blob: 86591d7ae3a288e043f93ded9f36801c0e3f13ea (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
// SPDX-License-Identifier: GPL-3.0-or-later
#ifndef ML_HOST_H
#define ML_HOST_H
#include "BitRateWindow.h"
#include "Config.h"
#include "Database.h"
#include "Dimension.h"
#include "ml-private.h"
namespace ml {
class RrdHost {
public:
RrdHost(RRDHOST *RH) : RH(RH) {}
RRDHOST *getRH() { return RH; }
unsigned updateEvery() { return RH->rrd_update_every; }
std::string getUUID() {
char S[UUID_STR_LEN];
uuid_unparse_lower(RH->host_uuid, S);
return S;
}
void addDimension(Dimension *D);
void removeDimension(Dimension *D);
void getConfigAsJson(nlohmann::json &Json) const;
virtual ~RrdHost() {};
protected:
RRDHOST *RH;
// Protect dimension and lock maps
std::mutex Mutex;
std::map<RRDDIM *, Dimension *> DimensionsMap;
std::map<Dimension *, std::mutex> LocksMap;
};
class TrainableHost : public RrdHost {
public:
TrainableHost(RRDHOST *RH) : RrdHost(RH) {}
void train();
private:
std::pair<Dimension *, Duration<double>> findDimensionToTrain(const TimePoint &NowTP);
void trainDimension(Dimension *D, const TimePoint &NowTP);
};
class DetectableHost : public TrainableHost {
public:
DetectableHost(RRDHOST *RH) : TrainableHost(RH) {}
void startAnomalyDetectionThreads();
void stopAnomalyDetectionThreads();
template<typename ...ArgTypes>
bool getAnomalyInfo(ArgTypes&&... Args) {
return DB.getAnomalyInfo(Args...);
}
template<typename ...ArgTypes>
bool getAnomaliesInRange(ArgTypes&&... Args) {
return DB.getAnomaliesInRange(Args...);
}
void getDetectionInfoAsJson(nlohmann::json &Json) const;
private:
void detect();
void detectOnce();
private:
std::thread TrainingThread;
std::thread DetectionThread;
BitRateWindow BRW{
static_cast<size_t>(Cfg.ADMinWindowSize),
static_cast<size_t>(Cfg.ADMaxWindowSize),
static_cast<size_t>(Cfg.ADIdleWindowSize),
static_cast<size_t>(Cfg.ADMinWindowSize * Cfg.ADWindowRateThreshold)
};
CalculatedNumber AnomalyRate{0.0};
size_t NumAnomalousDimensions{0};
size_t NumNormalDimensions{0};
size_t NumTrainedDimensions{0};
Database DB{Cfg.AnomalyDBPath};
};
using Host = DetectableHost;
} // namespace ml
#endif /* ML_HOST_H */
|