summaryrefslogtreecommitdiffstats
path: root/ml/ml.cc
blob: 461c83baaeb9d5f658f10e273368ad6dddc69724 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// SPDX-License-Identifier: GPL-3.0-or-later

#include "Config.h"
#include "Dimension.h"
#include "Chart.h"
#include "Host.h"

#include <random>

using namespace ml;

bool ml_capable() {
    return true;
}

bool ml_enabled(RRDHOST *RH) {
    if (!Cfg.EnableAnomalyDetection)
        return false;

    if (simple_pattern_matches(Cfg.SP_HostsToSkip, rrdhost_hostname(RH)))
        return false;

    return true;
}

/*
 * Assumptions:
 *  1) hosts outlive their sets, and sets outlive their dimensions,
 *  2) dimensions always have a set that has a host.
 */

void ml_init(void) {
    // Read config values
    Cfg.readMLConfig();

    if (!Cfg.EnableAnomalyDetection)
        return;

    // Generate random numbers to efficiently sample the features we need
    // for KMeans clustering.
    std::random_device RD;
    std::mt19937 Gen(RD());

    Cfg.RandomNums.reserve(Cfg.MaxTrainSamples);
    for (size_t Idx = 0; Idx != Cfg.MaxTrainSamples; Idx++)
        Cfg.RandomNums.push_back(Gen());
}

void ml_host_new(RRDHOST *RH) {
    if (!ml_enabled(RH))
        return;

    Host *H = new Host(RH);
    RH->ml_host = reinterpret_cast<ml_host_t *>(H);
}

void ml_host_delete(RRDHOST *RH) {
    Host *H = reinterpret_cast<Host *>(RH->ml_host);
    if (!H)
        return;

    delete H;
    RH->ml_host = nullptr;
}

void ml_chart_new(RRDSET *RS) {
    Host *H = reinterpret_cast<Host *>(RS->rrdhost->ml_host);
    if (!H)
        return;

    Chart *C = new Chart(RS);
    RS->ml_chart = reinterpret_cast<ml_chart_t *>(C);

    H->addChart(C);
}

void ml_chart_delete(RRDSET *RS) {
    Host *H = reinterpret_cast<Host *>(RS->rrdhost->ml_host);
    if (!H)
        return;

    Chart *C = reinterpret_cast<Chart *>(RS->ml_chart);
    H->removeChart(C);

    delete C;
    RS->ml_chart = nullptr;
}

void ml_dimension_new(RRDDIM *RD) {
    Chart *C = reinterpret_cast<Chart *>(RD->rrdset->ml_chart);
    if (!C)
        return;

    Dimension *D = new Dimension(RD);
    RD->ml_dimension = reinterpret_cast<ml_dimension_t *>(D);
    C->addDimension(D);
}

void ml_dimension_delete(RRDDIM *RD) {
    Dimension *D = reinterpret_cast<Dimension *>(RD->ml_dimension);
    if (!D)
        return;

    Chart *C = reinterpret_cast<Chart *>(RD->rrdset->ml_chart);
    C->removeDimension(D);

    delete D;
    RD->ml_dimension = nullptr;
}

char *ml_get_host_info(RRDHOST *RH) {
    nlohmann::json ConfigJson;

    if (RH && RH->ml_host) {
        Host *H = reinterpret_cast<Host *>(RH->ml_host);
        H->getConfigAsJson(ConfigJson);
    } else {
        ConfigJson["enabled"] = false;
    }

    return strdupz(ConfigJson.dump(2, '\t').c_str());
}

char *ml_get_host_runtime_info(RRDHOST *RH) {
    nlohmann::json ConfigJson;

    if (RH && RH->ml_host) {
        Host *H = reinterpret_cast<Host *>(RH->ml_host);
        H->getDetectionInfoAsJson(ConfigJson);
    } else {
        return nullptr;
    }

    return strdup(ConfigJson.dump(1, '\t').c_str());
}

char *ml_get_host_models(RRDHOST *RH) {
    nlohmann::json ModelsJson;

    if (RH && RH->ml_host) {
        Host *H = reinterpret_cast<Host *>(RH->ml_host);
        H->getModelsAsJson(ModelsJson);
        return strdup(ModelsJson.dump(2, '\t').c_str());
    }

    return nullptr;
}

void ml_start_anomaly_detection_threads(RRDHOST *RH) {
    if (RH && RH->ml_host) {
        Host *H = reinterpret_cast<Host *>(RH->ml_host);
        H->startAnomalyDetectionThreads();
    }
}

void ml_stop_anomaly_detection_threads(RRDHOST *RH) {
    if (RH && RH->ml_host) {
        Host *H = reinterpret_cast<Host *>(RH->ml_host);
        H->stopAnomalyDetectionThreads(true);
    }
}

void ml_cancel_anomaly_detection_threads(RRDHOST *RH) {
    if (RH && RH->ml_host) {
        Host *H = reinterpret_cast<Host *>(RH->ml_host);
        H->stopAnomalyDetectionThreads(false);
    }
}

void ml_chart_update_begin(RRDSET *RS) {
    Chart *C = reinterpret_cast<Chart *>(RS->ml_chart);
    if (!C)
        return;

    C->updateBegin();
}

void ml_chart_update_end(RRDSET *RS) {
    Chart *C = reinterpret_cast<Chart *>(RS->ml_chart);
    if (!C)
        return;

    C->updateEnd();
}

bool ml_is_anomalous(RRDDIM *RD, time_t CurrT, double Value, bool Exists) {
    Dimension *D = reinterpret_cast<Dimension *>(RD->ml_dimension);
    if (!D)
        return false;

    Chart *C = reinterpret_cast<Chart *>(RD->rrdset->ml_chart);

    bool IsAnomalous = D->predict(CurrT, Value, Exists);
    C->updateDimension(D, IsAnomalous);
    return IsAnomalous;
}

bool ml_streaming_enabled() {
    return Cfg.StreamADCharts;
}

#include "ml-private.h"