.h"
#include "Query.h"
using namespace ml;
std::pair<CalculatedNumber *, size_t>
TrainableDimension::getCalculatedNumbers() {
size_t MinN = Cfg.MinTrainSamples;
size_t MaxN = Cfg.MaxTrainSamples;
// Figure out what our time window should be.
time_t BeforeT = now_realtime_sec() - 1;
time_t AfterT = BeforeT - (MaxN * updateEvery());
BeforeT -= (BeforeT % updateEvery());
AfterT -= (AfterT % updateEvery());
BeforeT = std::min(BeforeT, latestTime());
AfterT = std::max(AfterT, oldestTime());
if (AfterT >= BeforeT)
return { nullptr, 0 };
CalculatedNumber *CNs = new CalculatedNumber[MaxN * (Cfg.LagN + 1)]();
// Start the query.
unsigned Idx = 0;
unsigned CollectedValues = 0;
unsigned TotalValues = 0;
CalculatedNumber LastValue = std::numeric_limits<CalculatedNumber>::quiet_NaN();
Query Q = Query(getRD());
Q.init(AfterT, BeforeT);
while (!Q.isFinished()) {
if (Idx == MaxN)
break;
auto P = Q.nextMetric();
CalculatedNumber Value = P.second;
if (netdata_double_isnumber(Value)) {
CNs[Idx] = Value;
LastValue = CNs[Idx];
CollectedValues++;
} else
CNs[Idx] = LastValue;
Idx++;
}
TotalValues = Idx;
if (CollectedValues < MinN) {
delete[] CNs;
return { nullptr, 0 };
}
// Find first non-NaN value.
for (Idx = 0; std::isnan(CNs[Idx]); Idx++, TotalValues--) { }
// Overwrite NaN values.
if (Idx != 0)
memmove(CNs, &CNs[Idx], sizeof(CalculatedNumber) * TotalValues);
return { CNs, TotalValues };
}
MLResult TrainableDimension::trainModel() {
auto P = getCalculatedNumbers();
CalculatedNumber *CNs = P.first;
unsigned N = P.second;
if (!CNs)
return MLResult::MissingData;
unsigned TargetNumSamples = Cfg.MaxTrainSamples * Cfg.RandomSamplingRatio;
double SamplingRatio = std::min(static_cast<double>(TargetNumSamples) / N, 1.0);
SamplesBuffer SB = SamplesBuffer(CNs, N, 1, Cfg.DiffN, Cfg.SmoothN, Cfg.LagN,
SamplingRatio, Cfg.RandomNums);
KM.train(SB, Cfg.MaxKMeansIters);
Trained = true;
ConstantModel = true;
delete[] CNs;
return MLResult::Success;
}
void PredictableDimension::addValue(CalculatedNumber Value, bool Exists) {
if (!Exists) {
CNs.clear();
return;
}
unsigned N = Cfg.DiffN + Cfg.SmoothN + Cfg.LagN;
if (CNs.size() < N) {
CNs.push_back(Value);
return;
}
std::rotate(std::begin(CNs), std::begin(CNs) + 1, std::end(CNs));
if (CNs[N - 1] != Value)
ConstantModel = false;
CNs[N - 1] = Value;
}
std::pair<MLResult, bool> PredictableDimension::predict() {
unsigned N = Cfg.DiffN + Cfg.SmoothN + Cfg.LagN;
if (CNs.size() != N) {
AnomalyBit = false;
return { MLResult::MissingData, AnomalyBit };
}
CalculatedNumber *TmpCNs = new CalculatedNumber[N * (Cfg.LagN + 1)]();
std::memcpy(TmpCNs, CNs.data(), N * sizeof(CalculatedNumber));
SamplesBuffer SB = SamplesBuffer(TmpCNs, N, 1, Cfg.DiffN, Cfg.SmoothN, Cfg.LagN,
1.0, Cfg.RandomNums);
AnomalyScore = computeAnomalyScore(SB);
delete[] TmpCNs;
if (AnomalyScore == std::numeric_limits<CalculatedNumber>::quiet_NaN()) {
AnomalyBit = false;
return { MLResult::NaN, AnomalyBit };
}
AnomalyBit = AnomalyScore >= (100 * Cfg.DimensionAnomalyScoreThreshold);
return { MLResult::Success, AnomalyBit };
}
|