summaryrefslogtreecommitdiffstats
path: root/src/libnetdata/libnetdata.c
blob: e21bf119dcb0eb79042e877d8630228525c7123d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
// SPDX-License-Identifier: GPL-3.0-or-later

#include "libnetdata.h"

#define MALLOC_ALIGNMENT (sizeof(uintptr_t) * 2)
#define size_t_atomic_count(op, var, size) __atomic_## op ##_fetch(&(var), size, __ATOMIC_RELAXED)
#define size_t_atomic_bytes(op, var, size) __atomic_## op ##_fetch(&(var), ((size) % MALLOC_ALIGNMENT)?((size) + MALLOC_ALIGNMENT - ((size) % MALLOC_ALIGNMENT)):(size), __ATOMIC_RELAXED)

#if !defined(MADV_DONTFORK)
#define MADV_DONTFORK 0
#endif

#if !defined(O_NOATIME)
#define O_NOATIME 0
#endif

struct rlimit rlimit_nofile = { .rlim_cur = 1024, .rlim_max = 1024 };

#if defined(MADV_MERGEABLE)
int enable_ksm = CONFIG_BOOLEAN_AUTO;
#else
int enable_ksm = 0;
#endif

volatile sig_atomic_t netdata_exit = 0;

// ----------------------------------------------------------------------------
// memory allocation functions that handle failures

// although netdata does not use memory allocations too often (netdata tries to
// maintain its memory footprint stable during runtime, i.e. all buffers are
// allocated during initialization and are adapted to current use throughout
// its lifetime), these can be used to override the default system allocation
// routines.

#ifdef NETDATA_TRACE_ALLOCATIONS
#warning NETDATA_TRACE_ALLOCATIONS ENABLED
#include "Judy.h"

#if defined(HAVE_DLSYM) && defined(ENABLE_DLSYM)
#include <dlfcn.h>

typedef void (*libc_function_t)(void);

static void *malloc_first_run(size_t size);
static void *(*libc_malloc)(size_t) = malloc_first_run;

static void *calloc_first_run(size_t n, size_t size);
static void *(*libc_calloc)(size_t, size_t) = calloc_first_run;

static void *realloc_first_run(void *ptr, size_t size);
static void *(*libc_realloc)(void *, size_t) = realloc_first_run;

static void free_first_run(void *ptr);
static void (*libc_free)(void *) = free_first_run;

static char *strdup_first_run(const char *s);
static char *(*libc_strdup)(const char *) = strdup_first_run;

static char *strndup_first_run(const char *s, size_t len);
static char *(*libc_strndup)(const char *, size_t) = strndup_first_run;

static size_t malloc_usable_size_first_run(void *ptr);
#ifdef HAVE_MALLOC_USABLE_SIZE
static size_t (*libc_malloc_usable_size)(void *) = malloc_usable_size_first_run;
#else
static size_t (*libc_malloc_usable_size)(void *) = NULL;
#endif

static void link_system_library_function(libc_function_t *func_pptr, const char *name, bool required) {
    *func_pptr = dlsym(RTLD_NEXT, name);
    if(!*func_pptr && required) {
        fprintf(stderr, "FATAL: Cannot find system's %s() function.\n", name);
        abort();
    }
}

static void *malloc_first_run(size_t size) {
    link_system_library_function((libc_function_t *) &libc_malloc, "malloc", true);
    return libc_malloc(size);
}

static void *calloc_first_run(size_t n, size_t size) {
    link_system_library_function((libc_function_t *) &libc_calloc, "calloc", true);
    return libc_calloc(n, size);
}

static void *realloc_first_run(void *ptr, size_t size) {
    link_system_library_function((libc_function_t *) &libc_realloc, "realloc", true);
    return libc_realloc(ptr, size);
}

static void free_first_run(void *ptr) {
    link_system_library_function((libc_function_t *) &libc_free, "free", true);
    libc_free(ptr);
}

static char *strdup_first_run(const char *s) {
    link_system_library_function((libc_function_t *) &libc_strdup, "strdup", true);
    return libc_strdup(s);
}

static char *strndup_first_run(const char *s, size_t len) {
    link_system_library_function((libc_function_t *) &libc_strndup, "strndup", true);
    return libc_strndup(s, len);
}

static size_t malloc_usable_size_first_run(void *ptr) {
    link_system_library_function((libc_function_t *) &libc_malloc_usable_size, "malloc_usable_size", false);

    if(libc_malloc_usable_size)
        return libc_malloc_usable_size(ptr);
    else
        return 0;
}

void *malloc(size_t size) {
    return mallocz(size);
}

void *calloc(size_t n, size_t size) {
    return callocz(n, size);
}

void *realloc(void *ptr, size_t size) {
    return reallocz(ptr, size);
}

void *reallocarray(void *ptr, size_t n, size_t size) {
    return reallocz(ptr, n * size);
}

void free(void *ptr) {
    freez(ptr);
}

char *strdup(const char *s) {
    return strdupz(s);
}

char *strndup(const char *s, size_t len) {
    return strndupz(s, len);
}

size_t malloc_usable_size(void *ptr) {
    return mallocz_usable_size(ptr);
}
#else // !HAVE_DLSYM

static void *(*libc_malloc)(size_t) = malloc;
static void *(*libc_calloc)(size_t, size_t) = calloc;
static void *(*libc_realloc)(void *, size_t) = realloc;
static void (*libc_free)(void *) = free;

#ifdef HAVE_MALLOC_USABLE_SIZE
static size_t (*libc_malloc_usable_size)(void *) = malloc_usable_size;
#else
static size_t (*libc_malloc_usable_size)(void *) = NULL;
#endif

#endif // HAVE_DLSYM


void posix_memfree(void *ptr) {
    libc_free(ptr);
}

struct malloc_header_signature {
    uint32_t magic;
    uint32_t size;
    struct malloc_trace *trace;
};

struct malloc_header {
    struct malloc_header_signature signature;
    uint8_t padding[(sizeof(struct malloc_header_signature) % MALLOC_ALIGNMENT) ? MALLOC_ALIGNMENT - (sizeof(struct malloc_header_signature) % MALLOC_ALIGNMENT) : 0];
    uint8_t data[];
};

static size_t malloc_header_size = sizeof(struct malloc_header);

int malloc_trace_compare(void *A, void *B) {
    struct malloc_trace *a = A;
    struct malloc_trace *b = B;
    return strcmp(a->function, b->function);
}

static avl_tree_lock malloc_trace_index = {
    .avl_tree = {
        .root = NULL,
        .compar = malloc_trace_compare},
    .rwlock = AVL_LOCK_INITIALIZER
};

int malloc_trace_walkthrough(int (*callback)(void *item, void *data), void *data) {
    return avl_traverse_lock(&malloc_trace_index, callback, data);
}

NEVERNULL WARNUNUSED
static struct malloc_trace *malloc_trace_find_or_create(const char *file, const char *function, size_t line) {
    struct malloc_trace tmp = {
        .line = line,
        .function = function,
        .file = file,
    };

    struct malloc_trace *t = (struct malloc_trace *)avl_search_lock(&malloc_trace_index, (avl_t *)&tmp);
    if(!t) {
        t = libc_calloc(1, sizeof(struct malloc_trace));
        if(!t) fatal("No memory");
        t->line = line;
        t->function = function;
        t->file = file;

        struct malloc_trace *t2 = (struct malloc_trace *)avl_insert_lock(&malloc_trace_index, (avl_t *)t);
        if(t2 != t)
            free(t);

        t = t2;
    }

    if(!t)
        fatal("Cannot insert to AVL");

    return t;
}

void malloc_trace_mmap(size_t size) {
    struct malloc_trace *p = malloc_trace_find_or_create("unknown", "netdata_mmap", 1);
    size_t_atomic_count(add, p->mmap_calls, 1);
    size_t_atomic_count(add, p->allocations, 1);
    size_t_atomic_bytes(add, p->bytes, size);
}

void malloc_trace_munmap(size_t size) {
    struct malloc_trace *p = malloc_trace_find_or_create("unknown", "netdata_mmap", 1);
    size_t_atomic_count(add, p->munmap_calls, 1);
    size_t_atomic_count(sub, p->allocations, 1);
    size_t_atomic_bytes(sub, p->bytes, size);
}

void *mallocz_int(size_t size, const char *file, const char *function, size_t line) {
    struct malloc_trace *p = malloc_trace_find_or_create(file, function, line);

    size_t_atomic_count(add, p->malloc_calls, 1);
    size_t_atomic_count(add, p->allocations, 1);
    size_t_atomic_bytes(add, p->bytes, size);

    struct malloc_header *t = (struct malloc_header *)libc_malloc(malloc_header_size + size);
    if (unlikely(!t)) fatal("mallocz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size);
    t->signature.magic = 0x0BADCAFE;
    t->signature.trace = p;
    t->signature.size = size;

#ifdef NETDATA_INTERNAL_CHECKS
    for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded
        t->padding[i] = 0xFF;
#endif

    return (void *)&t->data;
}

void *callocz_int(size_t nmemb, size_t size, const char *file, const char *function, size_t line) {
    struct malloc_trace *p = malloc_trace_find_or_create(file, function, line);
    size = nmemb * size;

    size_t_atomic_count(add, p->calloc_calls, 1);
    size_t_atomic_count(add, p->allocations, 1);
    size_t_atomic_bytes(add, p->bytes, size);

    struct malloc_header *t = (struct malloc_header *)libc_calloc(1, malloc_header_size + size);
    if (unlikely(!t)) fatal("mallocz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size);
    t->signature.magic = 0x0BADCAFE;
    t->signature.trace = p;
    t->signature.size = size;

#ifdef NETDATA_INTERNAL_CHECKS
    for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded
        t->padding[i] = 0xFF;
#endif

    return &t->data;
}

char *strdupz_int(const char *s, const char *file, const char *function, size_t line) {
    struct malloc_trace *p = malloc_trace_find_or_create(file, function, line);
    size_t size = strlen(s) + 1;

    size_t_atomic_count(add, p->strdup_calls, 1);
    size_t_atomic_count(add, p->allocations, 1);
    size_t_atomic_bytes(add, p->bytes, size);

    struct malloc_header *t = (struct malloc_header *)libc_malloc(malloc_header_size + size);
    if (unlikely(!t)) fatal("strdupz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size);
    t->signature.magic = 0x0BADCAFE;
    t->signature.trace = p;
    t->signature.size = size;

#ifdef NETDATA_INTERNAL_CHECKS
    for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded
        t->padding[i] = 0xFF;
#endif

    memcpy(&t->data, s, size);
    return (char *)&t->data;
}

char *strndupz_int(const char *s, size_t len, const char *file, const char *function, size_t line) {
    struct malloc_trace *p = malloc_trace_find_or_create(file, function, line);
    size_t size = len + 1;

    size_t_atomic_count(add, p->strdup_calls, 1);
    size_t_atomic_count(add, p->allocations, 1);
    size_t_atomic_bytes(add, p->bytes, size);

    struct malloc_header *t = (struct malloc_header *)libc_malloc(malloc_header_size + size);
    if (unlikely(!t)) fatal("strndupz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size);
    t->signature.magic = 0x0BADCAFE;
    t->signature.trace = p;
    t->signature.size = size;

#ifdef NETDATA_INTERNAL_CHECKS
    for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded
        t->padding[i] = 0xFF;
#endif

    memcpy(&t->data, s, size);
    t->data[len] = '\0';
    return (char *)&t->data;
}

static struct malloc_header *malloc_get_header(void *ptr, const char *caller, const char *file, const char *function, size_t line) {
    uint8_t *ret = (uint8_t *)ptr - malloc_header_size;
    struct malloc_header *t = (struct malloc_header *)ret;

    if(t->signature.magic != 0x0BADCAFE) {
        netdata_log_error("pointer %p is not our pointer (called %s() from %zu@%s, %s()).", ptr, caller, line, file, function);
        return NULL;
    }

    return t;
}

void *reallocz_int(void *ptr, size_t size, const char *file, const char *function, size_t line) {
    if(!ptr) return mallocz_int(size, file, function, line);

    struct malloc_header *t = malloc_get_header(ptr, __FUNCTION__, file, function, line);
    if(!t)
        return libc_realloc(ptr, size);

    if(t->signature.size == size) return ptr;
    size_t_atomic_count(add, t->signature.trace->free_calls, 1);
    size_t_atomic_count(sub, t->signature.trace->allocations, 1);
    size_t_atomic_bytes(sub, t->signature.trace->bytes, t->signature.size);

    struct malloc_trace *p = malloc_trace_find_or_create(file, function, line);
    size_t_atomic_count(add, p->realloc_calls, 1);
    size_t_atomic_count(add, p->allocations, 1);
    size_t_atomic_bytes(add, p->bytes, size);

    t = (struct malloc_header *)libc_realloc(t, malloc_header_size + size);
    if (unlikely(!t)) fatal("reallocz() cannot allocate %zu bytes of memory (%zu with header).", size, malloc_header_size + size);
    t->signature.magic = 0x0BADCAFE;
    t->signature.trace = p;
    t->signature.size = size;

#ifdef NETDATA_INTERNAL_CHECKS
    for(ssize_t i = 0; i < (ssize_t)sizeof(t->padding) ;i++) // signed to avoid compiler warning when zero-padded
        t->padding[i] = 0xFF;
#endif

    return (void *)&t->data;
}

size_t mallocz_usable_size_int(void *ptr, const char *file, const char *function, size_t line) {
    if(unlikely(!ptr)) return 0;

    struct malloc_header *t = malloc_get_header(ptr, __FUNCTION__, file, function, line);
    if(!t) {
        if(libc_malloc_usable_size)
            return libc_malloc_usable_size(ptr);
        else
            return 0;
    }

    return t->signature.size;
}

void freez_int(void *ptr, const char *file, const char *function, size_t line) {
    if(unlikely(!ptr)) return;

    struct malloc_header *t = malloc_get_header(ptr, __FUNCTION__, file, function, line);
    if(!t) {
        libc_free(ptr);
        return;
    }

    size_t_atomic_count(add, t->signature.trace->free_calls, 1);
    size_t_atomic_count(sub, t->signature.trace->allocations, 1);
    size_t_atomic_bytes(sub, t->signature.trace->bytes, t->signature.size);

#ifdef NETDATA_INTERNAL_CHECKS
    // it should crash if it is used after freeing it
    memset(t, 0, malloc_header_size + t->signature.size);
#endif

    libc_free(t);
}
#else

char *strdupz(const char *s) {
    char *t = strdup(s);
    if (unlikely(!t)) fatal("Cannot strdup() string '%s'", s);
    return t;
}

char *strndupz(const char *s, size_t len) {
    char *t = strndup(s, len);
    if (unlikely(!t)) fatal("Cannot strndup() string '%s' of len %zu", s, len);
    return t;
}

// If ptr is NULL, no operation is performed.
void freez(void *ptr) {
    if(likely(ptr)) free(ptr);
}

void *mallocz(size_t size) {
    void *p = malloc(size);
    if (unlikely(!p)) fatal("Cannot allocate %zu bytes of memory.", size);
    return p;
}

void *callocz(size_t nmemb, size_t size) {
    void *p = calloc(nmemb, size);
    if (unlikely(!p)) fatal("Cannot allocate %zu bytes of memory.", nmemb * size);
    return p;
}

void *reallocz(void *ptr, size_t size) {
    void *p = realloc(ptr, size);
    if (unlikely(!p)) fatal("Cannot re-allocate memory to %zu bytes.", size);
    return p;
}

void posix_memfree(void *ptr) {
    free(ptr);
}

#endif

// --------------------------------------------------------------------------------------------------------------------

void json_escape_string(char *dst, const char *src, size_t size) {
    const char *t;
    char *d = dst, *e = &dst[size - 1];

    for(t = src; *t && d < e ;t++) {
        if(unlikely(*t == '\\' || *t == '"')) {
            if(unlikely(d + 1 >= e)) break;
            *d++ = '\\';
        }
        *d++ = *t;
    }

    *d = '\0';
}

void json_fix_string(char *s) {
    unsigned char c;
    while((c = (unsigned char)*s)) {
        if(unlikely(c == '\\'))
            *s++ = '/';
        else if(unlikely(c == '"'))
            *s++ = '\'';
        else if(unlikely(isspace(c) || iscntrl(c)))
            *s++ = ' ';
        else if(unlikely(!isprint(c) || c > 127))
            *s++ = '_';
        else
            s++;
    }
}

static int memory_file_open(const char *filename, size_t size) {
    // netdata_log_info("memory_file_open('%s', %zu", filename, size);

    int fd = open(filename, O_RDWR | O_CREAT | O_NOATIME | O_CLOEXEC, 0664);
    if (fd != -1) {
        if (lseek(fd, size, SEEK_SET) == (off_t) size) {
            if (write(fd, "", 1) == 1) {
                if (ftruncate(fd, size))
                    netdata_log_error("Cannot truncate file '%s' to size %zu. Will use the larger file.", filename, size);
            }
            else
                netdata_log_error("Cannot write to file '%s' at position %zu.", filename, size);
        }
        else
            netdata_log_error("Cannot seek file '%s' to size %zu.", filename, size);
    }
    else
        netdata_log_error("Cannot create/open file '%s'.", filename);

    return fd;
}

inline int madvise_sequential(void *mem, size_t len) {
    static int logger = 1;
    int ret = madvise(mem, len, MADV_SEQUENTIAL);

    if (ret != 0 && logger-- > 0)
        netdata_log_error("madvise(MADV_SEQUENTIAL) failed.");
    return ret;
}

inline int madvise_random(void *mem, size_t len) {
    static int logger = 1;
    int ret = madvise(mem, len, MADV_RANDOM);

    if (ret != 0 && logger-- > 0)
        netdata_log_error("madvise(MADV_RANDOM) failed.");
    return ret;
}

inline int madvise_dontfork(void *mem, size_t len) {
    static int logger = 1;
    int ret = madvise(mem, len, MADV_DONTFORK);

    if (ret != 0 && logger-- > 0)
        netdata_log_error("madvise(MADV_DONTFORK) failed.");
    return ret;
}

inline int madvise_willneed(void *mem, size_t len) {
    static int logger = 1;
    int ret = madvise(mem, len, MADV_WILLNEED);

    if (ret != 0 && logger-- > 0)
        netdata_log_error("madvise(MADV_WILLNEED) failed.");
    return ret;
}

inline int madvise_dontneed(void *mem, size_t len) {
    static int logger = 1;
    int ret = madvise(mem, len, MADV_DONTNEED);

    if (ret != 0 && logger-- > 0)
        netdata_log_error("madvise(MADV_DONTNEED) failed.");
    return ret;
}

inline int madvise_dontdump(void *mem __maybe_unused, size_t len __maybe_unused) {
#if __linux__
    static int logger = 1;
    int ret = madvise(mem, len, MADV_DONTDUMP);

    if (ret != 0 && logger-- > 0)
        netdata_log_error("madvise(MADV_DONTDUMP) failed.");
    return ret;
#else
    return 0;
#endif
}

inline int madvise_mergeable(void *mem __maybe_unused, size_t len __maybe_unused) {
#ifdef MADV_MERGEABLE
    static int logger = 1;
    int ret = madvise(mem, len, MADV_MERGEABLE);

    if (ret != 0 && logger-- > 0)
        netdata_log_error("madvise(MADV_MERGEABLE) failed.");
    return ret;
#else
    return 0;
#endif
}

void *netdata_mmap(const char *filename, size_t size, int flags, int ksm, bool read_only, int *open_fd)
{
    // netdata_log_info("netdata_mmap('%s', %zu", filename, size);

    // MAP_SHARED is used in memory mode map
    // MAP_PRIVATE is used in memory mode ram and save

    if(unlikely(!(flags & MAP_SHARED) && !(flags & MAP_PRIVATE)))
        fatal("Neither MAP_SHARED or MAP_PRIVATE were given to netdata_mmap()");

    if(unlikely((flags & MAP_SHARED) && (flags & MAP_PRIVATE)))
        fatal("Both MAP_SHARED and MAP_PRIVATE were given to netdata_mmap()");

    if(unlikely((flags & MAP_SHARED) && (!filename || !*filename)))
        fatal("MAP_SHARED requested, without a filename to netdata_mmap()");

    // don't enable ksm is the global setting is disabled
    if(unlikely(!enable_ksm)) ksm = 0;

    // KSM only merges anonymous (private) pages, never pagecache (file) pages
    // but MAP_PRIVATE without MAP_ANONYMOUS it fails too, so we need it always
    if((flags & MAP_PRIVATE)) flags |= MAP_ANONYMOUS;

    int fd = -1;
    void *mem = MAP_FAILED;

    if(filename && *filename) {
        // open/create the file to be used
        fd = memory_file_open(filename, size);
        if(fd == -1) goto cleanup;
    }

    int fd_for_mmap = fd;
    if(fd != -1 && (flags & MAP_PRIVATE)) {
        // this is MAP_PRIVATE allocation
        // no need for mmap() to use our fd
        // we will copy the file into the memory allocated
        fd_for_mmap = -1;
    }

    mem = mmap(NULL, size, read_only ? PROT_READ : PROT_READ | PROT_WRITE, flags, fd_for_mmap, 0);
    if (mem != MAP_FAILED) {

#ifdef NETDATA_TRACE_ALLOCATIONS
        malloc_trace_mmap(size);
#endif

        // if we have a file open, but we didn't give it to mmap(),
        // we have to read the file into the memory block we allocated
        if(fd != -1 && fd_for_mmap == -1) {
            if (lseek(fd, 0, SEEK_SET) == 0) {
                if (read(fd, mem, size) != (ssize_t) size)
                    netdata_log_info("Cannot read from file '%s'", filename);
            }
            else netdata_log_info("Cannot seek to beginning of file '%s'.", filename);
        }

        // madvise_sequential(mem, size);
        madvise_dontfork(mem, size);
        madvise_dontdump(mem, size);
        // if(flags & MAP_SHARED) madvise_willneed(mem, size);
        if(ksm) madvise_mergeable(mem, size);
    }

cleanup:
    if(fd != -1) {
        if (open_fd)
            *open_fd = fd;
        else
            close(fd);
    }
    if(mem == MAP_FAILED) return NULL;
    errno_clear();
    return mem;
}

int netdata_munmap(void *ptr, size_t size) {
#ifdef NETDATA_TRACE_ALLOCATIONS
    malloc_trace_munmap(size);
#endif
    return munmap(ptr, size);
}

char *fgets_trim_len(char *buf, size_t buf_size, FILE *fp, size_t *len) {
    char *s = fgets(buf, (int)buf_size, fp);
    if (!s) return NULL;

    char *t = s;
    if (*t != '\0') {
        // find the string end
        while (*++t != '\0');

        // trim trailing spaces/newlines/tabs
        while (--t > s && *t == '\n')
            *t = '\0';
    }

    if (len)
        *len = t - s + 1;

    return s;
}

// vsnprintfz() returns the number of bytes actually written - after possible truncation
int vsnprintfz(char *dst, size_t n, const char *fmt, va_list args) {
    if(unlikely(!n)) return 0;

    int size = vsnprintf(dst, n, fmt, args);
    dst[n - 1] = '\0';

    if (unlikely((size_t) size >= n)) size = (int)(n - 1);

    return size;
}

// snprintfz() returns the number of bytes actually written - after possible truncation
int snprintfz(char *dst, size_t n, const char *fmt, ...) {
    va_list args;

    va_start(args, fmt);
    int ret = vsnprintfz(dst, n, fmt, args);
    va_end(args);

    return ret;
}

// Returns the number of bytes read from the file if file_size is not NULL.
// The actual buffer has an extra byte set to zero (not included in the count).
char *read_by_filename(const char *filename, long *file_size)
{
    FILE *f = fopen(filename, "r");
    if (!f)
        return NULL;

    if (fseek(f, 0, SEEK_END) < 0) {
        fclose(f);
        return NULL;
    }

    long size = ftell(f);
    if (size <= 0 || fseek(f, 0, SEEK_END) < 0) {
        fclose(f);
        return NULL;
    }

    char *contents = callocz(size + 1, 1);
    if (fseek(f, 0, SEEK_SET) < 0) {
        fclose(f);
        freez(contents);
        return NULL;
    }

    size_t res = fread(contents, 1, size, f);
    if ( res != (size_t)size) {
        freez(contents);
        fclose(f);
        return NULL;
    }

    fclose(f);

    if (file_size)
        *file_size = size;

    return contents;
}

char *find_and_replace(const char *src, const char *find, const char *replace, const char *where)
{
    size_t size = strlen(src) + 1;
    size_t find_len = strlen(find);
    size_t repl_len = strlen(replace);
    char *value, *dst;

    if (likely(where))
        size += (repl_len - find_len);

    value = mallocz(size);
    dst = value;

    if (likely(where)) {
        size_t count = where - src;

        memmove(dst, src, count);
        src += count;
        dst += count;

        memmove(dst, replace, repl_len);
        src += find_len;
        dst += repl_len;
    }

    strcpy(dst, src);

    return value;
}

BUFFER *run_command_and_get_output_to_buffer(const char *command, int max_line_length) {
    BUFFER *wb = buffer_create(0, NULL);

    POPEN_INSTANCE *pi = spawn_popen_run(command);
    if(pi) {
        char buffer[max_line_length + 1];
        while (fgets(buffer, max_line_length, spawn_popen_stdout(pi))) {
            buffer[max_line_length] = '\0';
            buffer_strcat(wb, buffer);
        }
        spawn_popen_kill(pi);
    }
    else {
        buffer_free(wb);
        netdata_log_error("Failed to execute command '%s'.", command);
        return NULL;
    }

    return wb;
}

bool run_command_and_copy_output_to_stdout(const char *command, int max_line_length) {
    POPEN_INSTANCE *pi = spawn_popen_run(command);
    if(pi) {
        char buffer[max_line_length + 1];

        while (fgets(buffer, max_line_length, spawn_popen_stdout(pi)))
            fprintf(stdout, "%s", buffer);

        spawn_popen_kill(pi);
    }
    else {
        netdata_log_error("Failed to execute command '%s'.", command);
        return false;
    }

    return true;
}

struct timing_steps {
    const char *name;
    usec_t time;
    size_t count;
} timing_steps[TIMING_STEP_MAX + 1] = {
        [TIMING_STEP_INTERNAL] = { .name = "internal", .time = 0, },

        [TIMING_STEP_BEGIN2_PREPARE] = { .name = "BEGIN2 prepare", .time = 0, },
        [TIMING_STEP_BEGIN2_FIND_CHART] = { .name = "BEGIN2 find chart", .time = 0, },
        [TIMING_STEP_BEGIN2_PARSE] = { .name = "BEGIN2 parse", .time = 0, },
        [TIMING_STEP_BEGIN2_ML] = { .name = "BEGIN2 ml", .time = 0, },
        [TIMING_STEP_BEGIN2_PROPAGATE] = { .name = "BEGIN2 propagate", .time = 0, },
        [TIMING_STEP_BEGIN2_STORE] = { .name = "BEGIN2 store", .time = 0, },

        [TIMING_STEP_SET2_PREPARE] = { .name = "SET2 prepare", .time = 0, },
        [TIMING_STEP_SET2_LOOKUP_DIMENSION] = { .name = "SET2 find dimension", .time = 0, },
        [TIMING_STEP_SET2_PARSE] = { .name = "SET2 parse", .time = 0, },
        [TIMING_STEP_SET2_ML] = { .name = "SET2 ml", .time = 0, },
        [TIMING_STEP_SET2_PROPAGATE] = { .name = "SET2 propagate", .time = 0, },
        [TIMING_STEP_RRDSET_STORE_METRIC] = { .name = "SET2 rrdset store", .time = 0, },
        [TIMING_STEP_DBENGINE_FIRST_CHECK] = { .name = "db 1st check", .time = 0, },
        [TIMING_STEP_DBENGINE_CHECK_DATA] = { .name = "db check data", .time = 0, },
        [TIMING_STEP_DBENGINE_PACK] = { .name = "db pack", .time = 0, },
        [TIMING_STEP_DBENGINE_PAGE_FIN] = { .name = "db page fin", .time = 0, },
        [TIMING_STEP_DBENGINE_MRG_UPDATE] = { .name = "db mrg update", .time = 0, },
        [TIMING_STEP_DBENGINE_PAGE_ALLOC] = { .name = "db page alloc", .time = 0, },
        [TIMING_STEP_DBENGINE_CREATE_NEW_PAGE] = { .name = "db new page", .time = 0, },
        [TIMING_STEP_DBENGINE_FLUSH_PAGE] = { .name = "db page flush", .time = 0, },
        [TIMING_STEP_SET2_STORE] = { .name = "SET2 store", .time = 0, },

        [TIMING_STEP_END2_PREPARE] = { .name = "END2 prepare", .time = 0, },
        [TIMING_STEP_END2_PUSH_V1] = { .name = "END2 push v1", .time = 0, },
        [TIMING_STEP_END2_ML] = { .name = "END2 ml", .time = 0, },
        [TIMING_STEP_END2_RRDSET] = { .name = "END2 rrdset", .time = 0, },
        [TIMING_STEP_END2_PROPAGATE] = { .name = "END2 propagate", .time = 0, },
        [TIMING_STEP_END2_STORE] = { .name = "END2 store", .time = 0, },

        // terminator
        [TIMING_STEP_MAX] = { .name = NULL, .time = 0, },
};

void timing_action(TIMING_ACTION action, TIMING_STEP step) {
    static __thread usec_t last_action_time = 0;
    static struct timing_steps timings2[TIMING_STEP_MAX + 1] = {};

    switch(action) {
        case TIMING_ACTION_INIT:
            last_action_time = now_monotonic_usec();
            break;

        case TIMING_ACTION_STEP: {
            if(!last_action_time)
                return;

            usec_t now = now_monotonic_usec();
            __atomic_add_fetch(&timing_steps[step].time, now - last_action_time, __ATOMIC_RELAXED);
            __atomic_add_fetch(&timing_steps[step].count, 1, __ATOMIC_RELAXED);
            last_action_time = now;
            break;
        }

        case TIMING_ACTION_FINISH: {
            if(!last_action_time)
                return;

            usec_t expected = __atomic_load_n(&timing_steps[TIMING_STEP_INTERNAL].time, __ATOMIC_RELAXED);
            if(last_action_time - expected < 10 * USEC_PER_SEC) {
                last_action_time = 0;
                return;
            }

            if(!__atomic_compare_exchange_n(&timing_steps[TIMING_STEP_INTERNAL].time, &expected, last_action_time, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
                last_action_time = 0;
                return;
            }

            struct timing_steps timings3[TIMING_STEP_MAX + 1];
            memcpy(timings3, timing_steps, sizeof(timings3));

            size_t total_reqs = 0;
            usec_t total_usec = 0;
            for(size_t t = 1; t < TIMING_STEP_MAX ; t++) {
                total_usec += timings3[t].time - timings2[t].time;
                total_reqs += timings3[t].count - timings2[t].count;
            }

            BUFFER *wb = buffer_create(1024, NULL);

            for(size_t t = 1; t < TIMING_STEP_MAX ; t++) {
                size_t requests = timings3[t].count - timings2[t].count;
                if(!requests) continue;

                buffer_sprintf(wb, "TIMINGS REPORT: [%3zu. %-20s]: # %10zu, t %11.2f ms (%6.2f %%), avg %6.2f usec/run\n",
                               t,
                               timing_steps[t].name ? timing_steps[t].name : "x",
                               requests,
                               (double) (timings3[t].time - timings2[t].time) / (double)USEC_PER_MS,
                               (double) (timings3[t].time - timings2[t].time) * 100.0 / (double) total_usec,
                               (double) (timings3[t].time - timings2[t].time) / (double)requests
                );
            }

            netdata_log_info("TIMINGS REPORT:\n%sTIMINGS REPORT:                        total # %10zu, t %11.2f ms",
                 buffer_tostring(wb), total_reqs, (double)total_usec / USEC_PER_MS);

            memcpy(timings2, timings3, sizeof(timings2));

            last_action_time = 0;
            buffer_free(wb);
        }
    }
}

int hash256_string(const unsigned char *string, size_t size, char *hash) {
    EVP_MD_CTX *ctx;
    ctx = EVP_MD_CTX_create();

    if (!ctx)
        return 0;

    if (!EVP_DigestInit(ctx, EVP_sha256())) {
        EVP_MD_CTX_destroy(ctx);
        return 0;
    }

    if (!EVP_DigestUpdate(ctx, string, size)) {
        EVP_MD_CTX_destroy(ctx);
        return 0;
    }

    if (!EVP_DigestFinal(ctx, (unsigned char *)hash, NULL)) {
        EVP_MD_CTX_destroy(ctx);
        return 0;
    }
    EVP_MD_CTX_destroy(ctx);
    return 1;
}


bool rrdr_relative_window_to_absolute(time_t *after, time_t *before, time_t now) {
    if(!now) now = now_realtime_sec();

    int absolute_period_requested = -1;
    time_t before_requested = *before;
    time_t after_requested = *after;

    // allow relative for before (smaller than API_RELATIVE_TIME_MAX)
    if(ABS(before_requested) <= API_RELATIVE_TIME_MAX) {
        // if the user asked for a positive relative time,
        // flip it to a negative
        if(before_requested > 0)
            before_requested = -before_requested;

        before_requested = now + before_requested;
        absolute_period_requested = 0;
    }

    // allow relative for after (smaller than API_RELATIVE_TIME_MAX)
    if(ABS(after_requested) <= API_RELATIVE_TIME_MAX) {
        if(after_requested > 0)
            after_requested = -after_requested;

        // if the user didn't give an after, use the number of points
        // to give a sane default
        if(after_requested == 0)
            after_requested = -600;

        // since the query engine now returns inclusive timestamps
        // it is awkward to return 6 points when after=-5 is given
        // so for relative queries we add 1 second, to give
        // more predictable results to users.
        after_requested = before_requested + after_requested + 1;
        absolute_period_requested = 0;
    }

    if(absolute_period_requested == -1)
        absolute_period_requested = 1;

    // check if the parameters are flipped
    if(after_requested > before_requested) {
        long long t = before_requested;
        before_requested = after_requested;
        after_requested = t;
    }

    // if the query requests future data
    // shift the query back to be in the present time
    // (this may also happen because of the rules above)
    if(before_requested > now) {
        time_t delta = before_requested - now;
        before_requested -= delta;
        after_requested  -= delta;
    }

    *before = before_requested;
    *after = after_requested;

    return (absolute_period_requested != 1);
}

// Returns 1 if an absolute period was requested or 0 if it was a relative period
bool rrdr_relative_window_to_absolute_query(time_t *after, time_t *before, time_t *now_ptr, bool unittest) {
    time_t now = now_realtime_sec() - 1;

    if(now_ptr)
        *now_ptr = now;

    time_t before_requested = *before;
    time_t after_requested = *after;

    int absolute_period_requested = rrdr_relative_window_to_absolute(&after_requested, &before_requested, now);

    time_t absolute_minimum_time = now - (10 * 365 * 86400);
    time_t absolute_maximum_time = now + (1 * 365 * 86400);

    if (after_requested < absolute_minimum_time && !unittest)
        after_requested = absolute_minimum_time;

    if (after_requested > absolute_maximum_time && !unittest)
        after_requested = absolute_maximum_time;

    if (before_requested < absolute_minimum_time && !unittest)
        before_requested = absolute_minimum_time;

    if (before_requested > absolute_maximum_time && !unittest)
        before_requested = absolute_maximum_time;

    *before = before_requested;
    *after = after_requested;

    return (absolute_period_requested != 1);
}


#if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < OPENSSL_VERSION_110
static inline EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void)
{
    EVP_ENCODE_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));

    if (ctx != NULL) {
        memset(ctx, 0, sizeof(*ctx));
    }
    return ctx;
}

static void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx)
{
	OPENSSL_free(ctx);
}
#endif

int netdata_base64_decode(unsigned char *out, const unsigned char *in, const int in_len)
{
    int outl;
    unsigned char remaining_data[256];

    EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
    EVP_DecodeInit(ctx);
    EVP_DecodeUpdate(ctx, out, &outl, in, in_len);
    int remainder = 0;
    EVP_DecodeFinal(ctx, remaining_data, &remainder);
    EVP_ENCODE_CTX_free(ctx);
    if (remainder)
        return -1;

    return outl;
}

int netdata_base64_encode(unsigned char *encoded, const unsigned char *input, size_t input_size)
{
    return EVP_EncodeBlock(encoded, input, input_size);
}

// Keep internal implementation
// int netdata_base64_decode_internal(const char *encoded, char *decoded, size_t decoded_size) {
//     static const unsigned char base64_table[256] = {
//             ['A'] = 0, ['B'] = 1, ['C'] = 2, ['D'] = 3, ['E'] = 4, ['F'] = 5, ['G'] = 6, ['H'] = 7,
//             ['I'] = 8, ['J'] = 9, ['K'] = 10, ['L'] = 11, ['M'] = 12, ['N'] = 13, ['O'] = 14, ['P'] = 15,
//             ['Q'] = 16, ['R'] = 17, ['S'] = 18, ['T'] = 19, ['U'] = 20, ['V'] = 21, ['W'] = 22, ['X'] = 23,
//             ['Y'] = 24, ['Z'] = 25, ['a'] = 26, ['b'] = 27, ['c'] = 28, ['d'] = 29, ['e'] = 30, ['f'] = 31,
//             ['g'] = 32, ['h'] = 33, ['i'] = 34, ['j'] = 35, ['k'] = 36, ['l'] = 37, ['m'] = 38, ['n'] = 39,
//             ['o'] = 40, ['p'] = 41, ['q'] = 42, ['r'] = 43, ['s'] = 44, ['t'] = 45, ['u'] = 46, ['v'] = 47,
//             ['w'] = 48, ['x'] = 49, ['y'] = 50, ['z'] = 51, ['0'] = 52, ['1'] = 53, ['2'] = 54, ['3'] = 55,
//             ['4'] = 56, ['5'] = 57, ['6'] = 58, ['7'] = 59, ['8'] = 60, ['9'] = 61, ['+'] = 62, ['/'] = 63,
//             [0 ... '+' - 1] = 255,
//             ['+' + 1 ... '/' - 1] = 255,
//             ['9' + 1 ... 'A' - 1] = 255,
//             ['Z' + 1 ... 'a' - 1] = 255,
//             ['z' + 1 ... 255] = 255
//     };
//
//     size_t count = 0;
//     unsigned int tmp = 0;
//     int i, bit;
//
//     if (decoded_size < 1)
//         return 0; // Buffer size must be at least 1 for null termination
//
//     for (i = 0, bit = 0; encoded[i]; i++) {
//         unsigned char value = base64_table[(unsigned char)encoded[i]];
//         if (value > 63)
//             return -1; // Invalid character in input
//
//         tmp = tmp << 6 | value;
//         if (++bit == 4) {
//             if (count + 3 >= decoded_size) break; // Stop decoding if buffer is full
//             decoded[count++] = (tmp >> 16) & 0xFF;
//             decoded[count++] = (tmp >> 8) & 0xFF;
//             decoded[count++] = tmp & 0xFF;
//             tmp = 0;
//             bit = 0;
//         }
//     }
//
//     if (bit > 0 && count + 1 < decoded_size) {
//         tmp <<= 6 * (4 - bit);
//         if (bit > 2 && count + 1 < decoded_size) decoded[count++] = (tmp >> 16) & 0xFF;
//         if (bit > 3 && count + 1 < decoded_size) decoded[count++] = (tmp >> 8) & 0xFF;
//     }
//
//     decoded[count] = '\0'; // Null terminate the output string
//     return count;
// }