blob: edc2ef49ec33365cf8b2a550ecede9ad77d94900 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "KMeans.h"
#include <dlib/clustering.h>
void KMeans::train(const std::vector<DSample> &Samples, size_t MaxIterations) {
MinDist = std::numeric_limits<CalculatedNumber>::max();
MaxDist = std::numeric_limits<CalculatedNumber>::min();
ClusterCenters.clear();
dlib::pick_initial_centers(NumClusters, ClusterCenters, Samples);
dlib::find_clusters_using_kmeans(Samples, ClusterCenters, MaxIterations);
for (const auto &S : Samples) {
CalculatedNumber MeanDist = 0.0;
for (const auto &KMCenter : ClusterCenters)
MeanDist += dlib::length(KMCenter - S);
MeanDist /= NumClusters;
if (MeanDist < MinDist)
MinDist = MeanDist;
if (MeanDist > MaxDist)
MaxDist = MeanDist;
}
}
CalculatedNumber KMeans::anomalyScore(const DSample &Sample) const {
CalculatedNumber MeanDist = 0.0;
for (const auto &CC: ClusterCenters)
MeanDist += dlib::length(CC - Sample);
MeanDist /= NumClusters;
if (MaxDist == MinDist)
return 0.0;
CalculatedNumber AnomalyScore = 100.0 * std::abs((MeanDist - MinDist) / (MaxDist - MinDist));
return (AnomalyScore > 100.0) ? 100.0 : AnomalyScore;
}
|