1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use the general purpose non-linear
optimization routines from the dlib C++ Library.
The library provides implementations of many popular algorithms such as L-BFGS
and BOBYQA. These algorithms allow you to find the minimum or maximum of a
function of many input variables. This example walks though a few of the ways
you might put these routines to use.
*/
#include <dlib/optimization.h>
#include <dlib/global_optimization.h>
#include <iostream>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
// In dlib, most of the general purpose solvers optimize functions that take a
// column vector as input and return a double. So here we make a typedef for a
// variable length column vector of doubles. This is the type we will use to
// represent the input to our objective functions which we will be minimizing.
typedef matrix<double,0,1> column_vector;
// ----------------------------------------------------------------------------------------
// Below we create a few functions. When you get down into main() you will see that
// we can use the optimization algorithms to find the minimums of these functions.
// ----------------------------------------------------------------------------------------
double rosen (const column_vector& m)
/*
This function computes what is known as Rosenbrock's function. It is
a function of two input variables and has a global minimum at (1,1).
So when we use this function to test out the optimization algorithms
we will see that the minimum found is indeed at the point (1,1).
*/
{
const double x = m(0);
const double y = m(1);
// compute Rosenbrock's function and return the result
return 100.0*pow(y - x*x,2) + pow(1 - x,2);
}
// This is a helper function used while optimizing the rosen() function.
const column_vector rosen_derivative (const column_vector& m)
/*!
ensures
- returns the gradient vector for the rosen function
!*/
{
const double x = m(0);
const double y = m(1);
// make us a column vector of length 2
column_vector res(2);
// now compute the gradient vector
res(0) = -400*x*(y-x*x) - 2*(1-x); // derivative of rosen() with respect to x
res(1) = 200*(y-x*x); // derivative of rosen() with respect to y
return res;
}
// This function computes the Hessian matrix for the rosen() fuction. This is
// the matrix of second derivatives.
matrix<double> rosen_hessian (const column_vector& m)
{
const double x = m(0);
const double y = m(1);
matrix<double> res(2,2);
// now compute the second derivatives
res(0,0) = 1200*x*x - 400*y + 2; // second derivative with respect to x
res(1,0) = res(0,1) = -400*x; // derivative with respect to x and y
res(1,1) = 200; // second derivative with respect to y
return res;
}
// ----------------------------------------------------------------------------------------
class rosen_model
{
/*!
This object is a "function model" which can be used with the
find_min_trust_region() routine.
!*/
public:
typedef ::column_vector column_vector;
typedef matrix<double> general_matrix;
double operator() (
const column_vector& x
) const { return rosen(x); }
void get_derivative_and_hessian (
const column_vector& x,
column_vector& der,
general_matrix& hess
) const
{
der = rosen_derivative(x);
hess = rosen_hessian(x);
}
};
// ----------------------------------------------------------------------------------------
int main() try
{
// Set the starting point to (4,8). This is the point the optimization algorithm
// will start out from and it will move it closer and closer to the function's
// minimum point. So generally you want to try and compute a good guess that is
// somewhat near the actual optimum value.
column_vector starting_point = {4, 8};
// The first example below finds the minimum of the rosen() function and uses the
// analytical derivative computed by rosen_derivative(). Since it is very easy to
// make a mistake while coding a function like rosen_derivative() it is a good idea
// to compare your derivative function against a numerical approximation and see if
// the results are similar. If they are very different then you probably made a
// mistake. So the first thing we do is compare the results at a test point:
cout << "Difference between analytic derivative and numerical approximation of derivative: "
<< length(derivative(rosen)(starting_point) - rosen_derivative(starting_point)) << endl;
cout << "Find the minimum of the rosen function()" << endl;
// Now we use the find_min() function to find the minimum point. The first argument
// to this routine is the search strategy we want to use. The second argument is the
// stopping strategy. Below I'm using the objective_delta_stop_strategy which just
// says that the search should stop when the change in the function being optimized
// is small enough.
// The other arguments to find_min() are the function to be minimized, its derivative,
// then the starting point, and the last is an acceptable minimum value of the rosen()
// function. That is, if the algorithm finds any inputs to rosen() that gives an output
// value <= -1 then it will stop immediately. Usually you supply a number smaller than
// the actual global minimum. So since the smallest output of the rosen function is 0
// we just put -1 here which effectively causes this last argument to be disregarded.
find_min(bfgs_search_strategy(), // Use BFGS search algorithm
objective_delta_stop_strategy(1e-7), // Stop when the change in rosen() is less than 1e-7
rosen, rosen_derivative, starting_point, -1);
// Once the function ends the starting_point vector will contain the optimum point
// of (1,1).
cout << "rosen solution:\n" << starting_point << endl;
// Now let's try doing it again with a different starting point and the version
// of find_min() that doesn't require you to supply a derivative function.
// This version will compute a numerical approximation of the derivative since
// we didn't supply one to it.
starting_point = {-94, 5.2};
find_min_using_approximate_derivatives(bfgs_search_strategy(),
objective_delta_stop_strategy(1e-7),
rosen, starting_point, -1);
// Again the correct minimum point is found and stored in starting_point
cout << "rosen solution:\n" << starting_point << endl;
// Here we repeat the same thing as above but this time using the L-BFGS
// algorithm. L-BFGS is very similar to the BFGS algorithm, however, BFGS
// uses O(N^2) memory where N is the size of the starting_point vector.
// The L-BFGS algorithm however uses only O(N) memory. So if you have a
// function of a huge number of variables the L-BFGS algorithm is probably
// a better choice.
starting_point = {0.8, 1.3};
find_min(lbfgs_search_strategy(10), // The 10 here is basically a measure of how much memory L-BFGS will use.
objective_delta_stop_strategy(1e-7).be_verbose(), // Adding be_verbose() causes a message to be
// printed for each iteration of optimization.
rosen, rosen_derivative, starting_point, -1);
cout << endl << "rosen solution: \n" << starting_point << endl;
starting_point = {-94, 5.2};
find_min_using_approximate_derivatives(lbfgs_search_strategy(10),
objective_delta_stop_strategy(1e-7),
rosen, starting_point, -1);
cout << "rosen solution: \n"<< starting_point << endl;
// dlib also supports solving functions subject to bounds constraints on
// the variables. So for example, if you wanted to find the minimizer
// of the rosen function where both input variables were in the range
// 0.1 to 0.8 you would do it like this:
starting_point = {0.1, 0.1}; // Start with a valid point inside the constraint box.
find_min_box_constrained(lbfgs_search_strategy(10),
objective_delta_stop_strategy(1e-9),
rosen, rosen_derivative, starting_point, 0.1, 0.8);
// Here we put the same [0.1 0.8] range constraint on each variable, however, you
// can put different bounds on each variable by passing in column vectors of
// constraints for the last two arguments rather than scalars.
cout << endl << "constrained rosen solution: \n" << starting_point << endl;
// You can also use an approximate derivative like so:
starting_point = {0.1, 0.1};
find_min_box_constrained(bfgs_search_strategy(),
objective_delta_stop_strategy(1e-9),
rosen, derivative(rosen), starting_point, 0.1, 0.8);
cout << endl << "constrained rosen solution: \n" << starting_point << endl;
// In many cases, it is useful if we also provide second derivative information
// to the optimizers. Two examples of how we can do that are shown below.
starting_point = {0.8, 1.3};
find_min(newton_search_strategy(rosen_hessian),
objective_delta_stop_strategy(1e-7),
rosen,
rosen_derivative,
starting_point,
-1);
cout << "rosen solution: \n"<< starting_point << endl;
// We can also use find_min_trust_region(), which is also a method which uses
// second derivatives. For some kinds of non-convex function it may be more
// reliable than using a newton_search_strategy with find_min().
starting_point = {0.8, 1.3};
find_min_trust_region(objective_delta_stop_strategy(1e-7),
rosen_model(),
starting_point,
10 // initial trust region radius
);
cout << "rosen solution: \n"<< starting_point << endl;
// Next, let's try the BOBYQA algorithm. This is a technique specially
// designed to minimize a function in the absence of derivative information.
// Generally speaking, it is the method of choice if derivatives are not available
// and the function you are optimizing is smooth and has only one local optima. As
// an example, consider the be_like_target function defined below:
column_vector target = {3, 5, 1, 7};
auto be_like_target = [&](const column_vector& x) {
return mean(squared(x-target));
};
starting_point = {-4,5,99,3};
find_min_bobyqa(be_like_target,
starting_point,
9, // number of interpolation points
uniform_matrix<double>(4,1, -1e100), // lower bound constraint
uniform_matrix<double>(4,1, 1e100), // upper bound constraint
10, // initial trust region radius
1e-6, // stopping trust region radius
100 // max number of objective function evaluations
);
cout << "be_like_target solution:\n" << starting_point << endl;
// Finally, let's try the find_min_global() routine. Like find_min_bobyqa(),
// this technique is specially designed to minimize a function in the absence
// of derivative information. However, it is also designed to handle
// functions with many local optima. Where BOBYQA would get stuck at the
// nearest local optima, find_min_global() won't. find_min_global() uses a
// global optimization method based on a combination of non-parametric global
// function modeling and BOBYQA style quadratic trust region modeling to
// efficiently find a global minimizer. It usually does a good job with a
// relatively small number of calls to the function being optimized.
//
// You also don't have to give it a starting point or set any parameters,
// other than defining bounds constraints. This makes it the method of
// choice for derivative free optimization in the presence of multiple local
// optima. Its API also allows you to define functions that take a
// column_vector as shown above or to explicitly use named doubles as
// arguments, which we do here.
auto complex_holder_table = [](double x0, double x1)
{
// This function is a version of the well known Holder table test
// function, which is a function containing a bunch of local optima.
// Here we make it even more difficult by adding more local optima
// and also a bunch of discontinuities.
// add discontinuities
double sign = 1;
for (double j = -4; j < 9; j += 0.5)
{
if (j < x0 && x0 < j+0.5)
x0 += sign*0.25;
sign *= -1;
}
// Holder table function tilted towards 10,10 and with additional
// high frequency terms to add more local optima.
return -( std::abs(sin(x0)*cos(x1)*exp(std::abs(1-std::sqrt(x0*x0+x1*x1)/pi))) -(x0+x1)/10 - sin(x0*10)*cos(x1*10));
};
// To optimize this difficult function all we need to do is call
// find_min_global()
auto result = find_min_global(complex_holder_table,
{-10,-10}, // lower bounds
{10,10}, // upper bounds
max_function_calls(300));
cout.precision(9);
// These cout statements will show that find_min_global() found the
// globally optimal solution to 9 digits of precision:
cout << "complex holder table function solution y (should be -21.9210397): " << result.y << endl;
cout << "complex holder table function solution x:\n" << result.x << endl;
}
catch (std::exception& e)
{
cout << e.what() << endl;
}
|