summaryrefslogtreecommitdiffstats
path: root/ml/dlib/docs/docs/optimization.xml
blob: cd04ded75ae4efa8ef71d71f3fcdb06d0747905d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
<?xml version="1.0" encoding="utf8"?>
<?xml-stylesheet type="text/xsl" href="stylesheet.xsl"?>

<doc>
   <title>Optimization</title>

   <!-- ************************************************************************* -->

   <body>

         <p>
            This page documents library components that attempt to find the 
            minimum or maximum of a user supplied function.   An introduction
            to the general purpose non-linear optimizers in this section can be
            found <a href="optimization_ex.cpp.html">here</a>.  For an example
            showing how to use the non-linear least squares routines look 
            <a href="least_squares_ex.cpp.html">here</a>.
         </p>

   </body>

   <!-- ************************************************************************* -->

   <menu width="150">
    <top>
      <section>
         <name>General Purpose Optimizers</name>
         <item>find_min</item> 
         <item>find_min_box_constrained</item> 
         <item>find_min_single_variable</item> 
         <item>find_min_using_approximate_derivatives</item> 
         <item>find_min_bobyqa</item> 
         <item>find_min_global</item> 
         <item>find_max</item> 
         <item>find_max_box_constrained</item> 
         <item>find_max_single_variable</item> 
         <item>find_max_using_approximate_derivatives</item> 
         <item>find_max_bobyqa</item> 
         <item>find_max_global</item> 
         <item>global_function_search</item> 
         <item>find_max_trust_region</item> 
         <item>find_min_trust_region</item> 
      </section>

      <section>
         <name>Special Purpose Optimizers</name>
         <item>find_gap_between_convex_hulls</item> 
         <item>solve_qp_box_constrained</item> 
         <item>solve_qp_box_constrained_blockdiag</item> 
         <item>solve_qp_using_smo</item> 
         <item>solve_qp2_using_smo</item> 
         <item>solve_qp3_using_smo</item> 
         <item>solve_qp4_using_smo</item> 
         <item>oca</item> 
         <item>mpc</item> 
         <item>solve_least_squares</item> 
         <item>solve_least_squares_lm</item> 
         <item>solve_trust_region_subproblem</item> 
         <item>solve_trust_region_subproblem_bounded</item> 
         <item>max_cost_assignment</item> 
         <item>max_sum_submatrix</item> 
         <item>find_max_factor_graph_nmplp</item> 
         <item>find_max_factor_graph_viterbi</item> 
         <item>find_max_factor_graph_potts</item> 
         <item>find_max_parse_cky</item> 
         <item>min_cut</item> 
         <item>elastic_net</item> 
         <item>isotonic_regression</item> 
      </section>

      <section>
         <name>Strategies</name>
         <item>cg_search_strategy</item>
         <item>bfgs_search_strategy</item>
         <item>newton_search_strategy</item>
         <item>lbfgs_search_strategy</item>
         <item>objective_delta_stop_strategy</item>
         <item>gradient_norm_stop_strategy</item>
      </section>

      <section>
         <name>Helper Routines</name>
         <item>derivative</item> 
         <item>negate_function</item> 
         <item>clamp_function</item> 
         <item>make_line_search_function</item> 
         <item>poly_min_extrap</item> 
         <item>lagrange_poly_min_extrap</item> 
         <item>line_search</item> 
         <item>backtracking_line_search</item> 
         <item>graph_cut_score</item> 
         <item>potts_model_score</item> 
         <item>parse_tree_to_string</item> 
         <item>find_trees_not_rooted_with_tag</item> 
         <item>upper_bound_function</item> 
         <item>call_function_and_expand_args</item> 
      </section>

    </top>  
   </menu>

   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->

   <components>
   
   <!-- ************************************************************************* -->
      
      <component>
         <name>derivative</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
            This is a function that takes another function as input and returns
            a function object that numerically computes the derivative of the input function.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>negate_function</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This is a function that takes another function as input and returns
            a function object that computes the negation of the input function.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>clamp_function</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
            This is a function that takes another function, f(x), as input and 
            returns a new function object, g(x), such that  
            <tt>g(x) == f(clamp(x,x_lower,x_upper))</tt> where x_lower and x_upper 
            are vectors of box constraints which are applied to x.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>make_line_search_function</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This is a function that takes another function f(x) as input and returns
            a function object l(z) = f(start + z*direction).   It is useful for
            turning multi-variable functions into single-variable functions for
            use with the <a href="#line_search">line_search</a> or 
            <a href="#backtracking_line_search">backtracking_line_search</a> routines.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>poly_min_extrap</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This function finds the 2nd or 3rd degree polynomial that interpolates a 
            set of points and returns the minimum of that polynomial.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>lagrange_poly_min_extrap</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This function finds the second order polynomial that interpolates a 
            set of points and returns the minimum of that polynomial.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>line_search</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            Performs a gradient based line search on a given function and returns the input
            that makes the function significantly smaller.  This implements the classic
            line search method using the strong Wolfe conditions with a bracketing and then
            sectioning phase, both using polynomial interpolation. 
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->

      <component>
         <name>backtracking_line_search</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            Performs a line search on a given function and returns the input
            that makes the function significantly smaller.  This implementation uses a
            basic Armijo backtracking search with polynomial interpolation.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>cg_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the Polak-Ribiere conjugate gradient method
                for determining this direction.

                  <p>
                This method uses an amount of memory that is linear in the number
                of variables to be optimized.  So it is capable of handling problems
                with a very large number of variables.  However, it is generally
                not as good as the L-BFGS algorithm (see the 
                <a href="#lbfgs_search_strategy">lbfgs_search_strategy</a> class).
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>bfgs_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the BFGS quasi-newton method for determining 
                this direction.

                  <p>
                This method uses an amount of memory that is quadratic in the number
                of variables to be optimized.  It is generally very effective but 
                if your problem has a very large number of variables then it isn't 
                appropriate.  Instead, you should try the <a href="#lbfgs_search_strategy">lbfgs_search_strategy</a>.
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>newton_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular routine 
                is an implementation of the newton method for determining this direction.  
                That means using it requires you to supply a method for
                creating hessian matrices for the problem you are trying to optimize.

               <p>
               Note also that this is actually a helper function for creating 
               <a href="dlib/optimization/optimization_search_strategies_abstract.h.html#newton_search_strategy_obj"
                     >newton_search_strategy_obj</a> objects.  
               </p>

         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>lbfgs_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the L-BFGS quasi-newton method for determining 
                this direction.

                  <p>
                This method uses an amount of memory that is linear in the number
                of variables to be optimized.  This makes it an excellent method 
                to use when an optimization problem has a large number of variables.
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>objective_delta_stop_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_stop_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for deciding if an optimization
                algorithm should terminate.   This particular object looks at the 
                change in the objective function from one iteration to the next and 
                bases its decision on how large this change is.  If the change
                is below a user given threshold then the search stops.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>gradient_norm_stop_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_stop_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for deciding if an optimization
                algorithm should terminate.   This particular object looks at the 
                norm (i.e. the length) of the current gradient vector and
                stops if it is smaller than a user given threshold.  
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_min</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_min_box_constrained</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs a box constrained minimization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
             This function uses a backtracking line search along with a gradient projection
             step to handle the box constraints.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_min_single_variable</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
             Performs a bound constrained minimization of a nonlinear function.  The 
             function must be of a single variable.  Derivatives are not required.  
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>solve_trust_region_subproblem_bounded</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             This function solves the following optimization problem:
<pre>
Minimize: f(p) == 0.5*trans(p)*B*p + trans(g)*p
subject to the following constraint:
   length(p) &lt;= radius
   lower(i) &lt;= p(i) &lt;= upper(i), for all i
</pre>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_trust_region_subproblem</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             This function solves the following optimization problem:
<pre>
Minimize: f(p) == 0.5*trans(p)*B*p + trans(g)*p
subject to the following constraint:
   length(p) &lt;= radius
</pre>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_gap_between_convex_hulls</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp_using_smo_abstract.h</spec_file>
         <description>
            This function measures the position and size of the gap between two convex
            polytopes.  In particular, it solves the following quadratic program:
<pre>
   Minimize: f(cA,cB) == length_squared(A*cA - B*cB) 
   subject to the following constraints on cA and cB:
      - is_col_vector(cA) == true &amp;&amp; cA.size() == A.nc()
      - is_col_vector(cB) == true &amp;&amp; cB.size() == B.nc()
      - sum(cA) == 1 &amp;&amp; min(cA) >= 0
      - sum(cB) == 1 &amp;&amp; min(cB) >= 0
</pre>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha - trans(alpha)*b
   subject to the following constraints:
      sum(alpha) == C 
      min(alpha) >= 0 
   Where f is convex.  This means that Q should be symmetric and positive-semidefinite.
</pre>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp_box_constrained</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha + trans(b)*alpha 
   subject to the following box constraints on alpha:
      0 &lt;= min(alpha-lower)
      0 &lt;= max(upper-alpha)
   Where f is convex.  This means that Q should be positive-semidefinite.
</pre>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp_box_constrained_blockdiag</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha + trans(b)*alpha 
   subject to the following box constraints on alpha:
      0 &lt;= min(alpha-lower)
      0 &lt;= max(upper-alpha)
   Where f is convex.  This means that Q should be positive-semidefinite.
</pre>
            
            So it does the same thing as <a href="#solve_qp_box_constrained">solve_qp_box_constrained</a>,
            except it is optimized for large Q matrices with a special block
            structure.  In particular, Q must be grouped into identically sized
            blocks where all blocks are diagonal matrices, except those on the
            main diagonal which can be dense. 
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp2_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp2_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha 
   subject to the following constraints:
      sum(alpha) == nu*y.size() 
      0 &lt;= min(alpha) &amp;&amp; max(alpha) &lt;= 1 
      trans(y)*alpha == 0

   Where all elements of y must be equal to +1 or -1 and f is convex.  
   This means that Q should be symmetric and positive-semidefinite.
</pre>
<br/>
                This object implements the strategy used by the LIBSVM tool.  The following papers
                can be consulted for additional details:
               <ul>
                  <li>Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms</li>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp3_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp3_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha + trans(p)*alpha
   subject to the following constraints:
        for all i such that y(i) == +1:  0 &lt;= alpha(i) &lt;= Cp 
        for all i such that y(i) == -1:  0 &lt;= alpha(i) &lt;= Cn 
        trans(y)*alpha == B 

   Where all elements of y must be equal to +1 or -1 and f is convex.  
   This means that Q should be symmetric and positive-semidefinite.
</pre>
<br/>
                This object implements the strategy used by the LIBSVM tool.  The following papers
                can be consulted for additional details:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
                  <li>Working Set Selection Using Second Order Information for Training Support Vector Machines by
                     Fan, Chen, and Lin.  In the Journal of Machine Learning Research 2005.</li>
               </ul>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp4_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha,lambda) == 0.5*trans(alpha)*Q*alpha - trans(alpha)*b + 
                                0.5*trans(lambda)*lambda - trans(lambda)*A*alpha - trans(lambda)*d
   subject to the following constraints:
      sum(alpha)  == C 
      min(alpha)  &gt;= 0 
      min(lambda) &gt;= 0
      max(lambda) &lt;= max_lambda 
   Where f is convex.  This means that Q should be positive-semidefinite.
</pre>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>max_cost_assignment</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/max_cost_assignment_abstract.h</spec_file>
         <description>
            This function is an implementation of the Hungarian algorithm (also know as the Kuhn-Munkres algorithm) which
            runs in O(N^3) time.
            It solves the optimal assignment problem. For example, suppose you have an equal number of workers
            and jobs and you need to decide which workers to assign to which jobs. Some workers are better at 
            certain jobs than others. So you would like to find out how to assign them all to jobs such that 
            overall productivity is maximized. You can use this routine to solve this problem and others like it. 
            <p>
               Note that dlib also contains a <a href="ml.html#structural_assignment_trainer">machine learning</a>
               method for learning the cost function needed to use the Hungarian algorithm.
            </p>

         </description>
         <examples>
            <example>max_cost_assignment_ex.cpp.html</example>
            <example>max_cost_assignment.py.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>max_sum_submatrix</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/max_sum_submatrix_abstract.h</spec_file>
         <description>
              This function finds the submatrix within a user supplied matrix which has the largest sum.  It then
              zeros out that submatrix and repeats the process until no more maximal submatrices can 
              be found.   
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_factor_graph_nmplp</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_factor_graph_nmplp_abstract.h</spec_file>
         <description>
              This function is a tool for approximately solving the MAP problem in a graphical 
              model or factor graph with pairwise potential functions.  That is, it attempts 
              to solve a certain kind of optimization problem which can be defined as follows:
<pre>
   maximize: f(X)
   where X is a set of integer valued variables and f(X) can be written
   as the sum of functions which each involve only two variables from X.
</pre>
If the graph is tree-structured then this routine always gives the exact solution to the MAP problem.
However, for graphs with cycles, the solution may be approximate.
<br/>
<br/>
            This function is an implementation of the NMPLP algorithm introduced in the 
            following papers:
                <blockquote>
                Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations (2008)
                by Amir Globerson and Tommi Jaakkola
                </blockquote>
                <blockquote>
                Introduction to dual decomposition for inference (2011)
                by David Sontag, Amir Globerson, and Tommi Jaakkola 
                </blockquote>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_parse_cky</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_parse_cky_abstract.h</spec_file>
         <description>
            This function implements the CKY parsing algorithm.  In particular, it
            finds the maximum scoring binary parse tree that parses an input sequence of tokens.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>parse_tree_to_string</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_parse_cky_abstract.h</spec_file>
         <description>
            This is a set of functions useful for converting a parse tree output by 
            <a href="#find_max_parse_cky">find_max_parse_cky</a> into a bracketed string
            suitable for displaying the parse tree.  
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_trees_not_rooted_with_tag</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_parse_cky_abstract.h</spec_file>
         <description>
              Finds all the largest non-overlapping <a href="#find_max_parse_cky">parse trees</a> 
              in tree that are not rooted with a particular tag.   
              <p>
              This function is useful when you want to cut a parse tree
              into a bunch of sub-trees and you know that the top level of the tree is all
              composed of the same kind of tag.  So if you want to just "slice off" the top
              of the tree where this tag lives then this function is useful for doing that.
              </p>
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_max_factor_graph_viterbi</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_factor_graph_viterbi_abstract.h</spec_file>
         <description>
            This function is a tool for exactly solving the MAP problem in a chain-structured 
            graphical model or factor graph.   In particular, it is an implementation of the classic Viterbi
            algorithm for finding the maximizing assignment.  In addition to basic first order Markov
            models, this function is also capable of finding the MAP assignment for higher order
            Markov models.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>potts_model_score</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/find_max_factor_graph_potts_abstract.h</spec_file>
         <description>
              This routine computes the model score for a Potts problem and a
              candidate labeling.  This score is the quantity maximised
              by the <a href="#find_max_factor_graph_potts">find_max_factor_graph_potts</a>
              routine.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>graph_cut_score</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/min_cut_abstract.h</spec_file>
         <description>
            This routine computes the score for a candidate graph cut.  This is the 
            quantity minimized by the <a href="#min_cut">min_cut</a> algorithm.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>min_cut</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/min_cut_abstract.h</spec_file>
         <description>
                This is a function object which can be used to find the min cut
                on a graph.
                The implementation is based on the method described in the following
                paper:
                <blockquote>
                    An Experimental Comparison of Min-Cut/Max-Flow Algorithms for
                    Energy Minimization in Vision, by Yuri Boykov and Vladimir Kolmogorov, 
                    in PAMI 2004.
                </blockquote>
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_factor_graph_potts</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/find_max_factor_graph_potts_abstract.h</spec_file>
         <description>
              This is a set of overloaded functions for exactly solving the MAP problem in a Potts
              model.  This type of model is useful when you have a problem which
              can be modeled as a bunch of binary decisions on some variables,
              but you have some kind of labeling consistency constraint.  This
              means that there is some penalty for giving certain pairs of variables
              different labels.  So in addition to trying to figure out how to best
              label each variable on its own, you have to worry about making the
              labels pairwise consistent in some sense.  The find_max_factor_graph_potts()
              routine can be used to find the most probable/highest scoring
              labeling for this type of model.
              <p>The implementation of this routine is based on the <a href="#min_cut">min_cut</a> object.</p>
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>oca</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_oca_abstract.h</spec_file>
         <description>
                This object is a tool for solving the following optimization problem:   
<pre>
   Minimize: f(w) == 0.5*||w||^2 + C*R(w)

   Where R(w) is a user-supplied convex function and C > 0.  Optionally,
   this object can also add non-negativity constraints to some or all
   of the elements of w.

Or it can alternatively solve:
   Minimize: f(w) == 0.5*||w-prior||^2 + C*R(w)

   Where prior is a user supplied vector and R(w) has the same
   interpretation as above.

Or it can use the elastic net regularizer:
   Minimize: f(w) == 0.5*(1-lasso_lambda)*length_squared(w) + lasso_lambda*sum(abs(w)) + C*R(w)

   Where lasso_lambda is a number in the range [0, 1) and controls
   trade-off between doing L1 and L2 regularization.  R(w) has the same
   interpretation as above.
</pre>
<br/>
<br/>

                For a detailed discussion you should consult the following papers
                from the Journal of Machine Learning Research:
                <blockquote>
                    Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
                      by  Vojtech Franc, Soren Sonnenburg; 10(Oct):2157--2192, 2009. 
                </blockquote>
                <blockquote>
                    Bundle Methods for Regularized Risk Minimization
                      by Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, Quoc V. Le; 11(Jan):311-365, 2010. 
                </blockquote>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>mpc</name>
         <file>dlib/control.h</file>
         <spec_file link="true">dlib/control/mpc_abstract.h</spec_file>
         <description>
                This object implements a linear model predictive controller.  
                In particular, it solves a certain quadratic program using the method
                described in the paper:
                <blockquote>
                  A Fast Gradient method for embedded linear predictive control (2011)
                  by Markus Kogel and Rolf Findeisen
                </blockquote>
         </description>
         <examples>
            <example>mpc_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->
      
      
      <component>
         <name>find_min_bobyqa</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_bobyqa_abstract.h</spec_file>
         <description>
            This function defines the dlib interface to the BOBYQA software developed by M.J.D Powell.
            BOBYQA is a method for optimizing a function in the absence of derivative information.  
            Powell described it as a method that seeks the least value of a function of many 
            variables, by applying a trust region method that forms quadratic models by 
            interpolation.  There is usually some freedom in the interpolation conditions, 
            which is taken up by minimizing the Frobenius norm of the change to the second 
            derivative of the model, beginning with the zero matrix. The values of the variables 
            are constrained by upper and lower bounds.  

            <p>
            The following paper, published in 2009 by Powell, describes the
            detailed working of the BOBYQA algorithm.  

               <blockquote>
               The BOBYQA algorithm for bound constrained optimization 
               without derivatives by M.J.D. Powell
               </blockquote>
            </p>

            <p>
               Note that BOBYQA only works on functions of two or more variables.  So if you need to perform 
               derivative-free optimization on a function of a single variable 
               then you should use the <a href="#find_min_single_variable">find_min_single_variable</a>
               function.
            </p>

         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_bobyqa</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_bobyqa_abstract.h</spec_file>
         <description>
            This function is identical to the <a href="#find_min_bobyqa">find_min_bobyqa</a> routine 
            except that it negates the objective function before performing optimization.  
            Thus this function will attempt to find the maximizer of the objective rather than 
            the minimizer.
            <p>
               Note that BOBYQA only works on functions of two or more variables.  So if you need to perform 
               derivative-free optimization on a function of a single variable 
               then you should use the <a href="#find_max_single_variable">find_max_single_variable</a>
               function.
            </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>isotonic_regression</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/isotonic_regression_abstract.h</spec_file>
         <description>
            This object is a tool for performing 1-D isotonic regression. That is, it
            finds the least squares fit of a non-parametric curve to some user supplied
            data, subject to the constraint that the fitted curve is non-decreasing.

            <p>
            This is done using the fast O(n) pool adjacent violators algorithm.
            </p>
         </description>
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>elastic_net</name>
         <file>dlib/optimization/elastic_net.h</file>
         <spec_file link="true">dlib/optimization/elastic_net_abstract.h</spec_file>
         <description>
                This object is a tool for solving the following optimization problem:

<pre>
   min_w:      length_squared(X*w - Y) + ridge_lambda*length_squared(w)
   such that:  sum(abs(w)) &lt;= lasso_budget
</pre>

                <p>
                That is, it solves the elastic net optimization problem.  This object also
                has the special property that you can quickly obtain different solutions
                for different settings of ridge_lambda, lasso_budget, and target Y values.
                </p>

                <p>
                This is because a large amount of work is precomputed in the constructor.
                The solver will also remember the previous solution and will use that to
                warm start subsequent invocations.  Therefore, you can efficiently get
                solutions for a wide range of regularization parameters.
                </p>
                
                
                The particular algorithm used to solve it is described in the paper:
                <blockquote>
                    Zhou, Quan, et al. "A reduction of the elastic net to support vector
                    machines with an application to gpu computing." arXiv preprint
                    arXiv:1409.1976 (2014).  APA 
                </blockquote>

                And for the SVM solver sub-component we use the algorithm from:
                <blockquote>
                    Hsieh, Cho-Jui, et al. "A dual coordinate descent method for large-scale
                    linear SVM." Proceedings of the 25th international conference on Machine
                    learning. ACM, 2008. 
                </blockquote>
         </description>
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_min_using_approximate_derivatives</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
             This version doesn't take a gradient function but instead numerically approximates 
             the gradient.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>solve_least_squares</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_least_squares_abstract.h</spec_file>
         <description>
            This is a function for solving non-linear least squares problems.  It uses a method
            which combines the traditional Levenberg-Marquardt technique with a quasi-newton
            approach.  It is appropriate for large residual problems (i.e. problems where the
            terms in the least squares function, the residuals, don't go to zero but remain
            large at the solution)
         </description>
                                 
         <examples>
            <example>least_squares_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_least_squares_lm</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_least_squares_abstract.h</spec_file>
         <description>
            This is a function for solving non-linear least squares problems.  It uses 
            the traditional Levenberg-Marquardt technique. 
            It is appropriate for small residual problems (i.e. problems where the
            terms in the least squares function, the residuals, go to zero at the solution)
         </description>
                                 
         <examples>
            <example>least_squares_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_min_trust_region</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             a trust region method.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_trust_region</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             a trust region method.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_box_constrained</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs a box constrained maximization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
             This function uses a backtracking line search along with a gradient projection
             step to handle the box constraints.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_single_variable</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
             Performs a bound constrained maximization of a nonlinear function.  The 
             function must be of a single variable.  Derivatives are not required.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_using_approximate_derivatives</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
             This version doesn't take a gradient function but instead numerically approximates 
             the gradient.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->
      
      <component>
         <name>global_function_search</name>
         <file>dlib/global_optimization.h</file>
         <spec_file link="true">dlib/global_optimization/global_function_search_abstract.h</spec_file>
         <description>
            This object performs global optimization of a set of user supplied
            functions.  That is, given a set of functions, each of which could take a different
            number of arguments, this object allows you to find which function and which arguments
            produce the maximal output. 

            <p>
            Importantly, the global_function_search object does not require the user to
            supply derivatives.  Moreover, the functions being optimized may contain discontinuities,
            behave stochastically, and have many local maxima.  The global_function_search 
            object will attempt to find the global optima in the face of these challenges.  
            It is also designed to use as few function evaluations as possible, making
            it suitable for optimizing functions that are very expensive to evaluate.  
            It does this by alternating between two modes: a global exploration mode
            and a local optima refinement mode.  This is accomplished by building and
            maintaining two models of the objective function:
            </p>
            <ol>
               <li>
                  A global model that <a href="#upper_bound_function">upper bounds our objective function</a>.  This is a non-parametric
                  piecewise linear model derived from all function evaluations ever seen by the
                  global_function_search object.  This is based on the method described in <i>Global
                  Optimization of Lipschitz Functions</i> by Cédric Malherbe and Nicolas Vayatis in the
                  2017 International Conference on Machine Learning.
               </li>
               <li>
                  A local quadratic model fit around the best point seen so far.  This uses
                  a trust region method similar to what is proposed in:
                  <i>The NEWUOA software for unconstrained optimization without derivatives</i> By
                  M.J.D. Powell, 40th Workshop on Large Scale Nonlinear Optimization (Erice,
                  Italy, 2004)
               </li>
            </ol>

            The behavior of the algorithm is illustrated in the following video, which shows the solver in action.  In the video, the red line 
            is the function to be optimized and we are looking for the maximum point.  Every time 
            the global_function_search samples a point from the function we note it with a little
            box.  The state of the solver is determined by the two models discussed above.
            Therefore, we draw the upper bounding model as well as the current local quadratic model
            so you can see how they evolve as the optimization proceeds.  We also note the location of the
            best point seen so far by a little vertical line.  
            <p>
            You can see that the optimizer is alternating between picking the maximum upper bounding
            point and the maximum point according to the quadratic model.  As the optimization
            progresses, the upper bound becomes progressively more accurate, helping to find the
            best peak to investigate, while the quadratic model quickly finds a high precision
            maximizer on whatever peak it currently rests.  These two things together allow the 
            optimizer to find the true global maximizer to high precision (within 1e-9 in this case) by the time the 
            video concludes. 
            </p>
            <center>
            <video src="find_max_global_example">
               Video of optimizer running
            </video>
            </center>

            <p>
            Finally, note that the <a href="#find_max_global">find_max_global</a> routine is
            essentially a simple wrapper around the global_function_search object and exists to
            provide a convenient interface.  Most users will therefore want to call find_max_global
            rather than global_function_search.  However, the API of global_function_search
            is more general and allows for of a wider set of usage patterns, for example, executing
            objective function evaluations in parallel.  So more advanced users may want to use
            global_function_search directly rather than find_max_global.  But try to use find_max_global() first.
            </p>

         </description>

      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_global</name>
         <file>dlib/global_optimization.h</file>
         <spec_file link="true">dlib/global_optimization/find_max_global_abstract.h</spec_file>
         <description>
            This function performs global optimization of a function, subject
            to bounds constraints.  This means it attempts to find the global
            maximizer, not just a local maximizer.  The search is performed
            using the <a href="#global_function_search">global_function_search</a> object.
            See global_function_search's documentation for details of the algorithm.  Importantly,
            find_max_global() does not require the user to specify derivatives
            or starting guesses, all while attempting to use as few calls to
            the objective function as possible.  It is therefore appropriate for tasks
            where evaluating the objective function is time consuming or
            expensive, such as in hyper parameter optimization of machine
            learning models.
         </description>

         <examples>
            <example>optimization_ex.cpp.html</example>
            <example>model_selection_ex.cpp.html</example>
            <example>global_optimization.py.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_min_global</name>
         <file>dlib/global_optimization.h</file>
         <spec_file link="true">dlib/global_optimization/find_max_global_abstract.h</spec_file>
         <description>
            This function is identical to the <a href="#find_max_global">find_max_global</a> routine 
            except it negates the objective function before performing optimization.  
            Thus this function will attempt to find the minimizer of the objective rather than 
            the maximizer.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
            <example>model_selection_ex.cpp.html</example>
            <example>global_optimization.py.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>upper_bound_function</name>
         <file>dlib/global_optimization.h</file>
         <spec_file link="true">dlib/global_optimization/upper_bound_function_abstract.h</spec_file>
         <description>
            This object represents a piecewise linear non-parametric function that can
            be used to define an upper bound on some more complex and unknown function.

            <p>
            This is based on the method described in <i>Global Optimization of Lipschitz
            Functions</i> by Cédric Malherbe and Nicolas Vayatis in the 2017 International
            Conference on Machine Learning.  Here we have extended it to support modeling of
            stochastic or discontinuous functions by adding a noise term.  We also model separate
            Lipschitz parameters for each dimension, allowing the model to handle functions with
            widely varying sensitivities to each input variable.  
            </p>
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>call_function_and_expand_args</name>
         <file>dlib/global_optimization.h</file>
         <spec_file link="true">dlib/global_optimization/find_max_global_abstract.h</spec_file>
         <description>
            This routine allows you to pass a <tt>dlib::matrix&lt;double,0,1&gt;</tt> object to
            a function that takes simple <tt>double</tt> arguments.  It does this by automatically
            expanding the matrix elements and invoking the function.  For example, suppose you had
            a function like this:
            <code_box>
double f(double x, double y, double z); </code_box>
            You could then call f() like this:
            <code_box>
matrix&lt;double,0,1&gt; args = {3,4,5};
call_function_and_expand_args(f, args); // calls: f(3,4,5) </code_box>

            This kind of thing is convenient when writing optimizers like <a
            href="#find_max_global">find_max_global</a> since it allows a wide range of
            input functions to be given to the optimizer, including functions with
            explicitly named arguments like x,y,z as shown above.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->


   </components>

   <!-- ************************************************************************* -->


</doc>