summaryrefslogtreecommitdiffstats
path: root/ml/ml.cc
blob: 1a7d6ae25e42f3bb262eb9a489d4feaa98bd0d46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// SPDX-License-Identifier: GPL-3.0-or-later

#include "Config.h"
#include "Dimension.h"
#include "Host.h"

#include <random>

using namespace ml;

bool ml_capable() {
    return true;
}

bool ml_enabled(RRDHOST *RH) {
    if (!Cfg.EnableAnomalyDetection)
        return false;

    if (simple_pattern_matches(Cfg.SP_HostsToSkip, rrdhost_hostname(RH)))
        return false;

    return true;
}

/*
 * Assumptions:
 *  1) hosts outlive their sets, and sets outlive their dimensions,
 *  2) dimensions always have a set that has a host.
 */

void ml_init(void) {
    // Read config values
    Cfg.readMLConfig();

    if (!Cfg.EnableAnomalyDetection)
        return;

    // Generate random numbers to efficiently sample the features we need
    // for KMeans clustering.
    std::random_device RD;
    std::mt19937 Gen(RD());

    Cfg.RandomNums.reserve(Cfg.MaxTrainSamples);
    for (size_t Idx = 0; Idx != Cfg.MaxTrainSamples; Idx++)
        Cfg.RandomNums.push_back(Gen());
}

void ml_new_host(RRDHOST *RH) {
    if (!ml_enabled(RH))
        return;

    Host *H = new Host(RH);
    RH->ml_host = static_cast<ml_host_t>(H);

    H->startAnomalyDetectionThreads();
}

void ml_delete_host(RRDHOST *RH) {
    Host *H = static_cast<Host *>(RH->ml_host);
    if (!H)
        return;

    H->stopAnomalyDetectionThreads();

    delete H;
    RH->ml_host = nullptr;
}

void ml_new_dimension(RRDDIM *RD) {
    RRDSET *RS = RD->rrdset;

    Host *H = static_cast<Host *>(RD->rrdset->rrdhost->ml_host);
    if (!H)
        return;

    if (static_cast<unsigned>(RD->update_every) != H->updateEvery())
        return;

    if (simple_pattern_matches(Cfg.SP_ChartsToSkip, rrdset_name(RS)))
        return;

    Dimension *D = new Dimension(RD);
    RD->ml_dimension = static_cast<ml_dimension_t>(D);
    H->addDimension(D);
}

void ml_delete_dimension(RRDDIM *RD) {
    Dimension *D = static_cast<Dimension *>(RD->ml_dimension);
    if (!D)
        return;

    Host *H = static_cast<Host *>(RD->rrdset->rrdhost->ml_host);
    if (!H)
        delete D;
    else
        H->removeDimension(D);

    RD->ml_dimension = nullptr;
}

char *ml_get_host_info(RRDHOST *RH) {
    nlohmann::json ConfigJson;

    if (RH && RH->ml_host) {
        Host *H = static_cast<Host *>(RH->ml_host);
        H->getConfigAsJson(ConfigJson);
    } else {
        ConfigJson["enabled"] = false;
    }

    return strdupz(ConfigJson.dump(2, '\t').c_str());
}

char *ml_get_host_runtime_info(RRDHOST *RH) {
    nlohmann::json ConfigJson;

    if (RH && RH->ml_host) {
        Host *H = static_cast<Host *>(RH->ml_host);
        H->getDetectionInfoAsJson(ConfigJson);
    } else {
        return nullptr;
    }

    return strdup(ConfigJson.dump(1, '\t').c_str());
}

char *ml_get_host_models(RRDHOST *RH) {
    nlohmann::json ModelsJson;

    if (RH && RH->ml_host) {
        Host *H = static_cast<Host *>(RH->ml_host);
        H->getModelsAsJson(ModelsJson);
        return strdup(ModelsJson.dump(2, '\t').c_str());
    }

    return nullptr;
}

bool ml_is_anomalous(RRDDIM *RD, double Value, bool Exists) {
    Dimension *D = static_cast<Dimension *>(RD->ml_dimension);
    if (!D)
        return false;

    return D->predict(Value, Exists);
}

bool ml_streaming_enabled() {
    return Cfg.StreamADCharts;
}

#if defined(ENABLE_ML_TESTS)

#include "gtest/gtest.h"

int test_ml(int argc, char *argv[]) {
    (void) argc;
    (void) argv;

    ::testing::InitGoogleTest(&argc, argv);
    return RUN_ALL_TESTS();
}

#endif // ENABLE_ML_TESTS

#include "ml-private.h"