1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "Config.h"
#include "Host.h"
#include "Queue.h"
#include "ADCharts.h"
#include "json/single_include/nlohmann/json.hpp"
using namespace ml;
void Host::addChart(Chart *C) {
std::lock_guard<Mutex> L(M);
Charts[C->getRS()] = C;
}
void Host::removeChart(Chart *C) {
std::lock_guard<Mutex> L(M);
Charts.erase(C->getRS());
}
void Host::getConfigAsJson(nlohmann::json &Json) const {
Json["version"] = 1;
Json["enabled"] = Cfg.EnableAnomalyDetection;
Json["min-train-samples"] = Cfg.MinTrainSamples;
Json["max-train-samples"] = Cfg.MaxTrainSamples;
Json["train-every"] = Cfg.TrainEvery;
Json["diff-n"] = Cfg.DiffN;
Json["smooth-n"] = Cfg.SmoothN;
Json["lag-n"] = Cfg.LagN;
Json["random-sampling-ratio"] = Cfg.RandomSamplingRatio;
Json["max-kmeans-iters"] = Cfg.MaxKMeansIters;
Json["dimension-anomaly-score-threshold"] = Cfg.DimensionAnomalyScoreThreshold;
Json["host-anomaly-rate-threshold"] = Cfg.HostAnomalyRateThreshold;
Json["anomaly-detection-grouping-method"] = group_method2string(Cfg.AnomalyDetectionGroupingMethod);
Json["anomaly-detection-query-duration"] = Cfg.AnomalyDetectionQueryDuration;
Json["hosts-to-skip"] = Cfg.HostsToSkip;
Json["charts-to-skip"] = Cfg.ChartsToSkip;
}
void Host::getModelsAsJson(nlohmann::json &Json) {
std::lock_guard<Mutex> L(M);
for (auto &CP : Charts) {
Chart *C = CP.second;
C->getModelsAsJson(Json);
}
}
#define WORKER_JOB_DETECTION_PREP 0
#define WORKER_JOB_DETECTION_DIM_CHART 1
#define WORKER_JOB_DETECTION_HOST_CHART 2
#define WORKER_JOB_DETECTION_STATS 3
#define WORKER_JOB_DETECTION_RESOURCES 4
void Host::detectOnce() {
worker_is_busy(WORKER_JOB_DETECTION_PREP);
MLS = {};
MachineLearningStats MLSCopy = {};
TrainingStats TSCopy = {};
{
std::lock_guard<Mutex> L(M);
/*
* prediction/detection stats
*/
for (auto &CP : Charts) {
Chart *C = CP.second;
if (!C->isAvailableForML())
continue;
MachineLearningStats ChartMLS = C->getMLS();
MLS.NumMachineLearningStatusEnabled += ChartMLS.NumMachineLearningStatusEnabled;
MLS.NumMachineLearningStatusDisabledUE += ChartMLS.NumMachineLearningStatusDisabledUE;
MLS.NumMachineLearningStatusDisabledSP += ChartMLS.NumMachineLearningStatusDisabledSP;
MLS.NumMetricTypeConstant += ChartMLS.NumMetricTypeConstant;
MLS.NumMetricTypeVariable += ChartMLS.NumMetricTypeVariable;
MLS.NumTrainingStatusUntrained += ChartMLS.NumTrainingStatusUntrained;
MLS.NumTrainingStatusPendingWithoutModel += ChartMLS.NumTrainingStatusPendingWithoutModel;
MLS.NumTrainingStatusTrained += ChartMLS.NumTrainingStatusTrained;
MLS.NumTrainingStatusPendingWithModel += ChartMLS.NumTrainingStatusPendingWithModel;
MLS.NumAnomalousDimensions += ChartMLS.NumAnomalousDimensions;
MLS.NumNormalDimensions += ChartMLS.NumNormalDimensions;
}
HostAnomalyRate = 0.0;
size_t NumActiveDimensions = MLS.NumAnomalousDimensions + MLS.NumNormalDimensions;
if (NumActiveDimensions)
HostAnomalyRate = static_cast<double>(MLS.NumAnomalousDimensions) / NumActiveDimensions;
MLSCopy = MLS;
/*
* training stats
*/
TSCopy = TS;
TS.QueueSize = 0;
TS.NumPoppedItems = 0;
TS.AllottedUT = 0;
TS.ConsumedUT = 0;
TS.RemainingUT = 0;
TS.TrainingResultOk = 0;
TS.TrainingResultInvalidQueryTimeRange = 0;
TS.TrainingResultNotEnoughCollectedValues = 0;
TS.TrainingResultNullAcquiredDimension = 0;
TS.TrainingResultChartUnderReplication = 0;
}
// Calc the avg values
if (TSCopy.NumPoppedItems) {
TSCopy.QueueSize /= TSCopy.NumPoppedItems;
TSCopy.AllottedUT /= TSCopy.NumPoppedItems;
TSCopy.ConsumedUT /= TSCopy.NumPoppedItems;
TSCopy.RemainingUT /= TSCopy.NumPoppedItems;
TSCopy.TrainingResultOk /= TSCopy.NumPoppedItems;
TSCopy.TrainingResultInvalidQueryTimeRange /= TSCopy.NumPoppedItems;
TSCopy.TrainingResultNotEnoughCollectedValues /= TSCopy.NumPoppedItems;
TSCopy.TrainingResultNullAcquiredDimension /= TSCopy.NumPoppedItems;
TSCopy.TrainingResultChartUnderReplication /= TSCopy.NumPoppedItems;
} else {
TSCopy.QueueSize = 0;
TSCopy.AllottedUT = 0;
TSCopy.ConsumedUT = 0;
TSCopy.RemainingUT = 0;
}
if(!RH)
return;
worker_is_busy(WORKER_JOB_DETECTION_DIM_CHART);
updateDimensionsChart(RH, MLSCopy);
worker_is_busy(WORKER_JOB_DETECTION_HOST_CHART);
updateHostAndDetectionRateCharts(RH, HostAnomalyRate * 10000.0);
#ifdef NETDATA_ML_RESOURCE_CHARTS
worker_is_busy(WORKER_JOB_DETECTION_RESOURCES);
struct rusage PredictionRU;
getrusage(RUSAGE_THREAD, &PredictionRU);
updateResourceUsageCharts(RH, PredictionRU, TSCopy.TrainingRU);
#endif
worker_is_busy(WORKER_JOB_DETECTION_STATS);
updateTrainingStatisticsChart(RH, TSCopy);
}
class AcquiredDimension {
public:
static AcquiredDimension find(RRDHOST *RH, STRING *ChartId, STRING *DimensionId) {
RRDDIM_ACQUIRED *AcqRD = nullptr;
Dimension *D = nullptr;
RRDSET *RS = rrdset_find(RH, string2str(ChartId));
if (RS) {
AcqRD = rrddim_find_and_acquire(RS, string2str(DimensionId));
if (AcqRD) {
RRDDIM *RD = rrddim_acquired_to_rrddim(AcqRD);
if (RD)
D = reinterpret_cast<Dimension *>(RD->ml_dimension);
}
}
return AcquiredDimension(AcqRD, D);
}
private:
AcquiredDimension(RRDDIM_ACQUIRED *AcqRD, Dimension *D) : AcqRD(AcqRD), D(D) {}
public:
TrainingResult train(const TrainingRequest &TR) {
if (!D)
return TrainingResult::NullAcquiredDimension;
return D->trainModel(TR);
}
~AcquiredDimension() {
if (AcqRD)
rrddim_acquired_release(AcqRD);
}
private:
RRDDIM_ACQUIRED *AcqRD;
Dimension *D;
};
void Host::scheduleForTraining(TrainingRequest TR) {
TrainingQueue.push(TR);
}
#define WORKER_JOB_TRAINING_FIND 0
#define WORKER_JOB_TRAINING_TRAIN 1
#define WORKER_JOB_TRAINING_STATS 2
void Host::train() {
worker_register("MLTRAIN");
worker_register_job_name(WORKER_JOB_TRAINING_FIND, "find");
worker_register_job_name(WORKER_JOB_TRAINING_TRAIN, "train");
worker_register_job_name(WORKER_JOB_TRAINING_STATS, "stats");
service_register(SERVICE_THREAD_TYPE_NETDATA, NULL, (force_quit_t )ml_cancel_anomaly_detection_threads, RH, true);
while (service_running(SERVICE_ML_TRAINING)) {
auto P = TrainingQueue.pop();
TrainingRequest TrainingReq = P.first;
size_t Size = P.second;
if (ThreadsCancelled) {
info("Stopping training thread because it was cancelled.");
break;
}
usec_t AllottedUT = (Cfg.TrainEvery * RH->rrd_update_every * USEC_PER_SEC) / Size;
if (AllottedUT > USEC_PER_SEC)
AllottedUT = USEC_PER_SEC;
usec_t StartUT = now_monotonic_usec();
TrainingResult TrainingRes;
{
worker_is_busy(WORKER_JOB_TRAINING_FIND);
AcquiredDimension AcqDim = AcquiredDimension::find(RH, TrainingReq.ChartId, TrainingReq.DimensionId);
worker_is_busy(WORKER_JOB_TRAINING_TRAIN);
TrainingRes = AcqDim.train(TrainingReq);
string_freez(TrainingReq.ChartId);
string_freez(TrainingReq.DimensionId);
}
usec_t ConsumedUT = now_monotonic_usec() - StartUT;
worker_is_busy(WORKER_JOB_TRAINING_STATS);
usec_t RemainingUT = 0;
if (ConsumedUT < AllottedUT)
RemainingUT = AllottedUT - ConsumedUT;
{
std::lock_guard<Mutex> L(M);
if (TS.AllottedUT == 0) {
struct rusage TRU;
getrusage(RUSAGE_THREAD, &TRU);
TS.TrainingRU = TRU;
}
TS.QueueSize += Size;
TS.NumPoppedItems += 1;
TS.AllottedUT += AllottedUT;
TS.ConsumedUT += ConsumedUT;
TS.RemainingUT += RemainingUT;
switch (TrainingRes) {
case TrainingResult::Ok:
TS.TrainingResultOk += 1;
break;
case TrainingResult::InvalidQueryTimeRange:
TS.TrainingResultInvalidQueryTimeRange += 1;
break;
case TrainingResult::NotEnoughCollectedValues:
TS.TrainingResultNotEnoughCollectedValues += 1;
break;
case TrainingResult::NullAcquiredDimension:
TS.TrainingResultNullAcquiredDimension += 1;
break;
case TrainingResult::ChartUnderReplication:
TS.TrainingResultChartUnderReplication += 1;
break;
}
}
worker_is_idle();
std::this_thread::sleep_for(std::chrono::microseconds{RemainingUT});
worker_is_busy(0);
}
}
void Host::detect() {
worker_register("MLDETECT");
worker_register_job_name(WORKER_JOB_DETECTION_PREP, "prep");
worker_register_job_name(WORKER_JOB_DETECTION_DIM_CHART, "dim chart");
worker_register_job_name(WORKER_JOB_DETECTION_HOST_CHART, "host chart");
worker_register_job_name(WORKER_JOB_DETECTION_STATS, "stats");
worker_register_job_name(WORKER_JOB_DETECTION_RESOURCES, "resources");
service_register(SERVICE_THREAD_TYPE_NETDATA, NULL, (force_quit_t )ml_cancel_anomaly_detection_threads, RH, true);
heartbeat_t HB;
heartbeat_init(&HB);
while (service_running((SERVICE_TYPE)(SERVICE_ML_PREDICTION | SERVICE_COLLECTORS))) {
worker_is_idle();
heartbeat_next(&HB, (RH ? RH->rrd_update_every : default_rrd_update_every) * USEC_PER_SEC);
detectOnce();
}
}
void Host::getDetectionInfoAsJson(nlohmann::json &Json) const {
Json["version"] = 1;
Json["anomalous-dimensions"] = MLS.NumAnomalousDimensions;
Json["normal-dimensions"] = MLS.NumNormalDimensions;
Json["total-dimensions"] = MLS.NumAnomalousDimensions + MLS.NumNormalDimensions;
Json["trained-dimensions"] = MLS.NumTrainingStatusTrained + MLS.NumTrainingStatusPendingWithModel;
}
void *train_main(void *Arg) {
Host *H = reinterpret_cast<Host *>(Arg);
H->train();
return nullptr;
}
void *detect_main(void *Arg) {
Host *H = reinterpret_cast<Host *>(Arg);
H->detect();
return nullptr;
}
void Host::startAnomalyDetectionThreads() {
if (ThreadsRunning) {
error("Anomaly detections threads for host %s are already-up and running.", rrdhost_hostname(RH));
return;
}
ThreadsRunning = true;
ThreadsCancelled = false;
ThreadsJoined = false;
char Tag[NETDATA_THREAD_TAG_MAX + 1];
// #define ML_DISABLE_JOINING
snprintfz(Tag, NETDATA_THREAD_TAG_MAX, "MLTR[%s]", rrdhost_hostname(RH));
netdata_thread_create(&TrainingThread, Tag, NETDATA_THREAD_OPTION_JOINABLE, train_main, static_cast<void *>(this));
snprintfz(Tag, NETDATA_THREAD_TAG_MAX, "MLDT[%s]", rrdhost_hostname(RH));
netdata_thread_create(&DetectionThread, Tag, NETDATA_THREAD_OPTION_JOINABLE, detect_main, static_cast<void *>(this));
}
void Host::stopAnomalyDetectionThreads(bool join) {
if (!ThreadsRunning) {
error("Anomaly detections threads for host %s have already been stopped.", rrdhost_hostname(RH));
return;
}
if(!ThreadsCancelled) {
ThreadsCancelled = true;
// Signal the training queue to stop popping-items
TrainingQueue.signal();
netdata_thread_cancel(TrainingThread);
netdata_thread_cancel(DetectionThread);
}
if (join && !ThreadsJoined) {
ThreadsJoined = true;
ThreadsRunning = false;
// these fail on alpine linux and our CI hangs forever
// failing to compile static builds
// commenting them, until we find a solution
// to enable again:
// NETDATA_THREAD_OPTION_DEFAULT needs to become NETDATA_THREAD_OPTION_JOINABLE
netdata_thread_join(TrainingThread, nullptr);
netdata_thread_join(DetectionThread, nullptr);
}
}
|