summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/matrix_ex.cpp
blob: a56dbfbb2e3b2ec47a2d67d1bf4a2dee72bff28a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt

/*
    This is an example illustrating the use of the matrix object 
    from the dlib C++ Library.
*/


#include <iostream>
#include <dlib/matrix.h>

using namespace dlib;
using namespace std;

// ----------------------------------------------------------------------------------------

int main()
{
    // Let's begin this example by using the library to solve a simple 
    // linear system.
    // 
    // We will find the value of x such that y = M*x where
    //
    //      3.5
    // y =  1.2
    //      7.8
    //
    // and M is
    //
    //      54.2   7.4   12.1
    // M =  1      2     3
    //      5.9    0.05  1


    // First let's declare these 3 matrices.
    // This declares a matrix that contains doubles and has 3 rows and 1 column.
    // Moreover, it's size is a compile time constant since we put it inside the <>.
    matrix<double,3,1> y;
    // Make a 3 by 3 matrix of doubles for the M matrix.  In this case, M is
    // sized at runtime and can therefore be resized later by calling M.set_size(). 
    matrix<double> M(3,3);
    
    // You may be wondering why someone would want to specify the size of a
    // matrix at compile time when you don't have to.  The reason is two fold.
    // First, there is often a substantial performance improvement, especially
    // for small matrices, because it enables a number of optimizations that
    // otherwise would be impossible.  Second, the dlib::matrix object checks
    // these compile time sizes to ensure that the matrices are being used
    // correctly.  For example, if you attempt to compile the expression y*y you
    // will get a compiler error since that is not a legal matrix operation (the
    // matrix dimensions don't make sense as a matrix multiplication).  So if
    // you know the size of a matrix at compile time then it is always a good
    // idea to let the compiler know about it.




    // Now we need to initialize the y and M matrices and we can do so like this:
    M = 54.2,  7.4,  12.1,
        1,     2,    3,
        5.9,   0.05, 1;

    y = 3.5,  
        1.2,    
        7.8;


    // The solution to y = M*x can be obtained by multiplying the inverse of M
    // with y.  As an aside, you should *NEVER* use the auto keyword to capture
    // the output from a matrix expression.  So don't do this: auto x = inv(M)*y; 
    // To understand why, read the matrix_expressions_ex.cpp example program.
    matrix<double> x = inv(M)*y;

    cout << "x: \n" << x << endl;

    // We can check that it really worked by plugging x back into the original equation 
    // and subtracting y to see if we get a column vector with values all very close
    // to zero (Which is what happens.  Also, the values may not be exactly zero because 
    // there may be some numerical error and round off).
    cout << "M*x - y: \n" << M*x - y << endl;


    // Also note that we can create run-time sized column or row vectors like so
    matrix<double,0,1> runtime_sized_column_vector;
    matrix<double,1,0> runtime_sized_row_vector;
    // and then they are sized by saying
    runtime_sized_column_vector.set_size(3);

    // Similarly, the x matrix can be resized by calling set_size(num rows, num columns).  For example
    x.set_size(3,4);  // x now has 3 rows and 4 columns.



    // The elements of a matrix are accessed using the () operator like so:
    cout << M(0,1) << endl;
    // The above expression prints out the value 7.4.  That is, the value of
    // the element at row 0 and column 1.

    // If we have a matrix that is a row or column vector.  That is, it contains either 
    // a single row or a single column then we know that any access is always either 
    // to row 0 or column 0 so we can omit that 0 and use the following syntax.
    cout << y(1) << endl;
    // The above expression prints out the value 1.2


    // Let's compute the sum of elements in the M matrix.
    double M_sum = 0;
    // loop over all the rows
    for (long r = 0; r < M.nr(); ++r)
    {
        // loop over all the columns
        for (long c = 0; c < M.nc(); ++c)
        {
            M_sum += M(r,c);
        }
    }
    cout << "sum of all elements in M is " << M_sum << endl;

    // The above code is just to show you how to loop over the elements of a matrix.  An 
    // easier way to find this sum is to do the following:
    cout << "sum of all elements in M is " << sum(M) << endl;




    // Note that you can always print a matrix to an output stream by saying:
    cout << M << endl;
    // which will print:
    //   54.2  7.4 12.1 
    //      1    2    3 
    //    5.9 0.05    1 

    // However, if you want to print using comma separators instead of spaces you can say:
    cout << csv << M << endl;
    // and you will instead get this as output:
    //   54.2, 7.4, 12.1
    //   1, 2, 3
    //   5.9, 0.05, 1

    // Conversely, you can also read in a matrix that uses either space, tab, or comma
    // separated values by uncommenting the following:
    // cin >> M;



    // -----------------------------  Comparison with MATLAB ------------------------------
    // Here I list a set of Matlab commands and their equivalent expressions using the dlib
    // matrix.  Note that there are a lot more functions defined for the dlib::matrix.  See
    // the HTML documentation for a full listing.

    matrix<double> A, B, C, D, E;
    matrix<int> Aint;
    matrix<long> Blong;

    // MATLAB: A = eye(3)
    A = identity_matrix<double>(3);

    // MATLAB: B = ones(3,4)
    B = ones_matrix<double>(3,4);

    // MATLAB: B = rand(3,4)
    B = randm(3,4);

    // MATLAB: C = 1.4*A
    C = 1.4*A;

    // MATLAB: D = A.*C
    D = pointwise_multiply(A,C);

    // MATLAB: E = A * B
    E = A*B;

    // MATLAB: E = A + B
    E = A + C;

    // MATLAB: E = A + 5
    E = A + 5;

    // MATLAB: E = E'
    E = trans(E);  // Note that if you want a conjugate transpose then you need to say conj(trans(E))

    // MATLAB: E = B' * B
    E = trans(B)*B;

    double var;
    // MATLAB: var = A(1,2)
    var = A(0,1); // dlib::matrix is 0 indexed rather than starting at 1 like Matlab.

    // MATLAB: C = round(C)
    C = round(C);

    // MATLAB: C = floor(C)
    C = floor(C);

    // MATLAB: C = ceil(C)
    C = ceil(C);

    // MATLAB: C = diag(B)
    C = diag(B);

    // MATLAB: B = cast(A, "int32")
    Aint = matrix_cast<int>(A);

    // MATLAB: A = B(1,:)
    A = rowm(B,0);

    // MATLAB: A = B([1:2],:)
    A = rowm(B,range(0,1));

    // MATLAB: A = B(:,1)
    A = colm(B,0);

    // MATLAB: A = [1:5]
    Blong = range(1,5);

    // MATLAB: A = [1:2:5]
    Blong = range(1,2,5);

    // MATLAB: A = B([1:3], [1:2])
    A = subm(B, range(0,2), range(0,1));
    // or equivalently
    A = subm(B, rectangle(0,0,1,2));


    // MATLAB: A = B([1:3], [1:2:4])
    A = subm(B, range(0,2), range(0,2,3));

    // MATLAB: B(:,:) = 5
    B = 5;
    // or equivalently
    set_all_elements(B,5);


    // MATLAB: B([1:2],[1,2]) = 7
    set_subm(B,range(0,1), range(0,1)) = 7;

    // MATLAB: B([1:3],[2:3]) = A
    set_subm(B,range(0,2), range(1,2)) = A;

    // MATLAB: B(:,1) = 4
    set_colm(B,0) = 4;

    // MATLAB: B(:,[1:2]) = 4
    set_colm(B,range(0,1)) = 4;

    // MATLAB: B(:,1) = B(:,2)
    set_colm(B,0) = colm(B,1);

    // MATLAB: B(1,:) = 4
    set_rowm(B,0) = 4;

    // MATLAB: B(1,:) = B(2,:)
    set_rowm(B,0) = rowm(B,1);

    // MATLAB: var = det(E' * E)
    var = det(trans(E)*E);

    // MATLAB: C = pinv(E)
    C = pinv(E);

    // MATLAB: C = inv(E)
    C = inv(E);

    // MATLAB: [A,B,C] = svd(E)
    svd(E,A,B,C);

    // MATLAB: A = chol(E,'lower') 
    A = chol(E);

    // MATLAB: var = min(min(A))
    var = min(A);
}

// ----------------------------------------------------------------------------------------